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Abstract

Volume preservation is usually regarded as a
necessary property for the leapfrog transition
functions that are used in Hamiltonian Monte
Carlo (HMC) and No-U-Turn (NUTS) sam-
plers to guarantee convergence to the target
distribution. In this work we rigorously prove
that with minimal algorithmic modifications,
both HMC and NUTS can be combined with
transition functions that are not necessarily
volume preserving. In light of these results,
we propose a non-volume preserving transi-
tion function that conserves the Hamiltonian
better than the baseline leapfrog mechanism,
on piecewise-continuous distributions. The
resulting samplers do not require any assump-
tions on the geometry of the discontinuity
boundaries, and our experimental results show
a significant improvement upon traditional

HMC and NUTS.

1 Introduction

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987)
along with its ingenious variant, the No-U-Turn sam-
pler (NUTS) (Hoffman and Gelman, 2014) are among
the most popular Markov chain Monte Carlo (MCMC)
samplers (Neal, 2011; Carpenter et al., 2017). These
methods utilise gradient information of the target distri-
bution to propose a next state that is reasonably distant
from the current state but (under some assumptions) is
still accepted with high probability. This is achieved by
evolving the current state via a transition function that
(a) approximately conserve the Hamiltonian and (b)
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exactly preserves volume i.e. the magnitude of the Ja-
cobian determinant of the transition equals to 1. Poor
Hamiltonian approximation results in a lower accep-
tance probability of the proposal, and therefore reduces
the convergence rate, while volume preservation has
to be exact for convergence to the correct invariant
distribution (Neal, 2011).

Levy et al. (2018) propose a variation of HMC that
uses a transition function based on neural networks
that does not always preserve volume. To account for
the lack of volume preservation, Levy et al. (2018) in-
clude the magnitude of the Jacobian of the transition
in the proposal acceptance probability, as in Reversible
Jjump Markov chain Monte Carlo (RIMCMC) (Green,
1995).1 However Levy et al. (2018) do not formally
prove why the inclusion of the Jacobian determinant is
required. That is, they do not spell out the correspon-
dence between RIMCMC and HMC.

In this paper, we provide a rigorous proof that directly
deals with HMC setting and shows why the inclusion of
the Jacobian determinant in the acceptance probability
is necessary. Our proof does not require the measure-
theoretic aspects of Green’s proof and can easily be
extended to NUTS, which is a more complex setting.

To illustrate the power of HMC with non-volume pre-
serving transitions, we focus on the family of piece-
wise continuous distributions (Afshar, 2016). Such
distributions emerge in many applications, including:
bounded support priors or hard constraints (Lan et al.,
2014), non-parametric models based on mixture of
truncated basis functions (e.g. piecewise polynomials
or exponentials) (Cobb et al., 2006), context-specific
conditional densities (such as tree-CPDs) (Sanner and

'RIMCMC deals with Metorpolis-Hastings proposals for
jumping between sub-spaces of different dimensionality via
introducing an auxiliary vector to match the dimensionality
followed by a bijective transition. It is shown that the
magnitude of the Jacobian determinant of such a transition
should be included in the proposal acceptance probability
to ensure convergence of the sampler to the target.
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Abbasnejad, 2012), probabilistic programming (due to
if-then statements and operations such as min/mazx)
(Vajda, 2014), influence diagrams (Howard and Mathe-
son, 2005), piecewise likelihoods as in Preference Learn-
ing (Afshar et al., 2015) or Bayesian Belief Update
models (Nishimura et al., 2020).

The performance of baseline HMC for exploring piece-
wise continuous distributions can be quite poor. The
reason is that HMC simulates the Hamiltonian dynam-
ics via a leapfrog discretisation that relies on the as-
sumption that the target distribution is smooth. Since
piecewise distributions do not satisfy this assumption,
the leapfrog simulation can lead to arbitrarily large
approximation errors.

Several works have tried to address this shortcom-
ing: Pakman and Paninski (2014) propose methods for
HMC-based sampling from piecewise distributions by
solving the Hamiltonian equations of motion in their
closed form rather than relying on approximations.
They conserve the Hamiltonian at the discontinuous
boundaries via modifying the momentum similar to the
movement of a particle in a physical system. Unfor-
tunately, Hamiltonian equations can rarely be solved
exactly. Therefore, the application of this method is
restricted to piecewise Gaussian distributions.

