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Abstract

We study iterative/implicit regularization for
linear models, when the bias is convex but
not necessarily strongly convex. We char-
acterize the stability properties of a primal-
dual gradient based approach, analyzing its
convergence in the presence of worst case
deterministic noise. As a main example,
we specialize and illustrate the results for
the problem of robust sparse recovery. Key
to our analysis is a combination of ideas
from regularization theory and optimiza-
tion in the presence of errors. Theoreti-
cal results are complemented by experiments
showing that state-of-the-art performances
can be achieved with considerable computa-
tional speed-ups.

1 Introduction

Machine learning often reduces to estimating some
model parameters. This approach raises at least two
orders of questions: first, multiple solutions may exist,
amongst which a specific one must be selected; second,
potential instabilities with respect to noise and sam-
pling must be controlled.
A classical way to achieve both goals is to consider ex-
plicitly penalized or constrained objective functions.
In machine learning, this leads to regularized empiri-
cal risk minimization (Shalev-Shwartz and Ben-David,
2014). A more recent approach is based on directly
exploiting an iterative optimization procedure for an
unconstrained/unpenalized problem.

This approach is shared by several related ideas. One
is implicit regularization (Mahoney, 2012; Gunasekar
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et al., 2017), stemming from the observation that the
bias is controlled increasing the number of iterations,
just like in penalized methods it is controlled decreas-
ing the penalty parameter. Another one is early stop-
ping (Yao et al., 2007; Raskutti et al., 2014), putting
emphasis on the fact that running the iterates to con-
vergence might lead to instabilities in the presence of
noise. Yet another, and more classical, idea is iter-
ative regularization, where both aspects (convergence
and stability) are considered to be relevant (Engl et al.,
1996; Kaltenbacher et al., 2008). This approach natu-
rally blends modeling and numerical aspects, often im-
proving computational efficiency, while retaining good
prediction accuracy (Yao et al., 2007). Another reason
of interest is that iterative regularization may be one
of the mechanisms explaining generalization in deep
learning (Neyshabur et al., 2017; Gunasekar et al.,
2017; Arora et al., 2019; Vaškevičius et al., 2020).

A classic illustrative example is gradient descent for
linear least squares. The latter, if suitably initialized,
converges (is biased) to the minimal Euclidean norm
solution. Moreover, its stability is controlled along
the iterative process, allowing to derive early stopping
criterions depending on the noise (Engl et al., 1996;
Raskutti et al., 2014). There are a number of develop-
ments of these basic results. For example, one line of
work has considered extensions to other gradient-based
methods, such as stochastic and accelerated gradient
descent (Zhang and Yu, 2005; Moulines and Bach,
2011; Rosasco and Villa, 2015; Pagliana and Rosasco,
2019). Another line of work has considered classifica-
tion problems (Gunasekar et al., 2017; Soudry et al.,
2018) and also nonlinear models, such as deep net-
works (Neyshabur et al., 2017), see also Kaltenbacher
et al. (2008) for results for non linear inverse problems.

In this work, we are interested in iterative regular-
ization procedures where the considered bias is not
the Euclidean norm but rather a general convex func-
tional. The question is to determine whether or not
there exists an iteration analogous to gradient descent
for such general bias. This question has been stud-
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ied when the bias is strongly convex. In this case, lin-
earized Bregman iterations (a.k.a. mirror descent) can
be used (Burger et al., 2007; Gunasekar et al., 2018).
For this approach accelerated algorithms (Matet et al.,
2017) have also been considered and studied. Finally,
approaches have also been studied based on diagonal
methods (Garrigos et al., 2018) and their acceleration
(Calatroni et al., 2019). The general convex case, even
for linear models, is much less understood. There have
been studies for ADMM/Bregman iteration, but the
procedure requires solving a nontrivial optimization
problem at each iteration (Burger et al., 2007). Fur-
ther, stability and convergence results are proved only
in terms of Bregman divergence, which in general is a
weak result. Interestingly, various recent results study
iterative regularization for sparse recovery, where the
bias is defined by an `1 norm (Agarwal et al., 2012;
Osher et al., 2016; Vaškevičius et al., 2019).

In this paper we propose and study an efficient algo-
rithm for general convex bias beyond `1 norm. Indeed,
we adapt the Chambolle and Pock (CP) algorithm,
popular in imaging (Chambolle and Pock, 2011), and
study its iterative regularization properties. The CP
algorithm is a first order primal-dual method, thus
easy to implement and requiring only matrix-vector
multiplications and proximity operators. In the set-
ting of linear models with worst case errors, our anal-
ysis provides dimension free convergence and stabil-
ity results in terms of both Bregman divergence and
approximate feasibility. A combination of these two
results allows to derive strong convergence results in
the `1 norm case. The proof relies on results from
the analysis of primal-dual methods with errors (Rasch
and Chambolle, 2020). From our general results, sev-
eral special cases can be derived and we discuss as an
example sparse recovery, proving dimension free esti-
mates in norm. In the experimental section, we in-
vestigate the proposed method and show state-of-the-
art performances with significant computation savings
compared to the Tikhonov approach.

Notation, The set of integers from 1 to n is rns. Let
f : Rn Ñ RYt`8u and J : Rp Ñ RYt`8u be proper,
convex, and lower semicontinuous. The subdifferen-
tial of J at w P Rp is BJpwq. The Bregman diver-
gence associated to J is denoted Dθ

Jpw,w
1q :“ Jpwq ´

Jpw1q ´ xθ, w ´ w1y, where θ P BJpw1q. The Fenchel-
Legendre conjugate of f is f‹pθq :“ supwxw, θy´fpwq.
The indicator function ιtyu is equal to zero if the ar-
gument equals y and `8 otherwise. For a proper
convex lower semicontinuous function J , proxJpxq “

arg miny Jpyq ` ‖x´ y‖2 {2.

2 Over-parametrization, implicit and
explicit regularization

The basic problem of supervised learning is to find a
relationship to predict outputs y from inputs x,

x ÞÑ fpxq « y ,

given a limited number of pairs pxi, yiq
n
i“1 with, e.g.

xi P Rd and yi P R. The search for a solution is
typically restricted to a set of parametrized functions
fw, with w P Rp. A prototype example are linear
models where p “ d and fwpxq “ xw, xy, or more
generally fwpxq “

řp
j“1 w

jφjpxq, for some dictionary

φj : Rd Ñ R, j “ 1, . . . , p (Hastie et al., 2009; Shalev-
Shwartz and Ben-David, 2014). In modern applica-
tions, it is often the case that the number of param-
eters p is vastly larger than the number of available
data points n, a regime called over-parametrized. Ex-
cluding degenerate cases, one can then expect to find
a solution w capable of interpolating the data, that is
satisfying,

fwpxiq “ yi, @i P rns . (1)

In the sequel we consider the case of a linear fwpxq “
xw, xy. A popular method to find a solution to (1) is
gradient descent on least squares, also called Landwe-
ber iteration:

wk “ wk´1 ´ γX
JpXwk´1 ´ yq , (2)

where X and y are the data matrix and the outputs
vector, respectively (see Section 3 for more details). It
is well known (Engl et al., 1996) that, if initialized at

w0 “ 0 and with γ ă 2{ ‖X‖2op, the iterations of gra-
dient descent converge to a specific solution, namely

arg min
wPRp

‖w‖ s.t. Xw “ y . (3)

This means that amongst all solutions, the algorithm is
implicitly biased towards that with small norm. The
bias is implicit in the sense that there is no explicit
penalization or constraint in the iterations (2). This
approach can be contrasted to explicit penalization
(Tikhonov regularization),

wpλq “ arg min
wPRp

λ ‖w‖2 ` ‖y ´Xw‖2 , (4)

where the minimal norm solution (3) is obtained for
λ going to zero. It is well known that for Tikhonov
regularization larger values of λ improve stability. In-
terestingly, the same effect can also be achieved with
gradient descent (2), by not running the iterations un-
til convergence, a technique often referred to as early
stopping (Engl et al., 1996; Yao et al., 2007). In this
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view the number of iterations k plays the role of a
regularization parameter just like λ in Tikhonov reg-
ularization (or rather 1{λ). Iterative regularization is
particularly appealing in the large scale setting, where
substantial computational savings are expected: early
stopping needs a finite number of iterations (2), while
Tikhonov regularization requires solving exactly Prob-
lem (4) for multiple values of λ.

