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A Proof of Proposition 3.1

From assumption (B2) on p. 4, we recall that ht(u; y) = ht(u; q(g, v)). We write ∂ght(u; q(g, v)) for the partial
derivative with respect to g. We will show that µX,t+1 in (3.8) can be written as:

µX,t+1 =
√
δE{∂ght(Ut; q(G,V ))}, (A.1)

=
√
δE
{
ht(Ut;Y )

(
E{G|Ut, Y } − E{G|Ut}

Var{G|Ut}

)}
. (A.2)

From (A.2), we have that

µX,t+1

σX,t+1
=

√
δ√

E{ht(Ut;Y )2}
E
{
ht(Ut;Y )

(
E{G|Ut, Y } − E{G|Ut}

Var{G|Ut}

)}
. (A.3)

The absolute value of the RHS is maximized when ht = c h∗t , for c 6= 0 and h∗t is given in (3.18). To obtain
the alternative expression in (3.19) from (3.18) we recall that Ut is Gaussian with zero mean and variance
(µ2
U,t +σ2

U,t). Furthermore, the conditional distribution of G given Ut = u is Gaussian with E{G | Ut = u} = ρtu
and Var(G | Ut = u) = (1− ρtµU,t). Therefore, with W ∼ N(0, 1) we have

E{G | Ut = u, Y = y} =
EW {(ρtu+

√
1− ρt µU,tW ) pY |G(y | ρtu+

√
1− ρt µU,tW )}

EW {pY |G(y | ρtu+
√

1− ρt µU,tW )}

= ρtu +
√

1− ρt µU,t
E{WpY |G(y | ρtu+

√
1− ρt µU,tW )}

EW {pY |G(y | ρtu+
√

1− ρt µU,tW )}
. (A.4)

Substituting (A.4) in (3.18) yields (3.19).

It remains to show (A.2), which we do by first showing (A.1). Define et : R3 → R by

et(g, w, v) = ht(µU,tg + σU,tw; q(g, v)). (A.5)

Then, using the chain rule, the partial derivative of et(g, w, v) with respect to g is

∂get(g, w, v) = µU,th
′
t(µU,tg + σU,tw; q(g, v)) + ∂ght(u; q(g, v)). (A.6)

The parameter µX,t+1 in (3.8) can be written as

µX,t+1 =
√
δ [E{Get(G,WU,t, V )} − µU,tE{h′t(µU,tG+ σU,tWU,t; Y )}]

(i)
=
√
δ
[
E
{
∂get(G,WU,t, V )

}
− µU,tE{h′t(µU,tG+ σU,tWU,t; Y )}

]
=
√
δ E{∂ght(Ut; q(G,V ))}, (A.7)

where the last equality is due to (A.6), and (i) holds due to Stein’s lemma. Finally, we obtain (A.2) from (A.1)
as follows:

E{∂ght(Ut; q(G,V ))} = E
{
EG|Ut

[
∂ght(Ut; q(G,V )) | Ut

]}
(ii)
= E

{
EG|Ut

[
ht(Ut; q(G,V )) · (G− E{G|Ut})/Var{G|Ut} | Ut

]}
= E

{
EG|Ut,Y

[
ht(Ut; Y ) · (G− E{G|Ut})/Var{G|Ut} | Ut, Y

]}
= E {ht(Ut;Y ) · ((E{G|Ut, Y } − E{G|Ut})/Var{G|Ut})} .

(A.8)

Here step (ii) holds due to Stein’s lemma. This completes the proof of the proposition.
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B Proof of the Main Result

B.1 The Artificial GAMP Algorithm

The state evolution parameters for the artificial GAMP are recursively defined as follows. Recall from (5.8) that
X̃t = µX̃,tX + σX̃,tWX̃,t and Ũt ≡ µŨ,tG+ σŨ,tWŨ,t. Using (5.4), the state evolution initialization is

µX̃,0 = α, σ2
X̃,0

= 1− α2, β0 =
√
µ2
X̃,0

+ σ2
X̃,0

= 1. (B.1)

For 0 ≤ t ≤ (T − 1), the state evolution parameters are iteratively computed by using the functions defined in
(5.5) in (3.8):

µŨ,t =
µX̃,t√
δβt

, σ2
Ũ,t

=
σ2
X̃,t

δ β2
t

,

µX̃,t+1 =
µX̃,t√
δβt

, σ2
X̃,t+1

=
1

β2
t

E

{
Z2
s (G2µ2

X̃,t
+ σ2

X̃,t
)

(λ∗δ − Zs)2

}
,

βt+1 =
√
µ2
X̃,t+1

+ σ2
X̃,t+1

. (B.2)

Here we recall that G ∼ N(0, 1), Y ∼ pY |G(· | G), Zs = Ts(Y ), and the equality in (2.6) which is used to obtain
the expression for µX̃,t+1. For t ≥ T , the state evolution parameters are:

µŨ,t =
1√
δ
E{Xft−T (X̃t)},

σ2
Ũ,t

=
1

δ
E
{
ft−T (X̃t)

2
}
− µ2

Ũ,t
,

µX̃,t+1 =
√
δE{Ght−T (Ũt;Y )} − E{h′t−T (Ũt;Y )}E{Xft−T (X̃t)},

σ2
X̃,t+1

= E{ht−T (Ũt;Y )2}. (B.3)

Proposition B.1 (State evolution for artificial GAMP). Consider the setting of Theorem 1, the artificial GAMP
iteration described in (5.1)-(5.7), and the corresponding state evolution parameters defined in (B.1)-(B.3).

For any PL(2) function ψ : R2 → R, the following holds almost surely for t ≥ 1:

lim
d→∞

1

d

d∑
i=1

ψ(xi, x̃
t
i) = E{ψ(X, X̃t)}, (B.4)

lim
n→∞

1

n

n∑
i=1

ψ(yi, ũ
t
i) = E{ψ(Y, Ũt)}. (B.5)

Here X ∼ PX and Y ∼ PY |G, with G ∼ N(0, 1). The random variables X̃t, Ũt are defined in (5.8).

The proposition follows directly from the state evolution result of (Javanmard and Montanari, 2013) since the
initialization x̃0 of the artificial GAMP is independent of A.

B.2 Analysis of the First Phase

Lemma B.2 (Fixed point of state evolution for first phase). Consider the setting of Theorem 1. Then, the state
evolution recursion for the first phase, given by (B.1)-(B.2), converges as T →∞ to the following fixed point:

µX̃ , lim
T→∞

µX̃,T =
a√
δ
, σ2

X̃
, lim
T→∞

σ2
X̃,T

=
1− a2

δ
, (B.6)

where a is defined in (2.7).
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Proof. Recall that λ∗δ denotes the unique solution of ζδ(λ) = φ(λ) for λ > τ (also given by (2.6)), and define
Z = Zs/(λ

∗
δ − Zs), where Zs = Ts(Y ). Note that

E{Z(G2 − 1)} = E
{
Zs(G

2 − 1)

λ∗δ − Zs

}
=

1

δ
, (B.7)

where the second equality follows from the equality in (2.6). Moreover, the inequality in (2.6) implies that

E{Z2}
(E{Z(G2 − 1)})2

= δ2E
{

Z2
s

(λ∗δ − Zs)2

}
< δ. (B.8)

Thus, by recalling that the state evolution initialization µX̃,0 = α is strictly positive, the result follows from
Lemma 5.2 in Mondelli et al. (2020).

