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DAG-Structured Clustering by Nearest Neighbors: Supplement

A Algorithmic Details

A.1 Linkage Functions & k-NN Graph Sparsification

Llama, like agglomerative hierarchical clustering methods, uses of a linkage function. The performance (both
accuracy and speed) of the clustering algorithm will depend on the linkage function. Frequently used linkages
are a function of a similarity function between points, sim : X ⇥ X ! R. We will focus on linkages f(·, ·)
which are symmetric, ie. f(Ci, Cj) = f(Cj , Ci). For instance, given two sets Ci and Cj , single linkage is the
maximum similarity between an element in Ci and Cj , maxxi,xj2Ci⇥Ck sim(xi, xj); and average linkage is the
average similarity between pairs of elements in the two clusters, 1

|Ci||Cj |

P
xi,xj2Ci⇥Ck

sim(xi, xj).

To make the construction of N (i) more e�cient, we build k-nearest neighbor graphs with respect to the similarity
function (sim) for a dataset. We weight the edges of the graph with the similarity between the points. Edges
that are missing from the graph are assumed to have 0 similarity. We can use this k-nearest neighbor graph
with vertices X and edges E to define an analogous average linkage: 1

|A||B|

P
a2A

P
b2B wabI[(a, b) 2 E] where

I[(a, b) 2 E] determines if the edge is in the graph. When computing f(·, ·) we can then restrict our consideration
for candidate nearest neighbors in N

(i) to connected nodes. When considering candidate nearest neighbors of a
cluster, we consider other clusters such that there is at least one edge in the nearest neighbor graph between the
points in the clusters.

Previous work (Murtagh, 1983; Müllner, 2011) has shown that we can e�ciently update the linkage function
values between newly merged clusters using the linkage function values of existing ones. For tree structures, these
are well known (Müllner, 2011) and provide for massive speedups in the methods as the average linkage can be
computed as the sum of values for cluster pairs (instead of having to consider all of their descendant points).
However, if the clusters are overlapping (as in our setting) the standard update rules for certain linkages will no
longer be technically correct such as for average linkage. Empirically, however we find that approximating the
average linkage by using the standard update rules from Müllner (2011) achieves good performance. Interestingly,
for average linkage, this approximation looks very much like doing a bag-based average linkage where the number
of times edges are double counted is a function of number of times the nodes has appeared in the overlap of two
nodes. Table 2 provides a comparison between using this approximate computation using the update rule and
the exact version.

B Theoretical Analysis

In our theoretical analysis, we follow Monath et al. (2019a) and make the assumption that the linkage function
f is symmetric and without ties.

B.1 Model-Based Separation Theorem

Lemma 1 Given a dataset X and a linkage function f such that X is model-based separated with respect to
f , let H

? be the target partition corresponding to the separated data. In each round of Llama, each pair of
nearest neighbors (C,C 0) 2 N

(i), will satisfy either:

1. 9 C
?
2 H

? such that C ✓ C
? and C

0
✓ C

?, or

2. 9 C
?
2 H

? such that C?
✓ C or C?

✓ C
0.

Proof. We will prove this by induction. The first round of the algorithm, in which each point sits in its own
cluster, satisfies the above property. Now let us assume that N

(i�1) has the above property. We want to show
that N (i) has the property as well. Each C 2 H

(i�1) finds its nearest neighbor in H
(i�1) according to the linkage

function f , we denote this as C 0 = argminC002H(i�1)\C f(C,C 00). There are three cases.

Case A: 9 C
?
2 H

?, s.t., C = C
?. In this case, the node C corresponds exactly to the ground truth cluster.

For any node that it pairs with it will satisfy Condition (2) above.
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Case B: 9 C
?
2 H

?, s.t., C?
✓ C. In this case, as a ground truth cluster is already consumed by the cluster

C, Condition (2) above is already satisfied.