It is natural to ask whether the above iterative regular-
ization scheme applies to biases beyond the Euclidean
norm. For a strongly convex J , an answer is given by
considering the mirror descent algorithm (Nemirovsky
and Yudin, 1983; Beck and Teboulle, 2003) with re-
spect to the Bregman divergence induced by J . The
bias J is not used to define an explicit penalization of
an empirical risk, but it appears in the mirror descent
algorithm, and in this sense is ”less implicit”. The
results in Benning et al. (2016) and Gunasekar et al.
(2018) show that mirror descent is implicitly biased
towards the solution of the following problem

min
wPRp

Jpwq s.t. Xw “ y , (5)

and exhibit similar regularization and stability prop-
erties to the one of the gradient descent algorithm. In
both Benning et al. (2016) and Gunasekar et al. (2018),
the key technical assumption is strong convexity of J
leaving open the question of dealing with biases that
are only convex. In this paper, we take steps to fill in
this gap studying an efficient approach for which we
characterize the iterative regularization properties.

3 Problem setting and proposed
algorithm

We begin describing the algorithm we consider and its
derivation. We first set some notation and the main
assumption. In the following, X is an n by p matrix
and y an n-dimensional vector. We consider the case
where y is unknown, and a vector yδ is available such
that

∥∥y ´ yδ
∥∥ ď δ, where δ ě 0 can be interpreted as

the noise level.

Assumption 1. We assume that the bias J : Rp Ñ
R Y t`8u is proper, convex, and lower semicontinu-
ous. We also assume that Problem (5) has at least one
solution (in particular the linear equation has at least
one solution for the exact data y).

The latter is satisfied, for instance, if J is coercive,
n ď p and X has rank n. Then Problem (5) is feasible
and has a solution for every y. Our assumption is
weaker: we do not even require feasability of the noisy
constraint Xw “ yδ.

Note that we use a vectorial notation for simplicity
but our results are dimension free and sharp for an in-
finite dimensional setting where X is a linear bounded
operator between separable Hilbert spaces.

3.1 Proposed algorithm

Consider the following iterations, with initialization
w0 P Rp, θ0 “ θ´1 P Rn, and parameters τ , σ such
that στ ‖X‖2op ă 1:

#

wk`1 “ proxτJpwk ´ τX
Jp2θk ´ θk´1qq ,

θk`1 “ θk ` σpXwk`1 ´ yq .
(6)

If θ0 “ 0, since θk “ σ
řk
i“1pXwi ´ yq, this algorithm

can be rewritten without θk:

wk`1 “ proxτJ

´

wk´τσX
J
`
řk
i“1pXwi´yq`Xwk´y

˘

¯

.

In terms of computations the algorithm (6) is very
similar to the forward-backward/proximal gradient al-
gorithm (Combettes and Wajs, 2005). The difference
is that the gradient term is here replaced by the sum
of past gradients. We instantiate algorithm (6) for two

popular choices of J . For J “ ‖¨‖2, the updates read:

#

wk`1 “
1

1`τ pwk ´ τX
Jp2θk ´ θk´1qq ,

θk`1 “ θk ` σpXwk`1 ´ yq .

Notice that, though involving very similar computa-
tions, the algorithm does not reduce to gradient de-
scent iterations (2).

For J “ ‖¨‖1, denoting by STp¨, τq the soft-
thresholding operator of parameter τ , the iterations
(6) read:

#

wk`1 “ STpwk ´ τX
Jp2θk ´ θk´1q, τq ,

θk`1 “ θk ` σpXwk`1 ´ yq .

Also in this case, it is similar – yet not equiva-
lent – to a popular algorithm to solve the Tikhonov
problem: the Iterative Soft-Thresholding Algorithm
(Daubechies et al., 2004).

Proposition 1. Under Assumption 1, the iterations
(6) converge to a point pw‹, θ‹q such that Xw‹ “ y.
Additionally, w‹ is a minimizer of J amongst all inter-
polating solutions, meaning that it solves Problem (5).

Notice that for Landweber iteration, converging to the
minimal norm solution (3) requires w0 “ 0. Our pro-
cedure has no such requirement: for any initialization,
the iterates wk converge to a solution of Problem (5).
We now provide some examples of the above setting.
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Example 2 (Sparse recovery). Choosing J “ ‖¨‖1
corresponds to finding the minimal `1-norm solution
to a linear system, and in this case Problem (5) is
known as Basis Pursuit (Chen et al., 1998). The re-
laxed approach of Problem (4) in this case yields the
Lasso (Tibshirani, 1996). `1-based approaches have
had a tremendous impact in imaging, signal process-
ing and machine learning in the last decades (Hastie
et al., 2015).

Example 3 (Low rank matrix completion). In
several applications, such as recommendation systems,
it is useful to recover a low rank matrix, starting from
the observation of a subset of its entries (Candès and
Recht, 2009). A convex formulation is:

min
WPRp1ˆp2

‖W‖˚ s.t. Wij “ Yij @pi, jq P D , (7)

where ‖¨‖˚ is the nuclear norm and D Ă rp1s ˆ rp2s

is the set of observed entries of the matrix Y . In that
case, X is not a design matrix: it is a (self-adjoint
and linear) masking operator from Rp1ˆp2 to Rp1ˆp2 ,
such that pXW qij has value Wij if pi, jq P D and 0
otherwise; the constraints write XW “ XY .

Example 4 (Total variation). In many imaging
tasks such as deblurring and denoising, regulariza-
tion through total variation allows to simultaneously
preserve edges whilst removing noise in flat regions
Rudin et al. (1992). The problem of Total Varia-
tion is minWPRp1ˆp2 ‖∇W‖1 s.t. XW “ Y , where X
is usually a blurring operator. The problem can be
reformulated as: minW̃ ΩpW̃ q s.t. X̃W̃ “ Ỹ , with

W̃ “

ˆ

W
U

˙

, ΩpW̃ q “ }U}1, X̃ “

ˆ

X 0
∇ ´Id

˙

and

Ỹ “

ˆ

Y
0

˙

.

Other examples include `8 norm for antiparsimony,
`1{`2 mixed-norm for group sparsity, or Kullback-
Leibler divergence. Finally, for any linear operator K
and convex function J̃ such that proxJ̃ is available, we
can handle problems of the form

min
w
J̃pKwq s.t. Xw “ y .

Indeed, we can introduce an auxiliary variable as in
Example 4, and avoid the computation of proxJ̃˝K.

3.2 Chambolle-Pock algorithm

In this section we prove Proposition 1 by casting (6) as
an instance of the Chambolle-Pock algorithm (Cham-
bolle and Pock, 2011) which solves:

min
w
fpXwq ` gpwq .

Hence, for f “ ιtyu and g “ J , it can minimize a con-
vex function on a set defined by linear equalities, as in
Problem (5). For this choice of f and g, it instantiates
as (6) (see Appendix B.2).