Lemma B.3 (Convergence to spectral estimator). Consider the setting of Theorem 1, and consider the first
phase of the artificial GAMP iteration, given by (5.1)-(5.2) with f̃t and h̃t defined in (5.5). Then,

lim
T→∞

lim
d→∞

‖
√
d x̂s −

√
δ x̃T ‖2

d
= 0 a.s. (B.9)

Furthermore, for any PL(2) function ψ : R× R→ R, almost surely we have:

lim
d→∞

1

d

d∑
i=1

ψ(xi,
√
d x̂si) = lim

T→∞
lim
d→∞

1

d

d∑
i=1

ψ(xi,
√
δ x̃Ti ) = E{ψ(X,

√
δ (µX̃X + σX̃W ))}. (B.10)

Here X ∼ PX and W ∼ N(0, 1) are independent.

Proof. As in the proof of the previous result, let Z = Zs/(λ
∗
δ − Zs) and note that (B.7)-(B.8) hold. Also define

Z ′ ,
Z

Z + δE{Z(G2 − 1)}
=

Z

Z + 1
=

Z

λ∗δ
. (B.11)

Then, the assumptions of Lemma 5.4 in (Mondelli et al., 2020) are satisfied, with the only difference of the
initialization of the GAMP iteration (cf. (5.4) in this paper and (5.4) in (Mondelli et al., 2020)). However, it
is straightforward to verify that the difference in the initialization does not affect the proof of Lemma 5.4 in
(Mondelli et al., 2020). Thus, (B.9) follows from (5.87) of (Mondelli et al., 2020), and (B.10) follows by taking
k = 2 in (5.31) of (Mondelli et al., 2020).

We will also need the following result on the convergence of the GAMP iterates.

Lemma B.4 (Convergence of GAMP iterates). Consider the first phase of the artificial GAMP iteration, given
by (5.1)-(5.2) with f̃t and h̃t defined in (5.5). Then, the following limits hold almost surely:

lim
T→∞

lim
n→∞

1

n
‖ũT−1 − ũT−2‖22 = 0, lim

T→∞
lim
d→∞

1

d
‖x̃T − x̃T−1‖22 = 0. (B.12)

Though the initialization of the GAMP in (Mondelli et al., 2020) is different from (5.4), the proof of Lemma
B.4 is the same as that of Lemma 5.3 in (Mondelli et al., 2020) since it only relies on µX̃,0 = α being strictly
non-zero.

B.3 Analysis of the Second Phase

Lemma B.5. Assume the setting of Theorem 1. Consider the artificial GAMP algorithm (5.1)-(5.2) with the
related state evolution recursion (B.2)-(B.3), and the modified version of the true GAMP algorithm (5.13)-(5.14).
Fix any ε > 0. Then, for t ≥ 0 such that σ2

X,k > 0 for 0 ≤ k ≤ t, the following statements hold:
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1.

lim
T→∞

∣∣∣µŨ,t+T − µU,t∣∣∣ = 0, lim
T→∞

∣∣∣σ2
Ũ,t+T

− σ2
U,t

∣∣∣ = 0, (B.13)

lim
T→∞

∣∣∣µX̃,T+t+1 − µX,t+1

∣∣∣ = 0, lim
T→∞

∣∣∣σ2
X̃,T+t+1

− σ2
X,t+1

∣∣∣ = 0. (B.14)

2. Let ψ : R× R→ R be a PL(2) function. Then, almost surely,

lim
T→∞

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ = 0, (B.15)

lim
T→∞

lim
d→∞

∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ = 0. (B.16)

The limits in (B.14) and (B.16) also hold for t+ 1 = 0.

Proof. We will use κt, κ
′
t, ct, γt to denote generic positive constants which depend on t, but not on n, d, or ε. The

values of these constants may change throughout the proof.

Proof of (B.13) and (B.14). We prove the result by induction, starting from the base case
∣∣∣µX̃,T − µX,0∣∣∣,

|σ2
X̃,T
− σ2

X,0|. From Lemma B.2, we have

lim
T→∞

µX̃,T = µX̃ =
a√
δ
, lim

T→∞
σ2
X̃,T

= σ2
X̃

=
1− a2

δ
. (B.17)

Recalling from (3.9) that µX,0 = a√
δ
, σ2

X,0 = 1−a2
δ , (B.17) implies that

lim
T→∞

∣∣∣µX̃,T − µX,0∣∣∣ = 0, lim
T→∞

∣∣∣σ2
X̃,T
− σ2

X,0

∣∣∣ = 0. (B.18)

Assume towards induction that (B.14) holds with (t+ 1) replaced by t, and that σ2
X,k > 0 for 0 ≤ k ≤ t. We will

show that (B.13) holds, and then that (B.14) holds.

For brevity, we write ∆µ,t,∆σ,t for (µX,t−µX̃,t+T ) and (σX,t−σX̃,t+T ), respectively. By the induction hypothesis,
given any ε > 0, for T sufficiently large we have

|∆µ,t| < κtε, |∆σ,t| <
κt

σX,t + σX̃,t+T
ε = κ′tε. (B.19)

Since σX,t is strictly positive, κ′t is finite and bounded above.

From (3.8) we have

µU,t =
1√
δ
E{Xft(µX,tX + σX,tWX,t)} =

1√
δ
E{Xft(µX̃,T+tX + σX̃,T+tWX,t + ∆µ,tX + ∆σ,tWX,t). (B.20)

Recalling that ft is Lipschitz and letting Lt denote its Lipschitz constant, we have∣∣∣ft(µX̃,T+tX + σX̃,T+tWX,t + ∆µ,tX + ∆σ,tWX,t) − ft(µX̃,T+tX + σX̃,T+tWX,t)
∣∣∣ ≤ Lt |∆µ,tX + ∆σ,tWX,t| .

(B.21)

Using (B.21) in (B.20), we obtain

√
δµU,t ≥E{Xft(µX̃,T+tX + σX̃,T+tWX,t)} − LtE{|X| |∆µ,tX + ∆σ,tWX,t|},
√
δµU,t ≤E{Xft(µX̃,T+tX + σX̃,T+tWX,t)} + LtE{|X| |∆µ,tX + ∆σ,tWX,t|}.

(B.22)



Marco Mondelli, Ramji Venkataramanan

Since WX,t
d
= WX̃,t+T and independent of X, we have that E{Xft(µX̃,T+tX + σX̃,T+tWX,t)} =

√
δµŨ,t+T .