Lan et al. (2014) map a constrained/truncated target
distribution to a sphere such that the support bound-
ary (in the original space) is mapped to the sphere’s
equator. This change of domains implicitly handles
the original constraints. That is, while an HMC-based
sampler moves freely on the sphere, it proposes states
that are within the constraints imposed on the original
space. The application of this method is restricted to
distributions with a single truncated segment.

The least restricted existing variation of HMC that
targets piecewise continuous distributions is Refiec-
tive/Refractive HMC (RHMC) (Afshar and Dombke,
2015). RHMC is based on a volume-preserving exten-
sion of the leapfrog mechanism that can be applied
to arbitrary piecewise continuous distributions with
affine discontinuity boundaries. Similar to Pakman
and Paninski (2014) method, RHMC needs extra infor-
mation on the inclination of the boundary hyper-planes.

We propose a simple, easy-to-implement, non-volume
preserving transition function, called Fized-Orientation
Momentum Adjusting Leapfrog (FORMAL), which ap-
proximately conserves the Hamiltonian on piecewise
continuous distributions without requiring extra infor-
mation or assumptions on the geometry of the bound-
aries. Our experimental results show that the resulting
NoVoP HMC and NUTS outperform their volume-
preserving counterparts on piecewise distributions.

2 Hamiltonian Monte Carlo (HMC)

Consider a probability density function over R™:
mq(q) « exp(—U(q)), where q and U are referred
to as the position vector and the potential energy func-
tion (or simply energy), respectively. Starting from the
current position state q, HMC algorithm (Neal, 2011),
proceeds as follows:

(a) A phase state, z := (q, p), is generated by augment-
ing the state with an auxiliary momentum vector,

P~ 7Tp<p) = N(On,Ian)

(b) A deterministic, volume-preserving transition func-
tion, F maps z to a proposed state, z’' := (q’, p’). This
transition has a reversible dynamics in the sense that,

F(F(z)) =z, Yz

(¢) The proposed state z’ is accepted with probability,
’ . 7rz(z/) . e*H(z’)
a(z%z):mm{l, () }:mm l,m (1)

where 7z(z) = mp(p)7Tq(d) = exp(—H(z)) and the
Hamiltonian, H(-), is defined as follows:

H(z):=p'p/2+U(q).

In baseline HMC, F simulates the state evolution via
the Hamiltonian equations of motion,

dq dp

o p a —VU(q),
using L leapfrog discretisation steps, each for a fixed
time interval, e. The Hamiltonian is conserved un-
der the evolution defined by the equations of motion.
Therefore, if the leapfrog approximation error is low,
H(z') ~ H(z) and the acceptance probability in (1)
is high. The Hamiltonian equations of motion as well
as their leapfrog approximation preserve volume, in
the sense that the total volume of any region in the
phase space that is evolved by means of such dynamics,
remains constant. Volume preservation is a necessary
property for the convergence of baseline HMC sam-
pler to the correct invariant distribution (Neal, 2011).
In the next section we present a generalisation that
guarantees convergence to the desired distribution re-
gardless of the volume preservation property of the
transition function.

3 Non-Volume Preserving HMC
(NoVoP HMC)

The proposed Non-Volume Preserving HMC (NoVoP
HMO) is illustrated in Algorithm 1. If the blue charac-
ters are omitted, Algorithm 1 reduces to baseline HMC
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Algorithm 1: NovopHMC

input : q®, current state (of size n); U, energy;
L, no. leapfrog steps; €, leapfrog step size

output : next state

a<q"; p~N(0,,TLxn)

Hy < [lp[I*/2+ U(a)

# Jacobian det. of the total transition

for | =1to L do

(q,p, |J+]) < TransiTioNSTEP(q, P, €, U)
J]: — J]: : ‘J‘r‘

# To make the dynamics reversible
H « |[p|?/2+ Ula)
if s ~U(0,1) < Jr-efo=H then

‘ return q else return q(t)

(to facilitate the comparison). In baseline HMC the
TRANSITIONSTEP evolves the phase state for a small
time interval, €, via a (volume preserving) leap-frog dis-
cretisation step. In NoVoP HMC, TRANSITIONSTEP
is an arbitrary bijective function that does not nec-
essarily preserve volume and instead, along with the
evolved state, returns the magnitude of the Jacobian
determinant of the transition step, |J-|. For brevity,
throughout we refer to the magnitude of the Jacobian
determinant as the Jacobian.