Amongst other assets, algorithm (6) only involves
matrix-vector multiplications, and the computation of
proxJ , available in closed-form in many cases. The
only tunable parameters are two step-sizes, τ and σ,
which are easy to set. As usual for this class of meth-
ods, called primal-dual, the Lagrangian is a useful tool
to establish convergence results. The Lagrangian of
Problem (5) is

Lpw, θq “ Jpwq ` xθ,Xw ´ yy , (8)

where θ P Rn is the dual variable. Under a technical
condition (Appendix B.1), w‹ is a solution of Prob-
lem (5) if and only if there exists a dual variable θ‹

such that pw‹, θ‹q is a saddle-point for the Lagrangian,
namely, iff for every pw, θq P Rp ˆ Rn,

Lpw‹, θq ď Lpw‹, θ‹q ď Lpw, θ‹q . (9)

The variable θ is in our setting just an auxiliary vari-
able, and we will be interested in convergence proper-
ties of wk towards w‹.

Other algorithms As mentioned in the introduc-
tion, other algorithms could be considered, e.g.
ADMM/Bregman iteration. However, we are not
aware of methods that can be efficiently implemented
in our general setting. In Appendix A. we provide
an extensive review discussing the connection with a
number of different approaches and related works.

4 Theoretical analysis

In this section, we analyze the convergence properties
of Algorithm (6). First, we need to choose a suitable
criterion to estimate the approximation properties of
the iterates. In general, it is not reasonable to expect
a rate of convergence for the distance between the it-
erates and the solution. Indeed, since the problem is
only convex, it is well known that the convergence in
distance can be arbitrarily slow. In Section 4.1, we
explain why a reasonable choice is given by the dual-
ity gap together with the residual norm (respectively,
Lpwk, θ‹q ´Lpw‹, θkq and ‖Xwk ´ y‖). For these two
quantities, we derive:

• convergence rates in the exact case, i.e. when the
data y is available (Proposition 6);

• early-stopping bounds in the inexact case, i.e.
when the accessible data is only yδ with∥∥yδ ´ y

∥∥ ď δ (Proposition 7 and Corollary 8).
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In Section 4.4, we apply our analysis to the specific
choice of J equal to the `1-norm. In this particular
case, combining the previous results, we even obtain
bounds directly on ‖wk ´ w‹‖.

4.1 Measure of optimality

To discuss which criterion is significant to study the
algorithm convergence, we recall from (9) that, if

Lpw1, θq ´ Lpw, θ1q ď 0 (10)

for every pw, θq P Rp ˆ Rn, then pw1, θ1q is a primal-
dual solution. In general, it is difficult to prove that
Equation (10) holds for every pw, θq P RpˆRn. Then,
given a saddle-point pw‹, θ‹q and a generic pw1, θ1q P
Rp ˆ Rn, it is popular to consider the quantity

Lpw1, θ‹q ´ Lpw‹, θ1q ě 0 . (11)

To establish the optimality of pw1, θ1q, it is not enough
to ensure Lpw1, θ‹q ´ Lpw‹, θ1q “ 0. Lemma 5, proved
in Appendix C.1, shows that this condition, when cou-
pled with Xw1 “ y, implies that w1 is a solution of
Pb (5).

Lemma 5. Let pw‹, θ‹q be a primal-dual solution and
pw1, θ1q a point in Rp ˆ Rn such that Lpw1, θ‹q ´
Lpw‹, θ1q “ 0 and Xw1 “ y. Then pw1, θ‹q is a primal-
dual solution.

Thus, the quantities Lpwk, θ‹q ´ Lpw‹, θkq and
‖Xwk ´ y‖, studied together, are a reasonable mea-
sure of optimality for the iterate wk.

Note that Lpwk, θ‹q ´ Lpw‹, θkq is the error measure
used in a series of papers dealing with regularization
of inverse problems with general convex regularizers,
see e.g. Burger et al. (2007). It is well known that
if J is strongly convex then this quantity controls the
distance in norm (Remark 9) and therefore is a proper
measure of convergence. If J is only convex, this mea-
sure of error can be quite weak. In Section 4.4 we point
out the limitations of this quantity when dealing with
J “ ‖¨‖1. For this choice of J , Lp0, θ‹q´Lpw‹, θkq is 0
for any θk; as shown on Figure 1, this quantity is also
0 when wk and w‹ have the same support and sign.

4.2 Exact case

First consider the iterates pwk, θkq obtained by apply-
ing iterations (6) to the exact problem, namely where
the data y is available. Let pw‹, θ‹q be a saddle-point
for the Lagrangian. Denoting the primal-dual vari-
ables by z “ pw, θq, we have zk “ pwk, θkq for the
iterates of the algorithm and z‹ “ pw‹, θ‹q for the

saddle-point. For τ and σ ą 0, define V as the follow-
ing square weighted norm on Rp ˆ Rn:

V pzq :“
1

2τ
‖w‖2 ` 1

2σ
‖θ‖2 . (12)

For the averaged iterates wk :“ 1
k

řk
t“1 wt and θ

k
:“

1
k

řk
t“1 θt, we have the following rates.

Proposition 6 (Convergence rates). Under As-
sumption 1, let ε P p0, 1q and assume that the

step-sizes are such that στ ď ε{ ‖X‖2op. Then

Lpwk, θ‹q ´ Lpw‹, θkq ď V pz0 ´ z
‹q

k
and∥∥Xwk ´ y

∥∥2
ď

2p1` εqV pz0 ´ z
‹q

σεp1´ εqk
.

The first result is classical (see Chambolle and Pock
(2011)). Alternatively, it can be obtained by setting
δ “ 0 in Proposition 7, where we study the more gen-
eral inexact case. To the best of our knowledge, the
second bound is new and can also be derived by setting
δ “ 0 in Proposition 7. A similar result, in the more
specific case of primal-dual coordinate descent, can be
found in Fercoq and Bianchi (2019). Note that both
results of Proposition 6 are true for every primal-dual
solution. On the other hand, the left-hand-side in the
second equation does not depend on the selection of
z‹ and so the bound can be improved by taking the
inf over all primal-dual solutions.

4.3 Inexact case

We now consider the iterates pwk, θkq, and their av-
eraged versions pwk, θkq, obtained by applying itera-
tions (6) to the noisy problem, where y is replaced
by yδ with

∥∥yδ ´ y
∥∥ ď δ. In Proposition 7, we de-

rive early-stopping bounds for the iterates, in terms of
duality gap Lpwk, θ‹q ´ Lpw‹, θkq and residual norm
‖Xwk ´ y‖. We highlight that, despite the error in
the data yδ, both quantities are defined in terms of
y and hence related to the noiseless problem. In
particular, pw‹, θ‹q is a saddle-point for the noiseless
Lagrangian. We have the following estimates, whose
proofs are given in Appendix C.3.

Proposition 7 (Stability). Under Assumption 1,
let ε P p0, 1q and assume that the step-sizes are such

that στ ď ε{ ‖X‖2op. Then,

Lpwk, θ‹q ´ Lpw‹, θkq ď 1
k

´

a

V pz0 ´ z‹q `
?

2σδk
¯2

(13)
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0 1000 2000 3000 4000 5000
Iteration k

10−1

10−6

10−11

D−X>θ̄
J (wk, w̄)

||wk − w̄||
||Xwk − y||

Figure 1: For J “ ‖¨‖1, convergence of primal-dual iterates wk towards w‹, measured in norm, feasability and
Bregman divergence. The Bregman divergence quickly vanishes up to numerical errors (the iterates have the
same sign as the solution); yet the iterates are still far from the solution.

and

∥∥Xwk ´ y
∥∥2
ď

2p1` εq

σεp1´ εq

«

a

2σV pz0 ´ z‹qδ

`
σε

1´ ε
δ2 ` 2σδ2k `

1

k
V pz0 ´ z

‹q

ff

.

(14)

Note that, in the exact case δ “ 0, we recover the
convergence results stated in Proposition 6. Moreover,
we have the following corollary.

