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Abstract

We consider the problem of estimating a sig-
nal from measurements obtained via a gen-
eralized linear model. We focus on esti-
mators based on approximate message pass-
ing (AMP), a family of iterative algorithms
with many appealing features: the perfor-
mance of AMP in the high-dimensional limit
can be succinctly characterized under suit-
able model assumptions; AMP can also be
tailored to the empirical distribution of the
signal entries, and for a wide class of estima-
tion problems, AMP is conjectured to be op-
timal among all polynomial-time algorithms.

However, a major issue of AMP is that in
many models (such as phase retrieval), it re-
quires an initialization correlated with the
ground-truth signal and independent from
the measurement matrix. Assuming that
such an initialization is available is typically
not realistic. In this paper, we solve this
problem by proposing an AMP algorithm ini-
tialized with a spectral estimator. With such
an initialization, the standard AMP analy-
sis fails since the spectral estimator depends
in a complicated way on the design matrix.
Our main contribution is a rigorous charac-
terization of the performance of AMP with
spectral initialization in the high-dimensional
limit. The key technical idea is to define
and analyze a two-phase artificial AMP al-
gorithm that first produces the spectral es-
timator, and then closely approximates the
iterates of the true AMP. We also provide nu-
merical results that demonstrate the validity
of the proposed approach.
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1 Introduction

We consider the problem of estimating a d-dimensional
signal € R? from n iid. measurements y; ~
p(y | (x,a;)), i € {1,...,n}, where (-,-) is the scalar
product, {a;}1<i<n are given sensing vectors, and the
(stochastic) output function p(- | {(x,a;)) is a given
probability distribution. This is known as a general-
ized linear model (McCullagh, 2018), and it encom-
passes many settings of interest in statistical estima-
tion and signal processing (Rangan and Goyal, 2001;
Boufounos and Baraniuk, 2008; Yang et al., 2012; El-
dar and Kutyniok, 2012). One notable example is the
problem of phase retrieval (Fienup, 1982; Shechtman
et al., 2015), where y; = |[(z,a;)|*> + w;, with w; be-
ing noise. Phase retrieval appears in several areas of
science and engineering, see e.g. (Fienup and Dainty,
1987; Millane, 1990; Demanet and Jugnon, 2017), and
the last few years have witnessed a surge of interest
in the design and analysis of efficient algorithms; see
the review by Fannjiang and Strohmer (2020) and the
discussion at the end of this section.

Here, we consider generalized linear models (GLMs)
in the high-dimensional setting where n,d — oo, with
their ratio tending to a fixed constant, i.e., n/d —
6 € R. We focus on a family of iterative algorithms
known as approximate message passing (AMP). AMP
algorithms are derived via approximations of belief
propagation on the factor graph representing the es-
timation problem. AMP algorithms were first pro-
posed for estimation in linear models (Donoho et al.,
2009; Bayati and Montanari, 2011), and for estima-
tion in GLMs by Rangan (2011). AMP has since been
applied to a wide range of high-dimensional statisti-
cal estimation problems including compressed sensing
(Krzakala et al., 2012; Bayati and Montanari, 2012;
Maleki et al., 2013), low rank matrix estimation (Ran-
gan and Fletcher, 2012; Deshpande and Montanari,
2014; Kabashima et al., 2016), group synchronization
(Perry et al., 2018), and specific instances of GLMs
such as logistic regression (Sur and Candes, 2019) and
phase retrieval (Schniter and Rangan, 2014; Ma et al.,
2019; Maillard et al., 2020).
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Starting from an initialization ° € R¢, the AMP algo-
rithm for GLMs produces iteratively refined estimates
of the signal, denoted by !, for t > 1. An appealing
feature of AMP is that, under suitable model assump-
tions, its performance in the high-dimensional limit
can be precisely characterized by a succinct determin-
istic recursion called state evolution (Bayati and Mon-
tanari, 2011; Bolthausen, 2014; Javanmard and Mon-
tanari, 2013). Specifically, in the high-dimensional
limit, the empirical distribution of the estimate x! con-
verges to the law of the random variable p; X + o, W4,
for t > 1. Here X ~ Px (the signal prior), and
W; ~ N(0,1) is independent of X. The state evolu-
tion recursion specifies how the constants (p,0¢) can
be computed from (p;—1,0:—1) (see Sec. 3 for details).