A concrete example of such TRANSITIONSTEP will be
presented in Section 4 (see Algorithm 2). In the rest
of this section we prove that NoVoP HMC converges
to the correct target distribution.

Note that the Jacobian of the composition of a series
of functions 71, ..., 7, equals the product of the Ja-
cobians of the individual functions: |J; om0, 0m,| =
| T | - || < -+ |7, |- As such, in Algorithm 1, the value
J £ is the Jacobian of the total evolution from a current
state, z := (q,p), to a proposal state, z' := (q',p’),
and the acceptance probability is:

0z’

9z
os
Oz

a(z — z') := min {1,

= min {1,

which allows us to derive the following result.

e (H(z) ~ H(Z)
7z (2) }

’/Tz(Z)

(2)

Theorem 3.1. An ergodic chain of samples drawn
via HMC with a transition, F, that has a reversible
dynamics, i.e. F(F(z)) = z, but is not necessarily
volume-preserving, converges to a correct equilibrium

distribution if the proposal acceptance probability is
decided by (2).

Proof. Since sampling p from its marginal distribution
leaves the joint distribution invariant, under the as-

sumption of ergodicity of the MCMC chain (Tweedie,
1975), a sufficient condition for the correct convergence
is to prove detailed balance for accepting the proposed
state, z' := F(z), with the probability given by (2),
where z := (q,p) is the current state. Since the evo-
lution is deterministic, the proposal distribution is in
the form of a Dirac delta:

Qz—12z')=6(z — F(z)).
We prove detailed balance condition as given by Green
(1995) for the generalised HMC. That is, we show:
/ 7z(z) Q(z — z')a(z — 2')dz dz
zeS z'es’

= / ﬂz(Z/)
z' €S’

where S and S’ are arbitrary volumes (i.e. Borel sets
in the parameter space). Intuitively speaking, (3) indi-
cates that to satisfy detailed balance, there should be
an equilibrium between the transition from (the proba-
bility mass associated with) S to S’ and vice versa. As

such, we should prove that:
§(z' — F(z))a(z — 7')dz dz

/ 72 (z)
zES z' €S’

B /z,e;iz(z') /zggz — F(2))a(z' — z)dzdz'.
(4)

Q(z — z)a(z — z)dzdz’
zcS

(3)

Let F(S) and F(S’) be the projection of elements of
S and S’ via F, respectively:

F(S):={F(z)|ze S}
F(S):={F(z) |z €5}

Since S and S’ are arbitrar-
ily chosen, in many cases
the two sides of (4) are 0
and the integration bounds
can be tightened:

If z € S but F(z) ¢ S’ then
the LHS of (4) is 0 because
for all z’ € S,

5(z' — F(z)) = 0.

On the other hand, if F(z) € S’ then by definition
z € F(S5') since the dynamics of F is reversible i.e.
z = F(F(z)). Therefore, as illustrated in the right
hand side diagram, the transition between z € S and
z' € S’ is possible iff:

z e SNF(S) and

2 €S NFS). (5)
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As such the integral bounds in (4), can be tightened:

/ 7z(z) | 0(z' — F(z))a(z — z')dz' dz
zeSnF(s") Jaes

= / nz(z') [8(z — F(2z'))a(z' — z)dzdz’ .
2eS'nF(S) Jzes

Due to the sifting property of the Dirac delta, (6)
simplifies to:

/’/Tz(Z)Ol(Z — F(z))dz = /wz(z’)a(z’ — F(z'))dz .

€SNF(S") 1€8'NF(S)
(7)

By substituting the acceptance probability given by (2)
into (7):

[ gty {1757 T2 e
= [ oty 1|5 T

(8)

Therefore, to prove that the detailed balance condition
holds for non-volume preserving HMC, it is sufficient
to show that the two sides of (8) are equal.