Corollary 8 (Early-stopping). Under the assump-
tions of Proposition 7, choose k “ c{δ for some c ą 0.
Then there exist constants C, C 1 and C2 such that

Lpwk, θ‹q ´ Lpw‹, θkq ď Cδ and∥∥Xwk ´ y
∥∥2
ď C 1δ ` C2δ2 .

The constants appearing in the Corollary are the ones
from Proposition 7. They only depend on the saddle-
point z‹, the initialization z0 and the step-sizes τ, σ.
We next add some remarks.

Remark 9. When J is γ-strongly convex, in partic-
ular when Jp¨q “ 1

2 ‖¨‖
2
, both the residual norm and

the distance between the averaged iterate and the solu-

tion can be controlled by Lpwk, θ‹q´Lpw‹, θkq. Indeed,
recalling Equation (25),∥∥Xwk ´ y

∥∥2
ď ‖X‖2

∥∥wk ´ w‹∥∥2

ď
2‖X‖2

γ D´XJθ‹

J

`

wk, w‹
˘

“
2‖X‖2

γ

”

Lpwk, θ‹q ´ Lpw‹, θkq
ı

.

In particular, the previous early-stopping bounds are of
the same order of the ones obtained by dual gradient
descent in Matet et al. (2017).

Remark 10. Similar estimates have been obtained in
Burger et al. (2007), both for the Tikhonov variational
scheme and for the Bregman iteration (also called in-
verse scale space method) with stopping-criteria given

by the discrepancy principle. In the first case (see The-
orem 3.1), for a suitable choice of the regularization
parameter, the authors get similar estimates for the
Tikhonov regularized solution wλ: Ds

J pwλ, w
‹q ď Cδ

and ‖Xwλ ´ y‖2 ď C 1δ2, where Ds
J is the symmet-

ric Bregman divergence. For the Bregman iteration
(see Theorem 4.2), they get an early-stopping bound
on Dpk

J pw
‹, wkq, where pk P BJpwkq. Note that they do

not get any estimate for the quantity D´XJθ‹

J

`

wk, w‹
˘

neither for the residual norm. Moreover, the method
requires to solve, at each iteration, an optimization
problem with the same complexity of the original one.

Proof Sketch The proof of Proposition 7 is in-
spired by Rasch and Chambolle (2020). In this pa-
per, the kind of errors allowed in the prox of the non-
extrapolated step (θk update) are more general than
the ones allowed for the extrapolated step (wk update).
Here, we study stability properties of algorithm (6)
when y is replaced by yδ. This change can be read
as an inexact proximity operator in the update of θ
computation; in order to have this error in the non-
extrapolated step, we study algorithm (6), that is CP
algorithm applied to the dual problem. We summa-
rize here the main steps. In Lemma 15, we derive a
“descent property” for every step t, which we then cu-
mulate summing from t “ 1 to t “ k and using two
different approximations (Lemmas 16 and 17). The
two bounds that we get are similar, but independent.
The first one has the following form,

1

2σ
‖θk ´ θ‹‖2 `

k
ÿ

t“1

rLpwt, θ‹q ´ Lpw‹, θtqs ď

V pz0 ´ z
‹q ` δ

k
ÿ

t“1

‖θt ´ θ‹‖ . (15)

We use the latter twice. First we combine it with
Lemma 14, a discrete version of Bihari’s Lemma. This
allows to estimate, for every 1 ď t ď k, the quantity

‖θt ´ θ‹‖ ď 2σδk `
a

2σV pz0 ´ z‹q . (16)



Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, Silvia Villa

Then we use again Equation (15), joint with
the previous information, to find a bound on
řk
t“1 rLpwt, θ‹q ´ Lpw‹, θtqs. The second inequality

(see Lemma 17) has the following form,

σα

2η

k
ÿ

t“1

‖Xwt ´ y‖2 ď V pz0 ´ z
‹q ` δ

k
ÿ

t“1

‖θt ´ θ‖

`
1

2
σ pη ´ 1q δ2k . (17)

Using again the bound on ‖θt ´ θ‹‖ and choos-
ing η “ p1` εq { p1´ εq, we find an estimate for
řk
t“1 ‖Xwt ´ y‖2. In both cases, we get the claim on

the averaged iterates by Jensen’s inequality.

Remark 11. Following Rasch and Chambolle (2020),
our analysis can straightforwardly be extended to the
case in which proxJ in iterations (6) is computed ap-
proximately, with type-2 errors. This leads to bounds
similar in spirit to those of Proposition 7, but involv-
ing the cumulative prox error up to iteration k and
thus yielding slightly different stopping criteria.

4.4 An example: sparse recovery

In the case of sparse recovery (J “ ‖¨‖1), controlling
the duality gap and the feasability yields a bound on
the distance to the minimizer, thanks to the following
result (Grasmair et al., 2011, Lemma 3.10).

Lemma 12. Let pw‹, θ‹q be such that Xw‹ “ y and
´XJθ‹ P B ‖¨‖1 pw‹q. With Γ :“ tj P rps : |XJ:jθ‹| “
1u, assume that XΓ (X restricted to columns whose in-
dices lie in Γ) is injective. Let m :“ maxjRΓ|XJ:jθ‹| ă
1. Then, for all w P Rp,

‖w ´ w‹‖ ď
∥∥X´1

Γ

∥∥
op
‖Xw ´ y‖

`
1`‖X´1

Γ ‖op
‖X‖op

1´m D´XJθ‹

‖¨‖1
pw,w‹q . (18)

Note that, under the assumptions of Lemma 12, the
primal solution to Problem (19) is unique (see (Gras-
mair et al., 2011, Thm 4.7)). Combining the latter
with Corollary 8 yields a strong early-stopping result.

Corollary 13 (Early-stopping for J “ ‖¨‖1).
Under the assumptions of Proposition 7 and
Lemma 12, choose k “ c{δ for c ą 0. Then
there exist constants C 1 and C2 such that∥∥wk ´ w‹∥∥ ď C 1

?
δ ` C2δ .

The constants C 1, C2 depend on the saddle-point z‹,
the initialization z0, the step-sizes τ, σ and the norms
of X and X´1

Γ . A completely different approach has

δ = 0.10

δ = 1.70

δ = 3.30

δ = 4.90

δ = 6.50

0 200 400
Iteration k

10−1

100

||w
δ k
−
w
?
||/
||w

?
||

Figure 2: Distance between noisy Basis Pursuit iter-
ates wδk and noiseless solution w‹, for various values of
δ. There exists a stopping time: these distances reach
a minimum before converging to their limit.

been considered, for the same problem, in Vaškevičius
et al. (2019). A related approach, based on dynami-
cal systems, has been proposed in Osher et al. (2016).
Similar results for the Tikhonov regularization ap-
proach can be found in Schöpfer and Lorenz (2019b).

5 Empirical analysis

We stress that there is no implicit regularization re-
sult dealing with any non strongly convex J to com-
pare to. The only competitor is therefore the Tikhonov
approach. The code with scripts to reproduce the ex-
periments (relying heavily on numpy (Harris et al.,
2020) and numba (Lam et al., 2015)) is available at
lcsl.github.io/iterreg.

5.1 Sparse recovery

Random data for this experiment are generated as fol-
lows: pn, pq “ p200, 500q, columns of X are Gaussian
with covpX:i,X:jq “ 0.2|i´j|, y “ Xw0 where w0 has
75 equal non zero entries, scaled such that ‖y‖ “ 20
(in order to have a meaningful range of values for δ).
Note that the linear system Xw “ yδ has solutions
for any yδ, since X is full-rank. The noiseless solution
w‹ is determined by running algorithm (6) up to con-
vergence, on y. For the considered values of δ, yδ is
created by adding i.i.d. Gaussian noise to y, so that∥∥y ´ yδ

∥∥ “ δ. We denote by wδk the iterates of algo-
rithm (6) ran on yδ.