Therefore, (B.22) implies √
δ
∣∣∣µU,t − µŨ,t+T ∣∣∣ ≤ Lt(∆µ,t + ∆σ,tE{|WX,t|}), (B.23)

where we have used E{|X|2} <
√
E{X2} = 1. Noting that E{|WX,t|} =

√
2/π, from (B.19) it follows that for

sufficiently large T : ∣∣∣µU,t − µŨ,t+T ∣∣∣ ≤ Lt√
δ

(κt + κ′t
√

2/π) ε < γt ε. (B.24)

Next consider σ2
U,t. From (3.8), we have

σ2
U,t =

1

δ
E{ft(µX,tX + σX,tWX,t)

2} − µ2
U,t. (B.25)

Furthermore, as WX,t
d
= WX̃,t+T and independent of X, we also have that

σ2
Ũ,t+T

=
1

δ
E{ft(µX̃,t+TX + σX̃,t+TWX,t)

2} − µ2
Ũ,t+T

. (B.26)

Using the reverse triangle inequality, we have∣∣∣ft(µX̃,T+tX + σX̃,T+tWX,t + ∆µ,tX + ∆σ,tWX,t)
∣∣∣

≥ |ft(µX̃,T+tX + σX̃,T+tWX,t)|

−
∣∣∣ft(µX̃,T+tX + σX̃,T+tWX,t + ∆µ,tX + ∆σ,tWX,t) − ft(µX̃,T+tX + σX̃,T+tWX,t)

∣∣∣
≥ |ft(µX̃,T+tX + σX̃,T+tWX,t)| − Lt |∆µ,tX + ∆σ,tWX,t| ,

(B.27)

where the last inequality follows from (B.21). Similarly,∣∣∣ft(µX̃,T+tX + σX̃,T+tWX,t + ∆µ,tX + ∆σ,tWX,t)
∣∣∣

≤ |ft(µX̃,T+tX + σX̃,T+tWX,t)| + Lt |∆µ,tX + ∆σ,tWX,t| .
(B.28)

Using (B.27), we obtain the bound

E{ft(µX,tX + σX,tWX,t)
2} ≥ E{ft(µX̃,T+tX + σX̃,T+tWX,t)

2} − L2
tE{|∆µ,tX + ∆σ,tWX,t|2}

− 2Lt

√
E{ft(µX,tX + σX,tWX,t)2} · E{|∆µ,tX + ∆σ,tWX,t|2}.

(B.29)

Similarly, using (B.28) we get

E{ft(µX,tX + σX,tWX,t)
2} ≤ E{ft(µX̃,T+tX + σX̃,T+tWX,t)

2}+ L2
tE{|∆µ,tX + ∆σ,tWX,t|2}

+ 2Lt

√
E{ft(µX̃,T+tX + σX̃,T+tWX,t)2} · E{|∆µ,tX + ∆σ,tWX,t|2}.

(B.30)

Furthermore,

E{|∆µ,tX + ∆σ,tWX,t|2} ≤ 2 |∆µ,t|2 E{X2}+ 2 |∆σ,t|2 E{WX,t}2 = 2(|∆µ,t|2 + |∆σ,t|2).

From (3.8) and (B.3), we note that

E{ft(µX,tX + σX,tWX,t)}2 = δ(µ2
U,t + σ2

U,t),

E{ft(µX̃,T+tX + σX̃,T+tWX̃,T+t)}
2 = δ(µ2

Ũ,T+t
+ σ2

Ũ,T+t
).

(B.31)

Therefore, Eqs. (B.29) and (B.30) imply that∣∣∣E{ft(µX,tX + σX,tWX,t)
2} − E{ft(µX̃,T+tX + σX̃,T+tWX,t)

2}
∣∣∣

≤ 2L2
t (|∆µ,t|2 + |∆σ,t|2) + 2Lt

√
2δ(µ2

U,t + σ2
U,t + µ2

Ũ,T+t
+ σ2

Ũ,T+t
)(|∆µ,t|2 + |∆σ,t|2).

(B.32)
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Using this in (B.25)-(B.26), we have∣∣∣σ2
U,t − σ2

Ũ,t+T

∣∣∣ ≤ ∣∣∣µŨ,T+t − µU,t
∣∣∣ · ∣∣∣µŨ,T+t + µU,t

∣∣∣
+

(
2

δ
L2
t (|∆µ,t|2 + |∆σ,t|2) +

2√
δ
Lt

√
2(µ2

U,t + σ2
U,t + µ2

Ũ,T+t
+ σ2

Ũ,T+t
)(|∆µ,t|2 + |∆σ,t|2)

)
.

(B.33)

From (B.19), we obtain

|∆µ,t|2 + |∆σ,t|2 <
(
κ2t + (κ′t)

2
)
ε2. (B.34)

Furthermore, as ft is Lipschitz, from (B.31) and the induction hypothesis we have

|µŨ,T+t|+ |µU,t|+ σU,t + σŨ,T+t ≤ ct, (B.35)

for some constant ct. Using (B.24), (B.34) and (B.35) in (B.33), we conclude that for sufficiently large T :∣∣∣σ2
U,t − σ2

Ũ,T+t

∣∣∣ < γtε. (B.36)

Next, we show that if (B.13) holds for some t ≥ 0 and σ2
X,k > 0 for k ≤ t, then :

lim
T→∞

∣∣∣µX̃,T+t+1 − µX,t+1

∣∣∣ = 0, lim
T→∞

∣∣∣σ2
X̃,T+t+1

− σ2
X,t+1

∣∣∣ = 0. (B.37)

We denote the Lipschitz constant of ht by L̄t, and write ∆̄µ,t, ∆̄σ,t for (µU,t − µŨ,t+T ) and (σU,t − σŨ,t+T ),
respectively. Using this notation, we have∣∣∣ht(µŨ,T+tG+ σŨ,T+tWU,t + ∆̄µ,tG+ ∆̄σ,tWU,t; Y )− ht(µŨ,T+tG+ σŨ,T+tWU,t; Y )

∣∣∣
≤ L̄t

∣∣∆̄µ,tG+ ∆̄σ,tWU,t

∣∣ . (B.38)

The induction hypothesis (B.13) implies that for sufficiently large T :∣∣∆̄µ,t

∣∣ < γtε,
∣∣∆̄σ,t

∣∣ < γt
σU,t + σŨ,t+T

ε = γtε. (B.39)

We note that σU,t > 0 since σX,t > 0. Indeed, from the discussion leading to (3.17), for a fixed µX,t, σX,t the
smallest possible ratio σ2

U,t/µ
2
U,t is achieved by the Bayes-optimal choice ft = cf∗t , where f∗t (Xt) = E{X|Xt}.

Furthermore, from (3.17), in order for σU,t = 0, we need E{E{X|Xt}2} = 1. From Jensen’s inequality, we also
have E{E{X|Xt}2} ≤ E{E{X2|Xt}} = 1. Therefore, E{E{X|Xt}2} = 1 only if X is a deterministic function of
Xt = µX,tX + σX,tW . But this is impossible when σX,t > 0. Therefore σU,t > 0, and γt in (B.39) is strictly
positive.