Let us define:

OF(z)
0z

C::{z s.t. ze SNF(S") and ‘

7))

Wz(z)

By segmenting S N F(S’) to C' and its complement
C':=(SNF(S))\ C, the LHS of (8) becomes:
dz +/ 7z(2z) dz
zcC’

feo™@ 75
)

On the other hand, by a change of random variable
z := F(z') and noting that, due to the reversibility
of the dynamics, 27 = F(z) and z’' € S' N F(S) iff
z € SN F(S'), the RHS of (8) becomes:

mz(F(2))
Wz(Z)

/ze?m%%”mm{l’ 27| ey ) ‘822) o
— [ ra(r@n |52 a
+ [ mntr (Z”‘ai?w ) lagf) @
(10)

Now, it can easily be verified that (9) and (10) are
equal, which completes the proof. O
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RHMC Refraction RHMC Reflection

FORMAL Refraction FORMAL Reflection

Figure 1: Evolution of a position state (blue circle)
with momentum p := p, + p) into a position vec-
tor (red circle) with momentum p’ := p/, + pj in
the adjacency of a discontinuity boundary (horizon-
tal dashed line) of a piecewise-continuous target via
RHMC refraction/reflection (first row) and FORMAL
refraction /reflection (second row) transitions.

4 Fixed-Orientation Momentum

Adjusting Leapfrog (FORMAL)

So far we have proved that the sampling scheme in
Algorithm 1 will converge to draws from the invariant
distribution. However, to maximise the rate of conver-
gence, the proposal acceptance probability given by (2)
should be close to 1. One way to achieve this is to re-
quire that the transition should approximately preserve
both volume and Hamiltonian, i.e. |0.F(z)/0z| ~ 1 and
H(F(z)) ~ H(z).

In this section, we propose such a transition, namely,
Fized-Orientation Momentum Adjusting Leapfrog
(FORMAL), which outperforms the leapfrog mecha-
nism on piecewise models. The latter algorithm is blind
to the boundaries of piecewise models, and through
passing a discontinuity boundary, it encounters a Hamil-
tonian approximation error equal to the energy differ-
ence on the two sides of the boundary, AU.

In an existing extension of the leapfrog mechanism, used
in Reflective-HMC (RHMC) (Afshar and Domke, 2015),
to restore the Hamiltonian when a discontinuity bound-
ary is met, the state’s momentum is decomposed to com-
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ponents p, and p| that are perpendicular and parallel
to the boundary, respectively. If |pL||?> > 2AU, then
the state refracts by substituting the perpendicular

component p; with p/, := /||p.||? — 2AU- HPJ—H’ oth-

erwise it reflects by changing its direction p/, := —p
(Figure 1, first row).

To guarantee volume preservation, RHMC can only be
applied to piecewise distributions with affine bound-
aries. Furthermore, in practice, the required momen-
tum decomposition may be hard or impossible to com-
pute since it needs the normal vector i.e. a vector that
is orthogonal to the boundary surface at any point
where a discontinuity boundary is met.

In FORMAL, this problematic decomposition step
is omitted: If |p||? > 2AU, the Hamiltonian is
restored by modifying the momentum’s magnitude.

p = /|p|? = 2AU - ol ” Otherwise we reverse its

direction, p’ := —p (Figure 1, second row). In general,
this transition does not preserve volume. However, it
does preserve the Hamiltonian and leads to a reversible
dynamics.?

Algorithm 2 illustrates a transition step that in the time-
interval €, can reflect or refract multiple times based
on the FORMAL mechanism.> This algorithm only
needs to compute the Jacobian, |J;|, in case refractions
occur because the other steps of the algorithm preserve
volume. In our implementation, we have used the JAX
automatic differentiation framework (Bradbury et al.,
2018) to automate the computation of the Jacobians.

5 No-U-Turn sampler (NUTS)

NUTS sampler (Hoffman and Gelman, 2014) is based
on the idea of setting the number of leapfrog steps,
L, adaptively by continuing the leapfrog mechanism
till the path made by leapfrogs makes a U-turn. That
is, the last proposed position state, q’, starts becom-
ing closer to the initial position q. This happens if
(@ — q) - p’ < 0. Unfortunately, such an approach
violates the detailed balance condition. To overcome
this problem, in NUTS, a path of states (traced set B)
is generated such that its size is somehow decided by
the mentioned termination criterion. The set B has
the following important property, which is required for
detailed balance:

P(Blz) = P(Bl2') (1)

2Algorithm 2 does not have a reversible dynamics by
itself. However, if it maps a state (q,p) to (q’,p’), then it
also maps (q', —p’) to (q, —p). As such, when used as a
sub-routine within Algorithm 1, the dynamics of the total
transition becomes reversible since in line 7 of Algorithm 1,
P — —p-

3If the blue characters are omitted, the algorithm reduces
to a baseline leapfrog step.