Existence of stopping time. In the first experi-
ment, we highlight the existence of an optimal iter-
ate in terms of distance to w‹. Figure 2 shows semi-
convergence: before converging to their limit, the it-
erates get close to w‹. Note that this is stronger than
the results of Corollary 13, since the optimal iteration
here is the minimizer of the distance, and not some

lcsl.github.io/iterreg
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Figure 3: Influence of δ on the stopping time. In agree-
ment with theory, the empirical stopping time roughly
scales as 1{δ.

iterate for which there exists an upper bound on the
distance to w‹. As expected, as δ decreases, the opti-
mal iteration k increases and the optimal iterate wδk is
closer to w‹.

Dependency of empirical stopping time on δ.
In the same setting as above, for 20 values of δ be-
tween 0.1 and 6, we generate 100 values of yδ. We
run algorithm (6) for 5000 iterations on yδ and de-
termine the empirical best stopping time as k‹pδq “
arg mink

∥∥wδk ´ w‹∥∥ ă `8. Figure 3 shows the mean
of the inverse empirical stopping time as a function
of δ, where a clear linear trend (k “ c{δ) appears as
suggested by Proposition 7 and Corollary 13.

In real settings, w‹ and δ are unknown, and so is the
stopping time. It can still be evaluated by cross vali-
dation or similar procedure, as is usually done for the
optimal λ in explicit regularization.

Comparison with Tikhonov approach on real
data. The most popular regularization approach
is to solve Problem (4) (here, the Lasso) for typi-
cally1 100 values of λ geometrically chosen as λt “
10´3t{99

∥∥XJy∥∥
8

for t “ 0, . . . , 99. In Figure 4 we
compare the Lasso regularization path to the Basis
Pursuit optimization path of the Chambolle-Pock al-
gorithm. The dataset for this experiment is rcv1-
train from libsvm (Fan et al., 2008), with pn, pq “
p20 242, 26 683q. The figure of merit is the prediction
mean squared error on left out data, using 4-fold cross
validation (dashed color lines), with the average across
the folds in black. The horizontal line marks the λ
(resp. the iteration k) for which the Lasso path (resp.
the optimization path of iterations (6)) reaches its min-
imum MSE on the test fold.

The first observation is that the Basis Pursuit solution
(both the end of the optimization (k “ `8) and regu-
larization paths (λ “ 0)) performs very poorly, having
a MSE greater than the one obtained by the 0 solu-
tion For the bottom plot, this would also be visible if

1default grid in scikit-learn (Pedregosa et al., 2011) and
GLMNET (Friedman et al., 2010) packages
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Figure 4: Comparison of Tikhonov regularization path
(top) and optimization path of Algorithm (6) (bottom)
on rcv1 with 4-fold cross-validation. Minimal value
reached: 0.19 (top), 0.21 (bottom). Computation time
up to optimal parameter: 50 s (top); 0.5 s (bottom).

the number of iterations of Algorithm (6) was picked
greater than 500, which we do not do for readability
of the figure. It is therefore necessary to early stop.
The second observation is that the minimal MSEs on
both paths are similar: 0.19 for Lasso path, 0.21 for
optimization path of Algorithm (6). The main point is
however that it takes 20 iterations of algorithm (6) to
reach its best iterate, while the optimal λ for the Lasso
is around λmax{100. If the default grid of 100 val-
ues between λmax and λmax{1000 was used, this means
that 66 Lassos must be solved, each one needing hun-
dreds or thousands of iterations to converge. This is
reflected in the timings: 0.5 s for Algorithm (6) vs 50 s
for Tikhonov, eventhough we use a state-of-the-art co-
ordinate descent + working set approach to solve the
Lasso, with warm-start (using the solution for λt´1 as
initialization for problem with λt).

5.2 Low rank matrix completion

Random data for this experiment is generated as fol-
lows: the matrices are d ˆ d with d “ 20. Y is equal
to UV J with U and V of size dˆ 5, whose entries are
i.i.d Gaussian (Y is rank 5). We scale Y such that
‖Y‖ “ 20. Recall that in low rank matrix comple-
tion (Example 3), X corresponds to a masking opera-
tor (the observed entries); to determine which entries
are observed, we uniformly draw d2{5 observed cou-
ples pi, jq P rds ˆ rds. Figure 5 shows the same type of
results as Figure 2: iterates first approach the noise-
less solution, then get further away, justifying early
stopping of the iterates. For this experiment, we use
higher values for δ to better highlight the semiconver-
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Figure 5: Distance between low rank matrix comple-
tion iterates wδk and noiseless solution w‹, for various
values of δ. There exists a stopping time: a minimum
before distance is reached before the limit.

gence, as curves get flatter for e.g. δ “ 5.7. Note that
in that case, the algorithm can still be early stopped
to save computations.

6 Conclusion

We have studied implicit regularization for convex
bias, not necessarily strongly convex nor smooth. We
proposed to use the Chambolle-Pock algorithm and we
analyzed both convergence and stability to determinis-
tic worst case noise. Our general analysis was special-
ized, as an example, to the problem of sparse recovery.
The approach was investigated empirically both for
sparse recovery and matrix completion, showing great
timing improvements over relaxation approaches. A
future development is to consider more specific noise
models than the worst-case, such as stochastic noise.
We emphasize again that our results hold in infinite di-
mension. It would be interesting to specialize our anal-
ysis in the finite dimensional setting, when the noisy
solution always exists (in the least-square sense) and
so the iterates produced by the algorithm are bounded.
Moreover, it would be interesting to consider addi-
tional assumptions such as sparsity. Considering the
role of initialization or nonlinear models would also
be of interest. Finally, it would complete the analysis
to obtain lower bounds for this class of problems, to
confirm the sharpness of our results.
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A Detailed discussion of related works

The idea of exploiting the implicit regularizing properties of optimization algorithms is not new, and has been
studied in three different related areas, often under the name of iterative regularization: inverse problems,
image restoration, and machine learning. The related results can roughly be divided in those assuming strong
convexity of J and those assuming only convexity of J . Related approaches to implicit regularization include
diagonal strategies and exact regularization approaches. Extensions to general data fits and non-convex/non-
linear problems have been considered. In the following we briefly review existing results.

‚ Gradient and stochastic descent. The study of implicit regularization properties of gradient descent,
known in the inverse problem community as Landweber method, goes back to the 50s (Engl et al., 1996). The
classical result shows that gradient descent applied to least squares and initialized at 0 converges to the minimal
norm solution of the linear equation (1). Accelerated versions have been also studied under the name of ν-method
(Engl et al., 1996). Generalization towards more general regularizers, apart from p norms with p ą 1, has not
been considered much by this community, while there is a rich literature in the non-convex setting for nonlinear
inverse problems (Kaltenbacher et al., 2008). These ideas have been extended to machine learning considering
regularizing properties of gradient descent (Yao et al., 2007) and its stochastic versions (Moulines and Bach,
2011; Rosasco and Villa, 2015).

‚ Linearized Bregman and Mirror descent. The interest in more general regularizers has been mainly
motivated by imaging applications and total variation regularization. Starting from Osher et al. (2005) there is
an entire line of work devoted to iterative regularization for general convex regularizers (see e.g. Burger et al.
(2007) and references therein). We briefly review the available algorithms and their advantages and limitations.
If strong convexity of J is assumed, the algorithm of choice is mirror descent (Nemirovski and Yudin, 1983;
Teboulle and Beck, 2003). It has been popularized in the inverse/imaging problems community under the name
of linearized Bregman iteration (Yin et al., 2008). It has been shown that this algorithm in combination with a
discrepancy type stopping rule regularizes ill posed problems. The stability and regularization properties of the
accelerated variant of the algorithm have been studied also in Matet et al. (2017), using a different approach,
based on the interpretation of the method as a gradient descent applied to the dual problem (21). Similar ideas
can be found in (Schöpfer and Lorenz, 2019a).