Case C: 9 C
?
2 H

?, s.t., C ⇢ C
?. This final case is the most interesting one. We will show that the node it

chooses to pair with must be from the same ground truth cluster as C. By condition 1, we know that there must
be a C

0 such that C
0
✓ C

?
\ C because the C 6= C

?. There also must exist a C
0 such that C is connected to

C
0 according to g(·, ·). Therefore, by the definition of model-based separation C’s nearest neighbor will be some

cluster that is is connected to and that is in its cluster. Thus we will maintain property 1 in N
(i).

Theorem 1. Given a dataset X and a linkage function f such that X is model-based separated with respect to
f , let H? be the target partition corresponding to the separated data. Let D be the DAG-structured clustering
produced by Llama (Alg. 1), then H

? is a D consistent partition, H?
⇢ D.

Proof. We will prove this by contradiction and by Lemma 1. Suppose not, let C
?
2 H

? be any of the ground
truth clusters and C

?
62 D. In the first round, each member point of C? appears as a singleton cluster. Define

the pairs of clusters that are nearest neighbors and are both subsets of C? in round i and subsequent nodes:

N
(i)(C?) = {(C,C 0) | (C,C 0) 2 N

(i)
, C ⇢ C

?
^ C

0
⇢ C

?
} (13)

H
(i)(C?) = {C [ C

0
| (C,C 0) 2 N

(i)(C?)} (14)

Let’s consider the earliest round that the above is empty, N (i)(C?) = ;, call this round e. We will now show that
C

?
2 He�1. Lemma 1 tells us that each member of the pairs in N

(e�1)(C?) must be both subsets C? and so we
know that: 8C 00

2 H
(e�1)(C?), C

00
✓ C

?.

If N (e)(C?) is empty, then we know that for each member C 2 H
(e�1)(C?) it is the case that C found a nearest

neighbor C
0 such that C

0
6⇢ C

?. By model based separation, if C ⇢ C
? and C 2 H

(e�1)(C?), then its nearest
neighbor must be some other subset that is also a subset of C?. Some such subset must exist because there exists
at least one point that connects the points in C to all other points C? in the underlying model-based separation
latent graph. And so C must not be a subset of C?. If this C is not a subset of C?, then by lemma 1 it must be
a superset and by our supposition of C? not being in D, a strict superset. But this reaches a contradiction as
each member of H(e�1)(C?) was made by merging two pure subsets of C?.

B.2 Noisy Model-Based Separation Analysis

Proposition 1Given a datasetX and a symmetric linkage function f such thatX is noisy model-based separated
with respect to f , let H? be the target partition corresponding to the noisy model-based separated data. Let D
be the DAG-structured clustering produced by Llama (Alg. 1), then H

? is a D consistent partition, H?
⇢ D.

Proof. The first round of the algorithm creates N (1) and the clusters that are input to the next round H
(1). We

will show that H(1) is model-based separated with respect to f and the original graph G (not noisy model-based
separated) and then apply the results from Theorem 1.

To achieve this, we will show that for each C
?
2 H

?, 9 C1, C2, . . . , CK 2 H1 such that [i=1:kCi = C
?, there by

showing that the original partition C
? is a model-based separated partition of H(1). We can partition H

(1) into
the connected and disconnected clusters:

H
(1)
conn = {C |C is connected in G} (15)

H
(1)
sep = {C |C is not connected in G} (16)

For each ground truth cluster C
? the noisy model-based separation property tells us that at most 1/2 of the

points of any ground truth cluster can have nearest neighbors that are not connected (and outside the cluster).
And so, we have that for each ground truth cluster C

?, each point must participate in at least one member of

H
(1)
conn, i.e.,

8C
?
2 H

?
8x 2 C

?
9C 2 H

(1)
conn, x 2 C (17)
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Now observe that by definition of G, only those ground truth clusters described in the last equation will be
connected. For the remaining rounds of the algorithm, all cluster sizes will be greater than 1 and so all nearest
neighbors will be from the same cluster, i.e., model-based separation holds. We can use the result from Theorem 1.

Proposition 2 There exists a datasets X and symmetric linkage function f such that X is noisy model-based
separated wrt f , let H

? be the target partition corresponding to the noisy model-based separated data. HAC
and Grinch produces a structure T such that H? is not a tree consistent partition, H?