Vz,z' € B.
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Algorithm 2: TRANSITIONSTEP

input :(q,p), state; U(+), energy; €, step size.

output : evolved state and its Jacobian
determinant w.r.t. the input state.

|J-| =1 4 Jacobian det. of the total transition step

p+<p—¢VU(q)/2 +# Half-step

4 Full-step:
(x,tz, AU) < FirsTHIT(qQ, P, €, U)
if (x,t,, AU) = () then
| a+aq+ep
else

# Keep trace of q and p before their non-volume
preserving evolution:

(q",p") < (a,p)

to 0

while (x,t,, AU) # () do

q+x

tg < tg +ty

if ||p||? > 2AU then # Adjust magnitude:

| P VPP —2AT. %

else # Reverse direction:
| p<-p
(x,ty, AU) < FrstHir(q, p, € — to,U)
q < q+(e—to)p
[ 7| < [det 57LeLs
p<«< p-—-¢VU(q)/2 # Half-step

return (q,p,|J|)

Note: FIRsTHIT (q, P, tmax, U) is any function
that returns a tuple (x,t,, AU), where x is the
first intersection of a boundary (of the piecewise
function U) with line segment [q, q + tmaxP);

t, = (x — q)/p is the time it is visited, and AU
is the change of energy at the discontinuity. If no
such intersection exists, () is returned.

That is, the probability of generating B, starting from
any of its members is the same. Having B, the current
state z and a slice variable, u, that is uniformly drawn
from the interval [0,7%(2z)], a set of chosen states C:

C:={z € Bs.t. mz(z') > u}, (12)
is constructed from which the next state is drawn uni-
formly.

5.1 Limitations of NUTS

If the leapfrog transition is not effective in preserving
the Hamiltonian (which in particular, is the case with
piecewise continuous distributions), the described algo-
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rithm can generate a huge or even infinite* 3 containing
several states that will not be chosen (i.e. ||B|| >> [|C||)
and waste computational resources. To prevent this
issue, the designers of NUTS have proposed an extra
criterion. Terminate if:

u > exp(Amax — H(Z)) (13)
where Ap.x IS a positive parameter set by the user.
It can be verified that the probability of termination
via criterion (13) is non-zero if H(z') > H(z) + Amax-
That is, the approximation error in the simulation of
Hamiltonian dynamics is more than A,.. However,
the following proposition entails that this criterion
violates detailed balance.

Proposition 1. If Ay < 00, termination based on
criterion (13) violates the intended condition (11).5

To minimise the interference with detailed balance, the
designers of NUTS propose to choose a large value, e.g.
Amax := 1000 (Hoffman and Gelman, 2014). However,
we do not find this solution systematic, since (a) if Apyax
is set to be too large, the interference with detailed
balance is minimized at the expense of low performance
(due to wasteful expansion of B), while (b) if Apax is
set smaller, the performance improves by sacrificing the
correct convergence. And (c) the magnitude of A ax
only makes sense relative to the normalisation constant
of the target distribution, which is often unknown.

In the next section we show that FORMAL dynamics
can neatly be combined with NUTS. The result is a non-
volume preserving version of NUTS, which (a) does not
rely on the extra parameter A,,.x, (b) perfectly satisfies
detailed balance, and (c) has a better performance,
since it preserves the Hamiltonian better.

6 Non-Volume Preserving No-U-Turn
sampler (NoVoP NUTS)

Algorithms 3 and 4 describe NoVoP NUTS and, if
the blue parts are omitted, they reduce to baseline
NUTS. In both versions of NUTS, to return a sample
from a (position) distribution, exp(—U(q)), given a
current sample, q, a phase state, z := (q, p), is made
by drawing a same-sized momentum vector from a
standard normal distribution. Therefore, similar to
HMC, we have 7z (z) := exp(—3p'p — U(q)). A slice
variable, u, is uniformly drawn from [0, 7z (z)]. A trace
path B and a set of chosen states C C B are generated
by starting from B = {z} and iteratively doubling its

4For instance, on a piecewise constant (e.g. uniform)
distribution, the momentum is invariant under the leapfrog
mechanism. Therefore, a U-turn never occurs.