‚ Bregman iteration and ADMM. If the regularizer J is not strongly convex, but only convex, as in our case,
the algorithm above cannot be applied. The algorithm of choice is in this context ADMM Boyd et al. (2010),
which has been studied in the imaging community under the name of Bregman iteration. Its regularization
properties can be found in Burger et al. (2007). However, this method has a main drawback: at each iteration
the solution of a nontrivial optimization problem of the form min }Xw ´ y}2 ` Jpwq ` xw, ηy, for η P Rp is
required, and in general la subroutine is needed at each iteration. In the setting where n is big, this can have a
high computational cost. The extension of this approach to nonlinear inverse problems has been considered in
Bachmayr and Burger (2009).

‚ Bregmanized Operator Splitting and linearized/preconditioned ADMM. These are variants of Breg-
man iteration and ADMM very similar to the CP algorithm: they rely on preconditioning to avoid the solution
of a difficult optimization problem at each iteration. These have been used empirically as regularizing procedures
in the context of inverse and imaging problems (Zhang et al., 2011, 2010). We are not aware of any theoretical
quantitative stability result.

‚ Diagonal approaches The implicit regularization techniques described above are well-suited for problems
where the quadratic data fit is appropriate. If other losses are used, this approach completely neglect them. A
way to circumvent this problem is to use a diagonal strategy. The idea is to combine an optimization algorithm
with a sequence of approximations of the original problem (19) which change at each iteration (Bahraoui and
Lemaire, 1994). Convergence rates and stability of diagonal approaches for inverse problems have been considered
in Garrigos et al. (2018); Calatroni et al. (2019).

‚ Sparse recovery and compressed sensing In the context of sparse recovery the implicit regularization
approach has been considered in Osher et al. (2016), and also in Vaškevičius et al. (2019). Matching pursuit
Mallat and Zhang (1993) is a computational procedure which can be used to select relevant components, but it
is not clear from the theoretical point of view how to early stop the iterations .
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‚ Exact regularization Another possible approach is to use the notion of exact regularization (Friedlander
and Tseng, 2008; Schopfer, 2012). The latter refers to solving minw Jpwq`αQpwq, s.t. Xw “ y , where Q is
strongly convex and to showing that there exists a value of α such that this new problem and ?? have the same
minimizer. Then, known iterative regularization results of the strongly convex case (Matet et al., 2017) can be
applied.

B Duality and Chambolle-Pock algorithm

B.1 Duality

The Chambolle-Pock algorithm belongs to the class of primal-dual methods, designed to jointly solve ?? (the
primal problem), and its dual. ?? rewrites as

arg min
wPRp

Jpwq ` ιtyu pXwq , (19)

with Lagrangian
Lpw, θq “ Jpwq ` xθ,Xw ´ yy . (20)

Fenchel-Rockafellar duality (Peypouquet, 2015, Sec. 3.6.2) can be applied to compute the dual problem; observing
that ι‹

tyu pθq “ xy, θy, this dual reads:

arg min
θPRn

!

J‹p´XJθq ` ι‹tyu pθq
)

“ arg min
θPRn

 

J‹p´XJθq ` xy, θy
(

. (21)

Assume that Problem (19) admits a solution w‹ satisfying the following qualification condition,

pDθ‹ P Rnq ´XJθ‹ P BJpw‹q . (QC)

Reasoning as in the proof of the Fenchel-Rockafellar duality theorem (Peypouquet, 2015, Thm. 3.51) it follows
that strong duality holds, and θ‹ is a solution of Problem (21). Primal-dual solutions are thus characterized by
the first order conditions,

´XJθ‹ P BJpw‹q and Xw‹ “ y . (22)

We stress the fact that we assume the existence of a solution w‹ satisfying (QC), but the primal solution is not
necessarily unique. On the other hand, from strong duality we get also that, for every primal solution, there
exists a dual one such that (QC) (and so Equations (9) and (22)) is verified.

B.2 Chambolle-Pock algorithm

Consider the generic optimization problem

min
x
tfpxq ` gpKxqu , (23)

with Fenchel-Rockafellar dual problem given by

min
y

 

f‹p´KJyq ` g‹pyq
(

. (24)

In this general case, the Chambolle-Pock’s algorithm (with interpolation parameter equal to 1) is given by

yk`1 “ proxτg‹pyk ` τKp2xk ´ xk´1qq,

xk`1 “ proxσf pxk ´ σK
Jyk`1q.

Notice that the CP algorithm, except for the interpolation, treats the primal and the dual problem in a symmetric
way. In particular, we can cast the method both for Problems (23) and (24). In order to apply the latter to
our dual problem, we set f “ xy, ¨y, g “ J‹ and K “ ´XJ. Then g‹ “ J , proxσf pθq “ θ ´ σy and we recover
Equation (6):

wk`1 “ proxτJ
`

wk ´ τX
J p2θk ´ θk´1q

˘

,

θk`1 “ θk ` σ
`

Xwk`1 ´ yδ
˘

.
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The latter uses, in the update of the variable w, an interpolation of θ with the value at the previous step.
As we already remarked, we could also apply the CP algorithm directly to the primal problem, setting f “ J ,
g “ ιtyu and K “ X. Then g‹ “ xy, ¨y and proxτg‹pθq “ θ ´ τy, leading to the following method:

θk`1 “ θk ` τ
`

X p2wk ´ wk´1q ´ yδ
˘

,

wk`1 “ proxσJ
`

wk ´ σX
Jθk`1

˘

.

In this case, in the update of the variable θ, we use an interpolation of w. In general, the two versions should
not differ in a significant manner. Nevertheless, the error we consider affects the data yδ and so its nature is
not symmetric. Then, a different choice for the interpolation can play a role. In this work, we put emphasis in
Algorithm (6) because it is the one for which we have proximal errors in the non-extrapolated step.

C Proofs

C.1 Lemmas

Lemma 5. Let pw‹, θ‹q be a primal-dual solution and pw1, θ1q a point in RpˆRn such that Lpw1, θ‹q´Lpw‹, θ1q “
0 and Xw1 “ y. Then pw1, θ‹q is a primal-dual solution.

Proof.
Step 1: the duality gap is the Bregman divergence. Indeed, using ´XJθ‹ P BJpw‹q and Xw‹ “ y:

Lpw1, θ‹q ´ Lpw‹, θ1q “ Jpw1q ´ Jpw‹q ` xθ‹,Xw1 ´ yy ´ xθ1,Xw‹ ´ yy

“ Jpw1q ´ Jpw‹q ` xXJθ‹, w1 ´ w‹y “ D´XJθ‹

J pw1, w‹q , (25)

Step 2: Zero duality gap plus feasibility implies primal optimality We show that if v̄ P BJpw‹q and Dv̄
Jpw

1, w‹q “ 0,
then v̄ P BJpw1q. Indeed, Jpw1q ´ Jpw‹q ´ xv̄, w1 ´ w‹y “ 0 and so, for all z P Rp,

Jpzq ě Jpw‹q ` xv̄, z ´ w‹y “ Jpw1q ´ xv̄, w1 ´ w‹y ` xv̄, z ´ w‹y “ Jpw1q ` xv̄, z ´ w1y. (26)

The statement follows by applying step 2 with v̄ “ ´XJθ‹.

Next, we recall the result that allows us to control the non-vanishing error. It is a discrete version of Bihari’s
Lemma and a particular case of Lemma 1 in Schmidt et al. (2011), where the proof can be found.