6⇢ T .

Proof. Consider a very simple dataset with three points X = {a, b, c}, let the target partition be H
? =

{{a, b}, {c}}. Now let f(b, c) = 2 and f(a, b) = 1 and f(a, c) = 0. We observe that HAC and Grinch will
put b and c in the same cluster and so could not represent {a, b}. However, we also have that a’s nearest neighbor
is b and so the DAG-structured method would be able to represent the cluster {a, b}.

B.3 Complexity

Proposition (Space Complexity). Given a dataset of N points, Llama produces DAG-structured clusterings
with at most O(N2) nodes.

Proof. Assuming we have a symmetric linkage function, in each round, each cluster is merged with one other
cluster. By the pigeon-hole principle, a round starting with N clusters will produce at most N � 1 clusters.
Therefore, the total number of nodes that can be produced is O(

P1
i=N i) = O(N2).

Proposition (Time Complexity). Given a dataset of N points, R rounds of Llama produces requires at most
O(R ⇤N

2) linkage function computations.

Proof. In each round, we need to find the nearest neighbor of each of the clusters produced by the previous rounds.
Without a nearest neighbor index, each round would require O(N2) time to compute the nearest neighbor of
each cluster. If nearest neighbor index structures are used, this time can of course be reduced.

Proposition (Number of Rounds). Let H? be the target partition of a dataset that is (noisy) model-based
separated, let K be the size of the largest cluster in H

?. K = maxC2H? |C|. After K rounds, Llama produces a
structure that contains H?.

Proof. We observe that that all points from the same ground truth cluster will be merged before points from
di↵erent ground truth clusters. In the worst case, this means that a cluster with K points will take K rounds
(by the same logic as the space complexity above) to form.

What DAG structures can be formed by Llama? We note that the Llama algorithm cannot produce any
DAG-structured clustering. Instead, it is limited to a subset with polynomial size. In future work, we hope to
better understand the properties of the kind of structure Llama can produce.

C Empirical Analysis

C.1 Analysis of Jaccard-based Clustering Metrics

Dendrogram Purity (Heller and Ghahramani, 2005b) is a metric that is often used to evaluate the quality of a
hierarchical clustering of a dataset which has a ground truth flat partition. Rather than demanding a particular
flat clustering be extracted from the tree structure, dendrogram purity evaluates the quality of the tree consistent
partitions encoded in the hierarchical clustering. It is defined as:
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Figure 4: Dendrogram Purity and Jaccard Metrics on Synthethic Data. We report the Spearman (⇢)
and Pearson r correlation for each and p value in parenthesis. We observe that Jacc/pt is well correlated with
dendrogram purity. While the other metrics are not correlated, this does not diminish our interest in them
as metrics. Jacc/node captures how precise or compact the structures are, unlike dendrogram purity. Jacc/lbl
measures at the label level how well represented the ground truth clusters are. Unlike Jacc/pt and dendrogram
purity, Jacc/lbl weights each ground truth cluster equally independent of the size of the cluster. As the data here
has CRP distributed cluster sizes, it is no surprise that Jacc/lbl looks quite di↵erent than Jacc/pt.

Figure 5: Dendrogram Purity and Jaccard Metrics on Real Data. As in Figure 4, we report the values
of the metrics in this case on the hierarchical clustering benchmark datasets.

Let T be a hierarchical clustering of dataset X. Let H? = {C
?
1 , . . . , C

?
K} be a ground truth flat partition of X.

The dendrogram purity (DP) of T with respect to C
? is:

1

Z

X

C?2H?

X

x,x0
2C?

⇥C?,
x 6=x0

purity(lca(x, x0
, T ), C?) (18)

Z =
X

C?2H?

1

2
|C

?
|(|C?

|� 1) (19)

where lca(x, x0
, T ) gives the least common ancestor of x and x

0 in T and purity(n,C?) is defined as the fraction
of descent leaves of n that belong to C

?, that is: purity(n,C?) = |lvs(n) \ C
?
|/|lvs(n)|, where lvs(n) gives

the leaves of the node n.