5The proof and a counterexample to correct convergence
are provided in the supplementary material.

size by adding new states to its right (or left) side via
forward (resp. backward) evolution of the rightmost
(resp. leftmost) member of the path, till a termination
criterion is satisfied. This process is such that the
property given by (11) is satisfied (as long as Apax =
00). The trace path, B, is not explicitly generated, but
can be thought of as the initial state plus the set of all
states that are traced by BLDTREE, and a subset, C’,
of them is added to the chosen states, C.

Unlike the baseline, in NoVoP NUTS the Jacobian of
each chosen state, z’ € C, w.r.t. the current state, z,

(i.e. ‘%—zz/’) is computed. These Jacobians are built

recursively by multiplying the Jacobian of the last tran-
sition step in the already computed Jacobian associated
with the right-most (or left-most) traced state. As such,
per transition step, only the Jacobian of that step is
computed, and redundant computations are avoided.
Furthermore, in NoVoP NUTS, a state, z’ € B, is

added to C if u < ’%—zz/‘ 7z (z'), while in baseline NUTS,

the condition is: u < 7z(z’) (see Line 4 of Alg. 4). In
NoVoP NUTS, the probability of adding a state, z’,
to C, given the trace path, B, and slice variable, u, is
then:

]I < A oz’
P(z' € C|B,u) := { |:u_7Tz(Z)
0

0z

} ifz’ e B
otherwise

while in the baseline, the Jacobian term is missing. As
the last difference between the two algorithms, note
that NoVoP HMC does not rely on the termination
condition given by (13) since in this algorithm, we set
Apax = 0o which is equivalent to omitting (the red)
Line 8 in Alg. 4.

Theorem 6.1. An ergodic chain of samples drawn via
NoVoP NUTS sampling with an arbitrary (not neces-
sarily volume-preserving) bijective transition step con-
verges to the correct invariant distribution.®

7 Experimental results

As discussed, NoVoP HMC (with FORMAL transi-
tion) is designed for piecewise continuous distributions
where the existing volume preserving extension of HMC
(namely, RHMC) (Afshar and Domke, 2015) is impossi-
ble or difficult to apply. Nonetheless, it is constructive
to first consider a distribution where both NoVoP HMC
and RHMC can be applied. Clearly we would expect
the volume preserving technique to perform better in
this situation. However, it is informative to measure
the difference between these approaches in practice.

Section 7.1 compares NoVoP HMC against RHMC on
a piecewise model with affine boundaries.

5The proof provided in the supplementary material.
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Algorithm 3: NOVOPNUTS

Algorithm 4: BLDTREE

Input: ), current state (of size n);
leapfrog step size €
1pr N(Onalnxn)
2 u ~ Unif[0,exp (—3p"p — U(q(t)))]
(@.p7)+ (a“,p)
(@, p") + (a¥,p)
5 JJT«1; Jt+1 # Jacobian determinants
j<0; C+{(d,p.1)}; s« 1

7 while s =1 do

8 vj ~ Unif({-1,1})

if v; = —1then

q_vp_7 J_a R _76178/ A
BLDTREE(qQ ™, P, J ,u,vj,J,€)

w

'S

=

# Choose a direction

10

else

_7_7_aq+7p+?‘]+’cl78/ A

BuoTree(qt, pt, J 7, u,vj, 4, €)

if s/ =1 then

‘ C+—Ccuc

if (" —q7)-p~ <Oors =0or
(" —q7)-p" <0 then s+« 0

j+—j+1

11

12

13
14

15
16

17

18 return (q*Y, — —) uniformly at random from C

© 0 g4 O oA W N =

10
11
12
13
14

15
16

17
18
19
20

Input: (q,p), state; J, Jacobian; u, slice variable;
v, direction; j, tree depth; e, step size; Apax:= 00