From (B.38), we obtain

E{Ght(µŨ,T+tG+ σŨ,T+tWU,t; Y )} − L̄tE{
∣∣∆̄µ,t

∣∣G2 +
∣∣∆̄σ,t

∣∣ · |G| · |WU,t|}
≤ E{Ght(µU,tG+ σU,tWU,t; Y )}
≤ E{Ght(µŨ,T+tG+ σŨ,T+tWU,t; Y )}+ L̄tE{

∣∣∆̄µ,t

∣∣G2 +
∣∣∆̄σ,t

∣∣ · |G| · |WU,t|}.
(B.40)

Now, using (3.8) and (B.3), we have:

1√
δ

∣∣∣µX̃,T+t+1 − µX,t+1

∣∣∣ =
∣∣∣E{G(ht(ŨT+t; Y )− ht(Ut; Y ))}

− µU,t
(
E{h′t(ŨT+t;Y )} − E{h′t(Ut;Y )}

)
− E{h′t(ŨT+t;Y )}(µŨ,T+t − µU,t)

∣∣∣
≤ L̄t

( ∣∣∆̄µ,t

∣∣+
∣∣∆̄σ,t

∣∣ (2/π)
)

+ |µU,t| · |E{h′t(ŨT+t;Y )} − E{h′t(Ut;Y )}| + L̄t
∣∣∆̄µ,t

∣∣ .
(B.41)

For the inequality above, we used (B.40) (noting that E{|WU,t|} = E{|G|} =
√

2/π and E{G2} = 1), and the
fact that |h′t| is bounded by L̄t, the Lipschitz constant of ht. Now,∣∣∣E{h′t(Ut;Y ) − E{h′t(ŨT+t;Y )}

∣∣∣ =
∣∣∣E{h′t(µU,tG+ σU,tWU,t;Y )} − E{h′t(µŨ,T+tG+ σŨ,T+tWU,t ;Y )}

∣∣∣ .
(B.42)
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By the induction hypothesis (B.13), we have

lim
T→∞

µŨ,T+t = µU,t, lim
T→∞

σŨ,T+t = σU,t. (B.43)

Thus, as T →∞, the random variable (µŨ,T+tG+ σŨ,T+tWU,t) converges in distribution to µU,tG+ σU,tWU,t.
Then, Lemma C.1 in Appendix C implies that

lim
T→∞

∣∣∣E{h′t(Ut;Y ) − E{h′t(ŨT+t;Y )}
∣∣∣ = 0. (B.44)

Using (B.44), (B.39) and (B.35) in (B.41) proves that the first limit in (B.37) holds.

Finally, we prove the second limit in (B.37). From (3.8), (B.3) and arguments along the same lines as (B.29)-
(B.32), we obtain the bound∣∣∣σ2

X,t+1 − σ2
X̃,T+t+1

∣∣∣ =
∣∣∣E{ht(Ut;Y )2} − E{ht(Ũt+T ;Y )2}

∣∣∣
≤ 2L̄2

t (
∣∣∆̄µ,t

∣∣2 +
∣∣∆̄σ,t

∣∣2) + 2L̄t

√
(σ2
X,t+1 + σ2

X̃,T+t+1
)(
∣∣∆̄µ,t

∣∣2 +
∣∣∆̄σ,t

∣∣2).
(B.45)

Furthermore, as ht is Lipschitz, the formulas for σ2
X,t+1 and σX̃,T+t+1 (in (3.8) and (B.3)) along with the

induction hypothesis (B.43) imply that
σ2
X,t+1 + σ2

X̃,T+t+1
≤ ct, (B.46)

for some constant ct. By using (B.46) and (B.39), we can upper bound the RHS of (B.45) with κt+1ε, for
sufficiently large T . This completes the proof of the second limit in (B.37).

Proof of (B.15) and (B.16).

Since ψ ∈ PL(2), for i ∈ [d] we have∣∣ψ(xi, x̃
T+t+1
i )− ψ(xi, x̂

t+1
i )

∣∣ ≤ C (1 + |xi|+ |x̃T+t+1
i |+ |x̂t+1

i |
) ∣∣x̃T+t+1

i − x̂t+1
i

∣∣ , (B.47)

for a universal constant C > 0. Therefore,∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ ≤ C

d

d∑
i=1

(
1 + |xi|+ |x̃T+t+1

i |+ |x̂t+1
i |

) ∣∣x̃T+t+1
i − x̂t+1

i

∣∣
≤ 4C

[
1 +

1

d

d∑
i=1

(
|xi|2 + |x̃T+t+1

i |2 + |x̂t+1
i |

2
)]1/2 ‖x̃T+t+1 − x̂t+1‖2√

d
,

(B.48)

where the second inequality follows from Cauchy-Schwarz. By the same argument,∣∣∣∣∣ 1n
n∑
i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ ≤ 4C

[
1 +

1

n

n∑
i=1

(
|yi|2 + |ũT+t

i |2 + |ûti|2
)] 1

2 ‖ũT+t − ût‖2√
n

. (B.49)

We will show via induction that as d→∞: i) the terms inside the square brackets in (B.48) and (B.49) converge
almost surely to finite deterministic values, and ii) as T → ∞ (with the limit in T taken after the limit in d),

the terms ‖x̃
T+t−x̂t‖2√

d
and ‖ũ

T+t+1−ût+1‖2√
d

converge to 0 almost surely.

Base case t = 0: The result (B.16) for t+ 1 = 0 directly follows from Lemma B.3. Next, using (B.49), the LHS
of (B.15) for t = 0 can be bounded as∣∣∣∣∣ 1n

n∑
i=1

ψ(yi, ũ
T
i )− 1

n

n∑
i=1

ψ(yi, û
0
i )

∣∣∣∣∣ ≤ 4C

[
1 +
‖y‖22
n

+
‖ũT ‖22
n

+
‖û0‖22
n

] 1
2 ‖ũT − û0‖2√

n
. (B.50)

From the definition of the artificial GAMP (5.1)-(5.6), we have

ũT =
1√
δ
Af0(x̃T )−

√
δ b̃T Zũ

T−1, (B.51)
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where we define

Z = Zs(λ
∗
δI −Zs)−1, (B.52)

with Zs = diag(Ts(y1), . . . , Ts(yn)). Similarly, defining

e1 := ũT−1 − ũT−2, (B.53)

we obtain ũT−1 = 1√
δβT−1

[
Ax̃T−1 −ZũT−1 +Ze1

]
, or

ũT−1 =
1√

δβT−1

(
I +

1√
δβT−1

Z

)−1 [
Ax̃T−1 +Ze1

]
. (B.54)

Substituting (B.54) in (B.51), we obtain

ũT =
1√
δ
Af0(x̃T )− b̃T

βT−1
Z

(
I +

1√
δβT−1

Z

)−1
Ax̃T−1 − b̃T

βT−1
Z2

(
I +

1√
δβT−1

Z

)−1
e1. (B.55)

Using (B.55) and the expression for û0 from (5.12), we have

1

d
‖ũT − û0‖22 ≤ 3

‖Af0(x̃T )−Af0(x̂0)‖22
δ d

+ 3

∥∥∥∥∥∥ b̃T
βT−1

Z2

(
I +

1√
δβT−1

Z

)−1
e1√
d

∥∥∥∥∥∥
2

2

+
3

d

∥∥∥∥∥∥ b̄0
√
δ

λ∗δ
ZsAx̂

0 − b̃T
βT−1

Z

(
I +

1√
δβT−1

Z

)−1
Ax̃T−1

∥∥∥∥∥∥
2

2

:= 3(S1 + S2 + S3). (B.56)