We note that there are trivial DAG structures which would achieve perfect dendrogram purity. In particular, the
DAG structure which contains the cluster for each pair of points in the dataset.

We are interested to understand which of the Jacc/pt, Jacc/lbl, Jacc/node is most correlated to dendrogram
purity. To analyze this, we sample synthetic data from Dirichlet Process Mixture Models with spherical variance.
We sample 10 datasets from 75 di↵erent DPMM hyperparameter settings in R10 for a total of 750 datasets. The
75 settings come from the cartersian product of (number of points ({100, 1000, 5000}), variances ({0.25, 0.4,
0.5, 0.75, 1.0}), and alpha parameters of CRP ({1, 5, 10, 25, 100}). For each dataset we run the best tree-based
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Num. Points Num. Labels Dim

P
ar
ti
ti
on

-
ba

se
d

ALOI 108K 1000 128
ILSVRC (Sm.) 50K 1000 2048
Speaker 36.5K 4958 6388
ImageNet 100K 17K 2048
ILSVRC (Lg.) 1.2M 1000 2048

C
ov
er
-

ba
se
d

EURLex-4k 19K 3993 5000
Bibtex 7K 159 1836
Delicious 16K 983 500
MediaMill 43.9K 101 120
Wiki10-31K 20K 31K 101K

Table 6: Dataset Statistics.

method, reciprocal nearest neighbors and report all metrics. We plot each metric against dendrogram purity in
Figure 4 and observe that Jacc/pt is most correlated to dendrogram purity. We note that dendrogram purity is
by no means the only metric that we are interested in and so the lack of correlation for the other two metrics is
not a negative result, it simply implies that they capture something di↵erent about the structures. Furthermore,
for this particular choice of generative models, which encourages rich-get-richer cluster sizes, it is no surprise
that Jacc/lbl looks quite di↵erent than Jacc/pt. Similarly, Jacc/node measures the compactness of the structure
and so captures properties that dendrogram purity does not.

We also show these same plots for the results of all three tree-based methods compared (reciprocal nearest
neighbor, A�nity, Grinch) on the clustering benchmarks. The results follow a similar trend ( see Fig. 5).

C.2 Dataset Sizes

Table 6 provides the statistics for each dataset used in the clustering and cover-based evaluations. For evaluation
on ILSVRC (Lg.) we use a randomly selected subset of 50K points following Kobren et al. (2017).

C.3 Hyperparameter Analysis

We analyze two hyperpameters of Llama, RecipNN, and A�nity, the number of neighbors of the nearest neighbor
graph (described above) and the number of rounds of the algorithm used. Figure 6 shows the results. We observe
that around 20-40 rounds are required for competitive performance. We observe that the number of nearest
neighbors between 3 and 1000 does not lead to major variation in performance. We observe that while Llama
can become much more expensive than tree structures when the number of rounds or graph density becomes very
large, the algorithm does not much more time than the tree-based methods to achieve better-than-tree structure
performance.

C.4 Running Time Analysis

In Table 7, we report a timing comparison of running 100 rounds of Llama and Reciprocal NN algorithm on
the clustering benchmarks. We use 10 threads in parallelizing each algorithm’s computation of the neighbors and
linkage function values. For Llama, we use the comparably e�cient approximate average linkage. We report the
time of clustering the pre-computed sparse graph (which is done using ScaNN (Guo et al., 2020)).