if j =0 then
(d,p’,|J;|) + TrRANSITIONSTEP(q, P, V€)
J e J ||
if u< Jexp(—ip’"p’ —U(q')) then
| O )
else
| ¢« {}
s Tu < exp{Amax—U(q')— %p’Tp’}]
return q’,p’,J',q',p’, J,C, s
else

a.,p,J ,qt,pt,JH,C, s «
BLpTrEE (q,p, J,u,v,j — 1,€)
if v = —1 then
qi,pi,Ji,*,*,*,CN,SN —
BuoTree(q—,p~,J ,u,v,j — 1,€)

else
f,f,f,qu,p*?J*,C”,s” —
BupTree(q™, pT, J T u,v,5 — 1,¢€)
s s 5" -1(q" —q7)-p~ > 0]
I[(a* —q7)-p* >0
C'+cuc”
return q_7p_7J_7q+7p+’J+7C/7s

/

Section 7.2 presents results for a distribution where the
boundaries are not affine, and therefore RHMC cannot
be guaranteed to produce draws from the correct invari-
ant distribution. Here, we compare the performance
of NoVoP HMC/NUTS against their volume preserv-
ing counterparts. All algorithms are implemented in
Python and run on a single thread of a 2.7GHz CPU.
NoVoP algorithms use JAX auto-differentiation frame-
work (Bradbury et al., 2018) to compute Jacobians.”

7.1 Experiment 1

We compare NoVoP HMC against Baseline HMC
(Neal, 2011), RHMC, (Afshar and Domke, 2015), and
Random-walk Metropolis-Hastings (RWMH) on the
model introduced in Afshar and Domke (2015):®

VaTAq, if [lqflec <3
U@ ={1+vaTdq, if3<|gllec <6  (14)
400, otherwise

where A is a positive definite matrix that is randomly
generated for each simulation. All variations of HMC
use same fixed parameters L = 10 and ¢ = 0.1.

"Our source code is available at:
https://github.com/hadimafshar/NoVopHMC.git

8 A 2-dimensional instance of such a distribution is plot-
ted in the supplementary material.

Due to the symmetry of the model, the ground truth
expected value of q = (¢1,...,¢,) is known to be 0.
As such, the absolute error of the expected value of gq4
is | Zle qék)/K|, for d =1,...,n, where q((ik) denotes
the k' iterate of ¢q in an MCMC chain. The worst
mean absolute error (WMAE) over all dimensions is
taken as the error measurement of the chain:

S (k)
E q
k=1 ‘

For each algorithm, 10 MCMC chains are run, and in
each chain the value of each element of the initial state,
q, is uniformly drawn from the interval [5.5,5.99).
The average WMAE of all chains + 95% confidence
interval are depicted in Figure 2. In low dimensional
settings, n = 5, our results show that all samplers
have similar convergence rates. However, in high di-
mensional settings, n = 20, the convergence rates of
Baseline HMC and RWMH are much slower than those
of RHMC and NoVoP HMC. As predicted, the con-
vergence rate of RHMC is better than that of NoVoP
HMC, although the difference is marginal.

WMAE (q(l), . .,q(K)) -~ max (15)

1
K d=1,..n

7.2 Experiment 2

In this experiment, we use the following piecewise con-
tinuous target distribution where the boundaries are
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Figure 2: The worst mean absolute error (WMAE), see
(15), vs no. samples drawn from the model given by
(14) with dimensionality 5 (top) and 20 (bottom).

hyper-spherical (in contrast to the hyper-cubic bound-
aries of the previous experimental model):?

vaTdaq, if lall2 < 3
U@ =q1+vaTdq, if3<|ql2<6 (16)
50 +/qTAq, otherwise

Since the boundaries are non-affine, we omit RHMC
from this experiment but add the baseline NUTS and
NoVoP NUTS samplers. For baseline NUTS we fix
e = 0.1 and Apax = 1000, while for NoVoP NUTS, we
fix e = 0.1 and Ap.x = 0o (as discussed in Section 6).
In both variations of NUTS, we restrict the maximum
size of the traced set B to 2!2.10

9Some 2-dimensional instances of such a distribution are
plotted in the supplementary material.

10We have intentionally chosen a high maximum size to
highlight the difference between HMC and NUTS. By re-
ducing this limit, the performance of NUTS/NoVoP-NUTS
become more similar to HMC/NoVoP-HMC.