We now bound each of the three terms. By Cauchy-Schwarz inequality,

S1 ≤ ‖A‖2op
‖f0(x̃T )− f0(x̂0)‖22

δ d
≤ ‖A‖2op

L2
0

δ
· ‖x̃

T − x̂0‖22
d

, (B.57)

where L0 is the Lipschitz constant of f0. Since the entries of A are i.i.d. N(0, 1/d), almost surely the operator
norm of A is bounded by a universal constant for sufficiently large d (Anderson et al., 2009). From Lemma B.3
and the definition of x̂0 in (5.11), we also have

lim
T→∞

lim
d→∞

‖x̃T − x̂0‖22
d

=
1

δ
· ‖
√
δx̃T −

√
dx̂s‖22

d
= 0 a.s. (B.58)

Therefore,

lim
T→∞

lim
d→∞

S1 = 0 a.s. (B.59)

Next, recalling the definition of e1 from (B.53) we bound S2 as follows:

S2 ≤
b̃2T
β2
T−1
‖Z2

(
I +Z/(

√
δβT−1)

)−1‖2op · ‖ũT−1 − ũT−2‖22d
. (B.60)

From Lemma B.4, we know that limT→∞ limd→∞
‖ũT−1−ũT−2‖22

d = 0 almost surely. We now show that the other

terms on the RHS of (B.60) are bounded almost surely. Recall from (5.7) that b̃T = 1
n

∑d
i=1 f

′
0(x̃Ti ). Proposition

B.1 guarantees that the empirical distribution of x̃t converges to the law of X̃t ≡ µX̃,tX + σX̃,tW . Since f0 is
Lipschitz, Lemma C.1 in Appendix C therefore implies that almost surely:

lim
d→∞

b̃T =
1

δ
E{f ′0(µX̃,TX + σX̃,TW )}. (B.61)
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From Lemma B.2, we know that limT→∞ µX̃,T = a√
δ

and limT→∞ σ2
X̃,T

= 1−a2
δ . Therefore, letting T →∞ and

applying Lemma C.1 again, we obtain

lim
T→∞

lim
d→∞

b̃T =
1

δ
E

{
f ′0

( a√
δ
X +

√
1− a2√
δ

W
)}

a.s. (B.62)

From Lemma B.2, we have βT−1 → 1/
√
δ as T → ∞. Also recall from assumption (A2) on p. 3 that τ is the

supremum of the support of Zs, and that λ∗δ > τ . Therefore, Z = Zs
λ∗δ−Zs

has bounded support, due to which

‖Z2
(
I +Z/(

√
δβT−1)

)−1‖2op < C for a universal constant C > 0. Hence,

lim
T→∞

lim
d→∞

S2 = 0 a.s. (B.63)

To bound S3, we first write the term inside the norm on the second line of (B.56) as

√
δ

λ∗δ
ZsAx̂

0(b̄0 − b̃T ) +
b̃T
λ∗δ
ZsA

(
√
δx̂0 − x̃

T−1

βT−1

)
+

b̃T
βT−1

(
Zs
λ∗δ
−Z

(
I +

1√
δβT−1

Z
)−1)

Ax̃T−1.

Then, using triangle inequality and Cauchy-Schwarz, we have

S3 ≤
3δ

(λ∗δ)
2

‖ZsAx̂0‖22
d

(b̄0 − b̃T )2 +
3b̃2T

(λ∗δ)
2
‖ZsA‖2op

‖
√
δx̂0 − x̃T−1/βT−1‖22

d

+
3b̃2T
β2
T−1

‖Ax̃T−1‖22
d

∥∥∥∥∥∥ 1

λ∗δ
Zs − Z

(
I +

1√
δβT−1

Z

)−1∥∥∥∥∥∥
2

op

:= 3(S3a + S3b + S3c).

(B.64)

Using the expression for x̂0 from (5.11) and applying Cauchy-Schwarz, we can bound S3a as:

S3a ≤
1

(λ∗δ)
2
‖Zs‖2op‖A‖2op‖x̂

s‖22(b̄0 − b̃T )2. (B.65)

We note that Zs is bounded, ‖x̂s‖2 = 1, and ‖A‖2op is bounded almost surely by a universal constant for
sufficiently large d. Moreover, recalling the definitions of b̄0 and X0 = µX,0X + σX,0WX,0 from (5.15) and (3.9),

we see that b̄0 = 1
δE{f

′
0(X0)} is the limit of b̃T in (B.62). Therefore limT→∞ limd→∞ S3a = 0 almost surely.

Next, we bound S3b. Recalling that x̂0 =
√
dx̂s/

√
δ, we have

‖
√
δx̂0 − x̃T−1/βT−1‖22

d
=
‖
√
dx̂s −

√
δx̃T +

√
δx̃T −

√
δx̃T−1 +

√
δx̃T−1 − x̃T−1/βT−1‖22

d

≤ 3‖
√
dx̂s −

√
δx̃T ‖22

d
+

3‖
√
δx̃T −

√
δx̃T−1‖22

d
+

3‖x̃T−1‖22
d

(
√
δ − 1/βT−1)2.

(B.66)

Lemmas B.3 and B.4 imply that the first two terms on the RHS of (B.66) tend to zero in the iterated limit
T →∞, d→∞. Furthermore, from Lemma B.2, we have limT→∞ βT−1 = 1/

√
δ. From Proposition B.1, we also

have

lim
d→∞

‖x̃T−1‖22
d

= µ2
X̃,T−1 + σ2

X̃,T−1 = β2
T−1 a.s. (B.67)

Therefore, limT→∞ limd→∞ S3b = 0 almost surely.

To bound S3c, recalling from (B.52) that Z = Zs
λ∗δ−Zs

, we have

1

λ∗δ
Zs − Z

(
I +

1√
δβT−1

Z

)−1
=

1

βT−1
Z2
s

(
λ∗δI +Zs

( 1√
δβT−1

− 1
))−1 ( 1√

δ
− βT−1)

λ∗δ
. (B.68)

Since limT→∞ βT−1 = 1√
δ
, almost surely

lim
T→∞

∥∥∥∥∥∥ 1

λ∗δ
Zs − Z

(
I +

1√
δβT−1

Z

)−1∥∥∥∥∥∥
2

op

= 0. (B.69)
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Thus limT→∞ limd→∞ S3c = 0 almost surely. Using the results above in (B.64), we have shown that

lim
T→∞

lim
d→∞

S3 = 0 a.s. (B.70)

Using (B.59), (B.63) and (B.70) in (B.56), and recalling that n/d→ δ, we obtain

lim
T→∞

lim
n→∞

‖ũT − û0‖2√
n

= 0. (B.71)