Lemma 14. Assume that pujq is a non-negative sequence and that λ ě 0, S ě 0 with S ě u2
0. If u2

t ď

S ` λ
řt
j“1 uj, then

ut ď
λt

2
`

«

S `

ˆ

λt

2

˙2
ff

1
2

.

So, in particular,

ut ď λt`
?
S.

C.2 Preliminary estimates

Lemma 15 (One step estimate). Defining θ̃k :“ 2θk ´ θk´1, the updates of (6) for the noisy problem read
as:

wk`1 “ proxτJ

´

wk ´ τX
Jθ̃k

¯

, (27)

θk`1 “ θk ` σ
`

Xwk`1 ´ yδ
˘

. (28)

Then, for any pw, θq P Rp ˆ Rn, we have the following estimate:

V pzk`1 ´ zq ´ V pzk ´ zq ` V pzk`1 ´ zkq ` rLpwk`1, θq ´ Lpw, θk`1qs ` xθk`1 ´ θ,y
δ ´ yy

` xθk`1 ´ θ̃k,X pw ´ wk`1qy ď 0.
(29)
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Proof. Consider first Equation (27) and the firm non-expasiveness of the proximal-point. Then we get that, for
any w P Rp,

0 ě ‖wk`1 ´ w‖2 ´
∥∥∥´wk ´ τXJθ̃k¯´ w∥∥∥2

`

∥∥∥wk`1 ´

´

wk ´ τX
Jθ̃k

¯
∥∥∥2

` 2τ rJpwk`1q ´ Jpwqs

“ ‖wk`1 ´ w‖2 ´ ‖wk ´ w‖2 ` ‖wk`1 ´ wk‖2 ` 2τ rJpwk`1q ´ Jpwqs

` 2τxXJθ̃k, wk ´ wy ` 2τxXJθ̃k, wk`1 ´ wky

“ ‖wk`1 ´ w‖2 ´ ‖wk ´ w‖2 ` ‖wk`1 ´ wk‖2 ` 2τ rJpwk`1q ´ Jpwqs ` 2τxθ̃k,X pwk`1 ´ wqy.

Now consider Equation (27) and notice that the dual update can be re-written as θk`1 “

proxσxyδ,¨y pθk ` σXwk`1q. Similarly as before, for any θ P Rn,

0 ě ‖θk`1 ´ θ‖2 ´ ‖pθk ` σXwk`1q ´ θ‖2 ` ‖θk`1 ´ pθk ` σXwk`1q‖2 ` 2σ
“

xyδ, θk`1y ´ xy
δ, θy

‰

“ ‖θk`1 ´ θ‖2 ´ ‖θk ´ θ‖2 ` ‖θk`1 ´ θk‖2 ` 2σxθk`1 ´ θ,y
δy

´ 2σxθk ´ θ,Xwk`1y ´ 2σxθk`1 ´ θk,Xwk`1y

“ ‖θk`1 ´ θ‖2 ´ ‖θk ´ θ‖2 ` ‖θk`1 ´ θk‖2 ` 2σxθk`1 ´ θ,y
δ ´Xwk`1y.

Recall that z :“ pw, θq and the definition of V in Equation (12). Divide the first inequality by 2τ , the second
one by 2σ and sum-up, to get

0 ě V pzk`1 ´ zq ´ V pzk ´ zq ` V pzk`1 ´ zkq ` rJpwk`1q ´ Jpwqs

` xθ̃k,X pwk`1 ´ wqy ` xθk`1 ´ θ,y
δ ´Xwk`1y.

To conclude, compute

rJpwk`1q ´ Jpwqs ` xθ̃k,X pwk`1 ´ wqy ` xθk`1 ´ θ,y
δ ´Xwk`1y

“ rLpwk`1, θq ´ Lpw, θk`1qs ´ xθ,Xwk`1 ´ yy ` xθk`1,Xw ´ yy

` xθ̃k,X pwk`1 ´ wqy ` xθk`1 ´ θ,y
δ ´Xwk`1y

“ rLpwk`1, θq ´ Lpw, θk`1qs ` xθ ´ θk`1,yy ´ xθ,Xwk`1y ` xθk`1,Xwy

` xθ̃k,Xwk`1y ´ xθ̃k,Xwy ` xθk`1 ´ θ,y
δy ´ xθk`1 ´ θ,Xwk`1y

“ rLpwk`1, θq ´ Lpw, θk`1qs ` xθk`1 ´ θ,y
δ ´ yy

´ xθ,Xwk`1y ` xθk`1,Xwy ` xθ̃k,Xwk`1y ´ xθ̃k,Xwy ´ xθk`1,Xwk`1y ` xθ,Xwk`1y

“ rLpwk`1, θq ´ Lpw, θk`1qs ` xθk`1 ´ θ,y
δ ´ yy ` xθk`1 ´ θ̃k,X pw ´ wk`1qy.

Lemma 16 (First cumulating estimate). Define ω :“ 1´ τσ ‖X‖2op. Then we have the following estimate:

ω

2τ
‖wk ´ w‹‖2 `

1

2σ
‖θk ´ θ‹‖2 ´ V pz0 ´ z̄q `

k
ÿ

t“1

rLpwt, θ‹q ´ Lpw‹, θtqs `
ω

2τ

k
ÿ

t“1

‖wt ´ wt´1‖2

ď δ
k
ÿ

t“1

‖θt ´ θ‹‖ .
(30)

Proof. We start from Equation (29), switching the index from k to t and evaluating pw, θq at the saddle-point
pw‹, θ‹q. Recall that θ̃t :“ 2θt ´ θt´1, to get

V pzt`1 ´ z
‹q ´ V pzt ´ z

‹q ` V pzt`1 ´ ztq ` rLpwt`1, θ
‹q ´ Lpw‹, θt`1qs

ď ´ xθt`1 ´ p2θt ´ θt´1q ,X pw
‹ ´ wt`1qy ´ xθt`1 ´ θ

‹,yδ ´ yy

ď ´ xθt`1 ´ θt,X pw
‹ ´ wt`1qy ` xθt ´ θt´1,X pw

‹ ´ wt`1qy ` δ ‖θt`1 ´ θ
‹‖

“ ´ xθt`1 ´ θt,X pw
‹ ´ wt`1qy ` xθt ´ θt´1,X pw

‹ ´ wtqy ` xθt ´ θt´1,X pwt ´ wt`1qy

` δ ‖θt`1 ´ θ
‹‖

ď ´ xθt`1 ´ θt,X pw
‹ ´ wt`1qy ` xθt ´ θt´1,X pw

‹ ´ wtqy

`
1

2σ
‖θt ´ θt´1‖2 `

σ

2
‖X‖2op ‖wt`1 ´ wt‖2 ` δ ‖θt`1 ´ θ

‹‖ ,
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where in the last estimate we used Cauchy-Schwartz and Young inequalities, the latter with parameter σ. Then,
using the definition of ω :“ 1´ τσ ‖X‖2op, we have

V pzt`1 ´ z
‹q ´ V pzt ´ z

‹q ` Lpwt`1, θ
‹q ´ Lpw‹, θt`1q

`
ω

2τ
‖wt`1 ´ wt‖2 `

1

2σ
‖θt`1 ´ θt‖2 ´

1

2σ
‖θt ´ θt´1‖2

ď ´ xθt`1 ´ θt,X pw
‹ ´ wt`1qy ` xθt ´ θt´1,X pw

‹ ´ wtqy ` δ ‖θt`1 ´ θ
‹‖ .