Figure 3 depicts WMAE versus the number of drawn
samples (top) and the sampling time (bottom) where
the model dimensionality is set to n = 50. For each
sampling algorithm, except baseline NUTS, 10 MCMC
chains are run for 5000 iterations. In each MCMC chain,
each element of the initial sample vector is uniformly
drawn from the interval [5.5/4/n,5.9/4/n). For baseline
NUTS we only run 1 chain and stop it after 2000
iterations, since this algorithm is at least two orders of
magnitude slower than other samplers. While all other
samplers return 5000 samples in less than 20 minutes,
baseline NUTS could not draw more than 2000 samples
after 24 hours.!!

These plots show that in terms of convergence versus
iterations, as well as convergence versus time, NoVoP
HMC performs the best. Since this method relies on ex-
tra computations of Jacobians, such a high performance
versus time may seem counter-intuitive. However, note
that the only non-volume preserving operations are re-
fractions that make a small subset of total transitional
operations and do not affect the speed much.!?

Figure 4 provides a better insight on the performance
of the compared samplers. In this figure, for each
sampling algorithm, a sample trance of a single MCMC
chain is plotted versus the sampling iterations and time.
According to these plots, on the presented piecewise
model, baseline HMC has a high rejection rate. This
issue is fixed in NoVoP HMC via a better preservation
of the Hamiltonian which leads to a significant increase
the acceptance probability of the proposals. Baseline
and NoVoP NUTS algorithms, do not have an explicit
proposal acceptance step and their performance can
be better evaluated versus time. It can be seen that
baseline NUTS sampling is extremely slow (which is due
to the formation of very large trace sets B). Although
NoVoP NUTS is much faster than the baseline NUTS,
it still halts sporadically for long periods of time to
form very large trace sets, and in terms of error versus
time, at least on this model, does not perform as good
as NoVoP HMC.

HFor baseline NUTS, we also tried setting e adaptively
via the dual averaging mechanism proposed in Hoffman
and Gelman (2014). However, due to the problem of this
sampler with piecewise models, the adaptively chosen e
became too close to 0, which slowed down the sampler
furthermore and deteriorated its performance.

2T our experimental models, by increasing the dimen-
sionality, the rate of refraction drops while the rate of
reflection usually increases. For example in Experiment 2
(with e = 0.1 and L = 10), for dimensionalities n = 5, 10
and 50, the average number of refractions per sample are
respectively 0.14, 0.12 and 0.09, while the average number
of reflections per sample are respectively 0.10, 0.22 and 1.9.
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Figure 3: WMAE vs the number of samples (top) and
sampling time in seconds (bottom).

8 Conclusion

In this paper, we propose a generalisation of HMC
and NUTS sampling techniques to arbitrary transition
functions that have reversible dynamics but are not nec-
essarily volume preserving. As mentioned, an instance
of such a sampler is already proposed in the literature
(Levy et al., 2018) but a rigorous proof for its correct
convergence has been missing. We provided proofs that
directly target HMC and NUTS settings and indicate
that with the inclusion of the Jacobian in the proposal
acceptance probability, non-volume preserving HMC
and NUTS converge to the correct equilibrium distri-
bution. This result can potentially lead to a variety
of new samplers with transitions that do not have the
limitations of the existing leapfrog mechanism and seek
a trade-off between preservation of Hamiltonian and
volume, rather than sacrificing the former to guarantee
the exact preservation of the latter.

We also propose a specific transition mechanism,
namely, Fized-Orientation Momentum Adjusting

—— RWMH

i
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3

5] MM LWNM[.
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>
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Trace of samples versus time (sec)

Figure 4: Trace of samples drawn from a single MCMC
chain versus iterations (top) and time (bottom).

Leapfrog (FORMAL), which is suitable for piecewise
continuous distributions and is not limited to affine
boundaries. Furthermore it does not require extra in-
formation on the inclination of the boundaries, and
its implementation is easy, thanks to existing auto-
differentiation frameworks, which automate the com-
putation of the required Jacobians. As our experi-
mental results show, the extra computational over-
head does not have a significant effect on the sampling
speed, while the better preservation of the Hamiltonian
can lead to a significant improvement in the sampling
scheme when compared to the baseline.
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