To complete the proof for the base case, we show that the term inside the brackets in (B.50) is finite almost surely
as n → ∞. First, by assumption (B2) on p. 4, we have limn→∞ ‖y‖22/n = E{Y 2} almost surely. Furthermore,
by Proposition B.1, we almost surely have

lim
n→∞

‖ũT ‖22/n = µ2
Ũ,T

+ σ2
Ũ,T

. (B.72)

Next, using the triangle inequality, we have

‖ũT ‖2 − ‖ũT − û0‖2 ≤ ‖û0‖2 ≤ ‖ũT ‖2 + ‖ũT − û0‖2. (B.73)

Combining this with (B.71), we obtain

lim
T→∞

lim
n→∞

‖û0‖22
n

= lim
T→∞

µ2
Ũ,T

+ σ2
Ũ,T

= µ2
U,0 + σ2

U,0 a.s. (B.74)

Therefore, using (B.50), we have shown that

lim
T→∞

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

ψ(yi, ũ
T
i )− 1

n

n∑
i=1

ψ(yi, û
0
i )

∣∣∣∣∣ = 0 a.s. (B.75)

Induction step: Assume that (B.15) holds for some t, and that (B.16) holds with t+1 replaced by t. Also assume
towards induction that almost surely

lim
T→∞

lim
d→∞

‖x̃T+t − x̂t‖22
d

= 0, lim
T→∞

lim
n→∞

‖ũT+t − ût‖22
n

= 0. (B.76)

The limits in (B.76) hold for t = 0, as established in the proof of the base case (see (B.66), (B.71)).

From (B.48), we have the bound∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣
≤ 4C

[
1 +
‖x‖22
d

+
‖x̃T+t+1‖22

d
+
‖x̂t+1‖22

d

] 1
2 ‖x̃T+t+1 − x̂t+1‖2√

d
. (B.77)

Using (5.1), (5.6), (5.13) and the triangle inequality, we obtain:

‖x̃T+t+1 − x̂t+1‖22
d

≤ 2

δd
‖ATht(ũ

T+t;y)−ATht(û
t;y)‖22 + 2

‖c̃T+tft(x̃
T+t)− c̄tft(x̂

t)‖22
d

≤ 2

δd
‖ATht(ũ

T+t;y)−ATht(û
t;y)‖22 + 4

‖ft(x̃T+t)‖22
d

(c̃T+t − c̄t)
2 + 4 c̄2t

‖ft(x̃T+t)− ft(x̂t)‖22
d

:= 2S1 + 4S2 + 4S3.

(B.78)

The term S1 can be bounded as

S1 ≤ ‖A‖2op
‖ht(ũT+t;y)− ht(ût;y)‖22

δd
≤ ‖A‖2op L̄2

t

‖ũT+t − ût‖22
δd

, (B.79)
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where L̄t is the Lipschitz constant of the function ht. Since the operator norm of A is bounded almost surely as

d→∞, by the induction hypothesis (B.76) we have limT→∞ limd→∞
‖ũT+t−ût‖2

δd = 0 almost surely. Therefore,

lim
T→∞

lim
d→∞

S1 = 0 a.s. (B.80)

To bound S2, we recall from (5.7) that c̃T+t = 1
n

∑
i h
′
t(ũ

t
i; yi). Proposition B.1 guarantees that the joint

empirical distribution of (ũT+t,y) converges to the law of (ŨT+t, Y ) ≡ (µŨ,T+tG+ σŨ,T+tWU,T+t, Y ). Since ht
is Lipschitz, Lemma C.1 in Appendix C implies that

lim
n→∞

c̃T+t = E{h′t(µŨ,T+tG+ σŨ,T+tWU,T+t, Y )} a.s. (B.81)

From (B.13), we know that limT→∞ µŨ,T+t = µU,t and limT→∞ σ2
Ũ,T+t

= σ2
U,t. Therefore applying Lemma C.1

in Appendix C again, we obtain:

lim
T→∞

lim
n→∞

c̃T+t = E{h′t(µU,tG+ σU,tWU,t, Y )} = c̄t a.s. (B.82)

Next, using the result in Proposition B.1 with the test function ψ(x, x̃) = (ft(x̃))2, we almost surely have

lim
T→∞

lim
d→∞

‖ft(x̃T+t)‖22
d

= lim
T→∞

E{ft(X̃T+t)
2} = E{ft(Xt)

2}, (B.83)

where the last equality follows from (B.13) since ft is Lipschitz. Combining the above with (B.82), we obtain

lim
T→∞

lim
d→∞

S2 = 0 a.s. (B.84)

For the third term S3 in (B.78), since ft is Lipschitz (with Lipschitz constant denoted by Lt), we have the bound:

S3 ≤ c̄2tL
2
t

‖x̃T+t − xt‖22
d

. (B.85)

Thus, by the induction hypothesis (B.76), we obtain

lim
T→∞

lim
d→∞

S3 = 0 a.s. (B.86)

We have therefore shown that

lim
T→∞

lim
d→∞

‖x̃T+t+1 − x̂t+1‖2

d
= 0 a.s. (B.87)

Next, we show that the terms inside the brackets on the RHS of (B.77) are finite almost surely as d→∞. Using
the pseudo-Lipschitz test function ψ(x, x̃) = x2 + x̃2, Proposition B.1 implies that almost surely

lim
d→∞

1

d

d∑
i=1

(
|xi|2 + |x̃T+t+1

i |2
)

= E{X2}+ µ2
X̃,T+t+1

+ σ2
X̃,T+t+1

. (B.88)

Moreover, (B.14) implies that limT→∞ µ2
X̃,T+t+1

+ σ2
X̃,T+t+1

= µ2
X,t+1 + σ2

X,t+1. Using the triangle inequality,

we have
‖x̃T+t+1‖2 − ‖x̃T+t+1 − x̂t+1‖2 ≤ ‖x̂t+1‖2 ≤ ‖x̃T+t+1‖2 + ‖x̂t+1 − x̃T+t+1‖2. (B.89)

Hence, using (B.87) and Proposition B.1, we almost surely have

lim
T→∞

lim
d→∞

‖x̂t+1‖22
d

= lim
T→∞

lim
d→∞

‖x̃T+t+1‖22
d

= lim
T→∞

(
µ2
X̃,T+t+1

+ σ2
X̃,T+t+1

)
= µ2

X,t+1 + σ2
X,t+1. (B.90)

We have thus shown via (B.77) that almost surely

lim
T→∞

lim
d→∞

∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ = 0. (B.91)
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To complete the proof via induction, we need to show that if (B.87) and (B.91) hold with (t+ 1) replaced by t
for some t > 0, then almost surely

lim
T→∞

lim
n→∞

‖ũT+t − ût‖22
n

= 0, lim
T→∞

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ = 0. (B.92)

From (B.49), we have the bound∣∣∣∣∣ 1n
n∑
i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣
≤ 4C

[
1 +
‖y‖22
n

+
‖ũT+t‖22

n
+
‖ût‖22
n

] 1
2 ‖ũT+t − ût‖2√

n
. (B.93)

Using (5.2), (5.6), (5.14) and the triangle inequality, we obtain

‖ũT+t − ût‖22
n

≤ 2

δn
‖Aft(x̃T+t)−Aft(x̂t)‖22 + 2

‖b̃T+tht−1(ũT+t−1;y)− b̄tht−1(ût−1;y)‖22
n

≤ 2

δn
‖Aft(x̃T+t)−Aft(x̂t)‖22 + 4

‖ht−1(ût−1;y)‖22
n

(b̃T+t − b̄t)
2

+ 4b̄2t
‖ht−1(ũT+t−1;y)− ht−1(ût−1;y)‖22

n
:= 2S1 + 4S2 + 4S3.