Imposing θ´1 “ θ0, summing-up the latter from t “ 0 to t “ k ´ 1 and using the telescopic property, we get

V pzk ´ z
‹q ´ V pz0 ´ z

‹q `

k´1
ÿ

t“0

rLpwt`1, θ
‹q ´ Lpw‹, θt`1qs

`
ω

2τ

k´1
ÿ

t“0

‖wt`1 ´ wt‖2 `
1

2σ
‖θk ´ θk´1‖2

ď ´ xθk ´ θk´1,X pw
‹ ´ wkqy ` δ

k´1
ÿ

t“0

‖θt`1 ´ θ
‹‖

ď
1

2σ
‖θk ´ θk´1‖2 `

σ

2
‖X‖2op ‖wk ´ w‹‖

2
` δ

k
ÿ

t“1

‖θt ´ θ‹‖ ,

where in the last inequality we used again Cauchy-Schwartz and Young inequalities with parameter σ. Reordering,
we obtain the claim.

Lemma 17 (Second cumulative estimate). For ε ą 0 and η “ 1`ε
1´ε ě 1, define ω :“ ε ´ στ ‖X‖2op. Then

we have

V pzk ´ z
‹q ´ V pz0 ´ z

‹q `
ω

2τε

k
ÿ

t“1

‖wt ´ wt´1‖2 `
σε

2η

k
ÿ

t“1

‖Xwt ´ y‖2

`

k
ÿ

t“1

rLpwt, θq ´ Lpw, θtqs ď δ
k
ÿ

t“1

‖θt ´ θ‖`
σ pη ´ 1q δ2k

2
.

(31)

Proof. In a similar fashion as in the previous proof, we start again from Equation (29), switching the index from
k to t and evaluating pw, θq at the saddle-point pw‹, θ‹q. Since θ̃t “ θt ` pθt ´ θt´1q “ θt ` σpXwt ´ yq and
θt`1 ´ θt “ σpXwt`1 ´ yδq, we get

V pzt`1 ´ z
‹q ´ V pzt ´ z

‹q `
1

2τ
‖wt`1 ´ wt‖2 `

σ

2

∥∥Xwt`1 ´ yδ
∥∥2
` rLpwt`1, θ

‹q ´ Lpw‹, θt`1qs

ď xθt`1 ´ θt ´ σ
`

Xwt ´ yδ
˘

,Xwt`1 ´ yy ` xθt`1 ´ θ
‹,y ´ yδy

“ σxX pwt`1 ´ wtq ,Xwt`1 ´ yy ` xθt`1 ´ θ
‹,y ´ yδy.

Now compute

σ

2

∥∥Xwt`1 ´ yδ
∥∥2
“
σ

2
‖Xwt`1 ´ y‖2 ` σ

2

∥∥yδ ´ y
∥∥2
´ σxXwt`1 ´ y,yδ ´ yy.

So,

V pzt`1 ´ z
‹q ´ V pzt ´ z

‹q `
1

2τ
‖wt`1 ´ wt‖2 `

σ

2
‖Xwt`1 ´ y‖2 ` rLpwt`1, θ

‹q ´ L pw‹, θt`1qs

ď σxX pwt`1 ´ wtq ,Xwt`1 ´ yy ` xθt`1 ´ θ
‹,y ´ yδy ` σxXwt`1 ´ y,yδ ´ yy ´

σ

2

∥∥yδ ´ y
∥∥2

ď
σ ‖X‖2op

2ε
‖wt`1 ´ wt‖2 `

εσ

2
‖Xwt`1 ´ y‖2 ` δ ‖θt`1 ´ θ

‹‖´ σ

2

∥∥yδ ´ y
∥∥2

`
σ

2η
‖Xwt`1 ´ y‖2 ` ση

2

∥∥yδ ´ y
∥∥2
.
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In the last inequality we used three times Cauchy-Schwartz inequality, the bound on the error given by
∥∥yδ ´ y

∥∥ ď
δ and two times Young inequality with parameters ε ą 0 and η “ 1`ε

1´ε ą 0. Then, re-ordering and recalling the

definitions of ω :“ ε´ στ ‖X‖2op, we obtain

V pzt`1 ´ z
‹q ´ V pzt ´ z

‹q `
ω

2τε
‖wt`1 ´ wt‖2 `

σε

2η
‖Xwt`1 ´ y‖2 ` rLpwt`1, θ

‹q ´ L pw‹, θt`1qs

ď δ ‖θt`1 ´ θ
‹‖` σ pη ´ 1q δ2

2
.

Summing-up the latter from t “ 0 to t “ k ´ 1, by telescopic property, we get

V pzk ´ z
‹q ´ V pz0 ´ z

‹q `
ω

2τε

k´1
ÿ

t“0

‖wt`1 ´ wt‖2 `
σε

2η

k´1
ÿ

t“0

‖Xwt`1 ´ y‖2

`

k´1
ÿ

t“0

rLpwt`1, θq ´ Lpw, θt`1qs ď δ
k´1
ÿ

t“0

‖θt`1 ´ θ
‹‖` σ pη ´ 1q δ2k

2
.

By trivial manipulations, we get the claim.

C.3 Proof of Proposition 7

Proposition 7 (Stability). Under Assumption 1, let ε P p0, 1q and assume that the step-sizes are such that

στ ď ε{ ‖X‖2op. Then,

Lpwk, θ‹q ´ Lpw‹, θkq ď 1
k

´

a

V pz0 ´ z‹q `
?

2σδk
¯2

(13)

and

∥∥Xwk ´ y
∥∥2
ď

2p1` εq

σεp1´ εq

«

a

2σV pz0 ´ z‹qδ

`
σε

1´ ε
δ2 ` 2σδ2k `

1

k
V pz0 ´ z

‹q

ff

.

(14)

Proof. Inequality in Equation (30) holds true for every k ě 1. Then, recalling that Lpw, θ‹q ´ Lpw‹, θq ě 0 for
every pw, θq P Rp ˆ Rn and that ω ě 0 by assumption, for every t ě 1 we have that

‖θt ´ θ‹‖2 ď 2σV pz0 ´ z̄q ` 2σδ
t
ÿ

j“1

‖θj ´ θ‹‖ . (32)

Apply Lemma 14 to Equation (32) with uj “ ‖θj ´ θ‹‖, S “ 2σV pz0 ´ z̄q and λ “ 2σδ, to get

‖θt ´ θ‹‖ ď 2σδt`
a

2σV pz0 ´ z̄q.

In particular, for 1 ď t ď k, we have

‖θt ´ θ‹‖ ď 2σδk `
a

2σV pz0 ´ z̄q. (33)

Insert the latter in Equation (30), to obtain

k
ÿ

t“1

rLpwt, θ‹q ´ Lpw‹, θtqs ď V pz0 ´ z̄q ` δ
k
ÿ

t“1

´

2σδk `
a

2σV pz0 ´ z̄q
¯

“ V pz0 ´ z̄q ` δk
a

2σV pz0 ´ z̄q ` 2σδ2k2

ď

´

a

V pz0 ´ z̄q `
?

2σδk
¯2

.
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By Jensen’s inequality, we get the claim.

For the second result, recall that, from Equation (33), we have

δ
k
ÿ

t“1

‖θt ´ θ‹‖ ď
a

2σV pz0 ´ z‹qδk ` 2σδ2k2.

Inserting the latter in Equation (31), we get

σε

2η

k
ÿ

t“1

‖Xwt ´ y‖2 ď δ
k
ÿ

t“1

‖θt ´ θ‹‖`
σ pη ´ 1q δ2k

2
` V pz0 ´ z

‹q

ď
a

2σV pz0 ´ z‹qδk ` 2σδ2k2 `
σ pη ´ 1q δ2k

2
` V pz0 ´ z

‹q.

By Jensen’s inequality, rearranging the terms, and taking η “ 1`ε
1´ε , we get the claim.