DAG-Structured Clustering by Nearest Neighbors

101 102 103

1uPber Rf 1eLJhbRrs

0.450

0.475

0.500

0.525

0.550

0.575

Ja
cc

ar
d 

/ 3
RL

nt
SSeaNer

AffLnLty
5ecLS11
/laPa

100 101 102

ClusterinJ 7iPe

0.450

0.475

0.500

0.525

0.550

0.575

Ja
cc

ar
d 

/ P
oi

nt

SSeaker

101 102 103

1uPber of 1eighbors

100

200

300

1
uP

be
r o

f C
lu

st
er

s 
/ 3

oi
nt

SSeaNer

101 102 103

1umber of 1eighbors

200

400

600

800

Cl
us

te
rin

g 
Ti

m
e 

(s
ec

on
ds

)

6SeaNer

101 102 103

1uPber RI 1eLJhbRrV

0.525

0.550

0.575

0.600

0.625

0.650

Ja
cc

ar
d 

/ 3
RL

nt

I/6V5C

100 101 102 103

CluVterLnJ 7LPe

0.525

0.550

0.575

0.600

0.625

0.650
Ja

cc
ar

d 
/ 3

RL
nt

I/6V5C

101 102 103

1uPber RI 1eLghbRrV

100

200

300

400

500

1
uP

be
r R

I C
lu

Vt
er

V 
/ 3

RL
nt

I/SV5C

101 102 103

1umber RI 1eLghbRrV

500

1000

1500

2000

2500

Cl
uV

te
rLn

g 
TL

m
e 

(V
ec

Rn
dV

)

ILSV5C

20 40 60 80 100
1uPber Rf 5Runds

0.30

0.35

0.40

0.45

0.50

0.55

Ja
cc

ar
d 

/ 3
RL

nt

6SeaNer

AffLnLty
5ecLS11
/laPa

10 20 30 40
ClusterinJ TiPe

0.30

0.35

0.40

0.45

0.50

0.55

Ja
cc

ar
d 

/ 3
oi

nt

SSeaker

20 40 60 80 100
1uPber Rf 5Runds

50

100

150

200

250

300

1
uP

be
r R

f C
lu

st
er

s 
/ 3

Ri
nt

6SeaNer

20 40 60 80 100
1umber Rf RRunds

10

20

30

40

Cl
us

te
rin

g 
Ti

m
e 

(s
ec

Rn
ds

)

6SeaNer

20 40 60 80 100
1uPber RI 5RundV

0.1

0.2

0.3

0.4

0.5

0.6

Ja
cc

ar
d 

/ 3
RL

nt

I/6V5C

5 10 15
CluVterLnJ TLPe

0.1

0.2

0.3

0.4

0.5

0.6

Ja
cc

ar
d 

/ 3
RL

nt

I/6V5C

20 40 60 80 100
1uPber RI 5RundV

50

100

150

200

250

300

1
uP

be
r R

I C
lu

Vt
er

V 
/ 3

RL
nt

I/6V5C

20 40 60 80 100
1umber RI 5RundV

5

10

15

Cl
uV

te
rLn

g 
TL

m
e 

(V
ec

Rn
dV

)

IL6V5C

Figure 6: Hyperparameter Analysis. We compare performance on the Speaker and ILSVRC (Sm.) datasets
using various numbers of rounds and various settings of the number of nearest neighbors in the nearest neighbor
graph. We observe comparable performance across various kinds of nearest neighbors. We observe that around
20-40 rounds is required for competitive performance of the metrics. Importantly, while the complexity of Llama
does grow faster than the other methods in terms of time and number of nodes, we observe good performance
can be achieved in the parts of the time/space curves that are much closer to tree-based methods.

Running Time (s) Avg. Clusters / Point
RcNN Llama RcNN Llama

ALOI 12.32 7.58 18.474 127.621
Speaker 10.43 53.63 19.819 238.21
ILSVRC (Sm.) 3.955 10.66 24.18 162.35
ImageNet 16.754 224.533 21.513 600.67
ILSVRC (Lg.) 86.32 495.19 44.387 356.311

Table 7: Running Times & Structure Size. The running time of the two algorithms on each of the clustering
benchmarks. Interestingly, Llama takes less time on the ILSVRC (Sm.) dataset than the Speaker dataset, despite
it being larger. We hypothesize that the time taken by Llama is directly impacted by the underlying structure
of the dataset’s similarity graph and with more separation in the data (as seems to be the case here), Llama
can be more e�cient. For the same runs as the timing numbers, we report the number of average number of
clusters each point has been assigned to in the structures, which share a similar trend.
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