(B.94)

Using arguments along the same lines as (B.80)-(B.86) (omitted for brevity), we can show that almost surely

lim
T→∞

lim
n→∞

S1 = lim
T→∞

lim
n→∞

S2 = lim
T→∞

lim
n→∞

S3 = 0.

Hence limT→∞ limn→∞
‖ũT+t−ût‖2√

n
= 0 almost surely. Furthermore, using a triangle inequality argument as

in (B.89), we obtain limT→∞ limn→∞
‖ũT+t‖22

n = limT→∞ limn→∞
‖ût‖22
n almost surely. By Proposition B.1 and

(B.13), the latter limit equals µ2
U,t + σ2

U,t. Using these limits in (B.93) yields the result (B.92), and completes
the proof of the lemma.

B.4 Putting Everything Together: Proof of Theorem 1

We will first use Lemma B.5 to show that the result of the theorem holds for the GAMP iteration (x̂t, ût), i.e.,
under the assumptions of Theorem 1, we almost surely have

lim
n→∞

1

n

n∑
i=1

ψ(yi, û
t
i) = E {ψ(Y, µU,tG+ σU,tWU,t)} , t ≥ 0, (B.95)

lim
d→∞

1

d

d∑
i=1

ψ(xi, x̂
t+1
i ) = E {ψ(X, µX,t+1X + σX,t+1WX,t+1} , t+ 1 ≥ 0. (B.96)

Consider the LHS of (B.96). Using the triangle inequality, for any T > 0, we have∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̂
t+1
i )− E {ψ(X, µX,t+1X + σX,t+1WX,t+1}

∣∣∣∣∣
≤

∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̂
t+1
i )− 1

d

d∑
i=1

ψ(xi, x̃
T+t+1
i )

∣∣∣∣∣+

∣∣∣∣∣1d
d∑
i=1

ψ(xi, x̃
T+t+1
i )− E{ψ(X,µX̃,T+t+1X + σX̃,T+t+1WX̃,T+t+1)}

∣∣∣∣∣
+
∣∣∣E{ψ(X,µX̃,T+t+1X + σX̃,T+t+1WX̃,T+t+1)} − E{ψ(X,µX,t+1X + σX,t+1WX,t+1)}

∣∣∣ := T1 + T2 + T3.

(B.97)



Marco Mondelli, Ramji Venkataramanan

We first bound T3 using the pseudo-Lipschitz property of ψ, noting that WX̃,T+t and WX,t are both ∼ N(0, 1):

T3 ≤ E
{∣∣∣ψ(X,µX̃,T+t+1X + σX̃,T+t+1W )− ψ(X,µX,t+1X + σX,t+1W )

∣∣∣} , W ∼ N(0, 1)

≤ CE

{(
1 +

[
X2 + µ2

X̃,T+t+1
X2 + σ2

X̃,T+t+1
W 2
]1/2

+
[
X2 + µ2

X,t+1X
2 + σ2

X,t+1W
2
]1/2)

·
(
X2(µX̃,T+t+1 − µX,t+1)2 +W 2(σX̃,T+t+1 − σX,t+1)2

)1/2}

≤ 3C
(

3 + µ2
X̃,T+t+1

+ σ2
X̃,T+t+1

+ µ2
X,t+1 + σ2

X,t+1

)1/2 (
(µX̃,T+t+1 − µX,t+1)2 + (σX̃,T+t+1 − σX,t+1)2

)1/2
,

(B.98)

where we have used Cauchy-Schwarz inequality in the last line. From Lemma B.5 (Eq. (B.14)), we know that

limT→∞

∣∣∣µX̃,T+t+1 − µX,t+1

∣∣∣ = 0 and limT→∞

∣∣∣σX̃,T+t+1 − σX,t+1

∣∣∣ = 0. Therefore, limT→∞ T3 = 0. Next, from

(B.16) we have that limT→∞ limd→∞ T1 = 0 almost surely. Furthermore, by Proposition B.1, for any T > 0 we
almost surely have limd→∞ T2 = 0. Letting T, d→∞ (with the limit in d taken first) and noting that the LHS
of (B.97) does not depend on T , we obtain that (B.96) holds.

The proof of (B.95) uses a bound similar to (B.97) and arguments along the same lines. It is omitted for brevity.

Next, we prove the main result by showing that under the assumptions of the theorem, almost surely

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

ψ(yi, u
t
i)−

1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ = 0, lim
n→∞

‖ut − ût‖22
n

= 0, t ≥ 0 (B.99)

lim
d→∞

∣∣∣∣∣1d
d∑
i=1

ψ(xi, x
t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ = 0, lim
d→∞

‖xt+1 − x̂t+1‖22
d

= 0, t+ 1 ≥ 0. (B.100)

Combining (B.100)-(B.99) with (B.96)-(B.95) yields the results in (3.11) and (3.12).

The proof of (B.100) and (B.99) is via induction and uses arguments very similar to those to prove (B.15)-(B.16).
To avoid repetition we only provide a few steps. Noting that x0 = x̂0, we now show (B.100), under the induction
hypothesis that (B.99) holds and also that (B.100) holds with t+ 1 replaced by t.

Since ψ ∈ PL(2), we have∣∣∣∣∣1d
d∑
i=1

ψ(xi, x
t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ ≤ 4C

[
1 +
‖x‖22
d

+
‖xt+1‖22

d
+
‖x̂t+1‖22

d

] 1
2 ‖xt+1 − x̂t+1‖2√

d
. (B.101)

Furthermore, using the definitions of xt+1 and x̂t+1, and the triangle inequality we have

‖xt+1 − x̂t+1‖22
d

≤ 2

δd
‖ATht(u

t;y)−ATht(û
t;y)‖22 + 4

‖ft(xt)‖22
d

(ct − c̄t)
2 + 4c̄2t

‖ft(xt)− ft(x̂t)‖22
d

≤ 2L̄2
t

δ
‖A‖2op

‖ut − ût‖22
d

+ 4
‖ft(xt)‖22

d
(ct − c̄t)

2 + 4c̄2tL
2
t

‖xt − x̂t‖22
d

, (B.102)

where Lt, L̄t are the Lipschitz constants of ft, ht, respectively. By the induction hypothesis and Lemma C.1,

the terms
‖ut−ût‖22

d ,
‖xt−x̂t‖22

d , and (ct − c̄t)
2 tend to zero. Furthermore, by the induction hypothesis, we almost

surely have
‖ft(xt)‖22

d → E{ft(Xt)
2}, and by (B.96),

‖x̂t+1‖22
d → (µ2

X,t+1 +σ2
X,t+1) as d→∞. Finally, by a triangle

inequality argument analogous to (B.89), we also have

lim
d→∞

‖xt+1‖22
d

= lim
d→∞

‖x̂t+1‖22
d

= (µ2
X,t+1 + σ2

X,t+1) a.s.

Using these limits in (B.101) proves (B.100). The proof of (B.99) (under the induction hypothesis that (B.100)
holds with (t+ 1) replaced by t) is along the same lines: we use a bound similar to (B.101) and a decomposition

of
‖ut−ût‖22

n similar to (B.102). This completes the proof of the theorem.
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Figure 3: Performance comparison between two different choices of ft for a binary prior PX(1) = PX(−1) = 1
2
. The

Bayes-optimal choice ft = f∗
t (in red) has a lower threshold compared to ft equal to identity (in blue).

C An Auxiliary Lemma

The following result is proved in (Bayati and Montanari, 2011, Lemma 6).

Lemma C.1. Let F : R2 → R be a Lipschitz function, and let F ′(u, v) denote its derivative with respect to the
first argument at (u, v) ∈ R2. Assume that F ′(·, v) is continuous almost everywhere in the first argument, for
each v ∈ R. Let (Um, Vm) be a sequence of random vectors in R2 converging in distribution to the random vector
(U, V ) as m → ∞. Furthermore, assume that the distribution of U is absolutely continuous with respect to the
Lebesgue measure. Then,

lim
m→∞

E{F ′(Um, Vm)} = E{F ′(U, V )}.

D Bayes-optimal GAMP for a Binary-valued Prior

Consider the noiseless phase retrieval model, where each entry of the signal x takes value in {−1, 1}, with
PX(1) = 1 − pX(−1) = p. In Figure 3, we take p = 1

2 , and compare the performance of the GAMP algorithm
with spectral initialization for two different choices of the function ft: ft equal to identity (in blue) and ft = f∗t
(in red), where f∗t is the Bayes-optimal choice (3.15). By computing the conditional expectation, we have

f∗t (s) = 2P(X = 1 | µX,tX + σX,tW = s)− 1

=
2

1 + 1−p
p exp

(−2sµX,t
σ2
X,t

) − 1. (D.1)

The rest of the setting is analogous to that of Figure 1. There is a significant performance gap between the
Bayes-optimal choice ft = f∗t and the choice ft(x) = x. As in the previous experiment, we observe very good
agreement between the GAMP algorithm and the state evolution prediction of Theorem 1. We remark that
for this setting, the information-theoretically optimal overlap (computed using the formula in (Barbier et al.,
2019)) is 1 for all δ > 0. Since the components of x are in {−1, 1}, there are 2d choices for x. The information-
theoretically optimal estimator picks the choice that is consistent with yi = 〈x,ai〉, i ∈ [n]. (Since A is Gaussian,
with high probability this solution is unique.)

E Complex-valued GAMP

Consider a complex sensing matrix A with rows distributed as (ai) ∼i.i.d. CN(0, Id/d)), for i ∈ [n]. The
output of the GLM y ∈ Cn is generated as pY |G(y | g), where g = Ax. The GAMP algorithm for the complex
setting has been studied in the context of phase retrieval by (Schniter and Rangan, 2014; Ma et al., 2019). Here,
we briefly review the complex GAMP and present some numerical results for complex GAMP with spectral
initialization.
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Figure 4: Performance comparison between complex GAMP with spectral initialization (in red) and the spectral method
alone (in black) for a Gaussian prior PX ∼ CN(0, 1). On the x-axis, we have the sampling ratio δ = n/d; on the y-axis,
we have the normalized squared scalar product between the signal and the estimate. The experimental results (∗ and �
markers) are in excellent agreement with the theoretical predictions (solid lines) given by state evolution for GAMP and
Lemma 2.1 for the spectral method. Error bars indicate one standard deviation around the empirical mean.

As in Section 4, we take ft to be the identity function, and ht =
√
δh∗t , where h∗t is given in (3.18). To obtain a

compact state evolution recursion, we initialize with a scaled version of the spectral estimator x̂s:

x0 =
√
d

a

1− a2
x̂s, u0 =

1√
δ
Ax0 − 1√

δλ∗δ
ZsAx

0. (E.1)

The iterates are then computed as:

xt+1 = AHh∗t (u
t;y)− ctft(x

t), (E.2)

ut+1 =
1√
δ
Axt+1 − 1√

δ
h∗t (u

t;y). (E.3)

Here, the Onsager coefficient ct is given by (Schniter and Rangan, 2014):

ct =

√
δ

Var(G | Ut = u)

(
Var{G | Ut = u, Y = y}

Var(G | Ut = u)
− 1

)
. (E.4)

For this choice of ft, ht, the state evolution iteration can be written in terms of a single parameter µt ≡ µX,t.
For t ≥ 0:

µU,t =
1√
δ
µt, σ2

U,t =
µt
δ
, σ2

X,t = µX,t = µt,

µt+1 =
√
δE
{
|h∗t (Ut; Y )|2

}
.

(E.5)

The recursion is initialized with µ0 = a2

1−a2 . Moreover, the parameter µt+1 can be consistently estimated from

the iterate ut as µ̂t+1 =
√
δ‖h∗(ut;y)‖22/n. It can also be estimated as the positive solution of the quadratic

equation µ̂2
t+1 + µ̂t+1 = ‖xt+1‖22/d.

We now discuss some numerical results for noiseless (complex) phase retrieval, where yi = |(Ax)i|2, for i ∈ [n].
For a given measurement matrixA, note that replacing x by eiθx leaves the measurement y unchanged. Therefore
the performance of any estimator is measured up to a constant phase rotation:

min
θ∈[0,2π)

∣∣∣〈x̂, eiθx〉∣∣∣2
‖x‖22 ‖x̂‖22

. (E.6)

Figure 4 shows the performance of GAMP with spectral initialization when the signal x is uniform on the
d-dimensional complex sphere with radius

√
d, and the sensing vectors (ai) ∼i.i.d. CN(0, Id/d).
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Figure 5: Performance comparison between complex GAMP with spectral initialization (in red) and the spectral method
alone (in black) for a model of coded diffraction patterns.

Figure 5 shows the performance with coded diffraction pattern sensing vectors, given by (4.1). The signal x is
the image in Figure 2a, which is a d1×d2×3 array with d1 = 820 and d2 = 1280. The three components xj ∈ Rd
(j ∈ {1, 2, 3} and d = d1 · d2) are treated separately, and the performance is measured via the average squared

normalized scalar product 1
3

∑3
j=1

|〈x̂j ,xj〉|2

‖x̂j‖22‖xj‖
2
2

.

The red points in Figure 5 are obtained by running the complex GAMP algorithm with spectral initialization,
as given in (E.1)-(E.4). We perform nsample = 5 independent trials and show error bars at 1 standard deviation.
For comparison, the black points correspond to the empirical performance of the spectral method alone, and the
black curve gives the theoretical prediction for the optimal squared correlation for Gaussian sensing vectors (see
Theorem 1 of (Luo et al., 2019)).