Using the state evolution analysis, it has been shown
that AMP provably achieves Bayes-optimal perfor-
mance in some special cases (Donoho et al., 2013;
Deshpande and Montanari, 2014; Montanari and
Venkataramanan, 2021). Indeed, a conjecture from
statistical physics posits that AMP is optimal among
all polynomial-time algorithms. The optimality of
AMP for generalized linear models is discussed by Bar-
bier et al. (2019).

However, when used for estimation in GLMs, a major
issue in current AMP theory is that in many problems
(including phase retrieval) we require an initialization
20 that is correlated with the unknown signal = but
independent of the sensing vectors {a;}. It is often
not realistic to assume that such a realization is avail-
able. For such GLMs, without a correlated initializa-
tion, asymptotic state evolution analysis predicts that
the AMP estimates will be uninformative, i.e., their
normalized correlation with the signal vanishes in the
large system limit. Thus, developing an AMP theory
that does not rely on unrealistic assumptions about
the initialization is an important open problem.

In this paper, we solve this open problem for a wide
class of GLMs by rigorously analyzing the AMP al-
gorithm with a spectral estimator. The idea of using
a spectral estimator for GLMs was introduced by Li
(1992), and its performance in the high-dimensional
limit was recently characterized by Lu and Li (2019)
and Mondelli and Montanari (2019). It was shown
that the normalized correlation of the spectral estima-
tor with the signal undergoes a phase transition, and
for the special case of phase retrieval, the threshold for
strictly positive correlation with the signal matches the
information-theoretic threshold (Mondelli and Monta-~
nari, 2019).

Our main technical contribution is a novel analysis
of AMP with spectral initialization for GLMs, under
the assumption that the sensing vectors {a;} are i.i.d.

Gaussian. This yields a rigorous characterization of
the performance in the high-dimensional limit (Theo-
rem 1). The analysis of AMP with spectral initializa-
tion is far from obvious since the spectral estimator
depends in a non-trivial way on the sensing vectors
{a;}. The existing state evolution analysis for GLMs
(Rangan, 2011; Javanmard and Montanari, 2013) cru-
cially depends on the AMP initialization being inde-
pendent of the sensing vectors, and therefore cannot
be directly applied.

At the center of our approach is the design and anal-
ysis of an artificial AMP algorithm. The artificial
AMP operates in two phases: in the first phase, it
performs a power method, so that its iterates approach
the spectral initialization of the true AMP; in the sec-
ond phase, its iterates are designed to remain close
to the iterates of the true AMP. The initialization of
the artificial AMP is correlated with @, but indepen-
dent of the sensing vectors {a;}, which allows us to
apply the standard state evolution analysis. Note that
the initialization of the artificial AMP is impractical
(it requires the knowledge of the unknown signal x!).
However, this is not an issue, since the artificial AMP
is employed solely as a proof technique: we prove a
state evolution result for the true AMP by showing
that its iterates are close to those in the second phase
of the artificial AMP.

Initializing AMP with a (different) spectral method
has been recently shown to be effective for low-rank
matrix estimation (Montanari and Venkataramanan,
2021). However, our proof technique for analyzing
spectral initialization for GLMs is different from the
approach by Montanari and Venkataramanan (2021).
The argument in that paper is specific to the spiked
random matrix model and relies on a delicate decou-
pling argument between the outlier eigenvectors and
the bulk. Here, we follow an approach developed by
Mondelli et al. (2020), where a specially designed AMP
is used to establish the joint empirical distribution of
the signal, the spectral estimator, and the linear esti-
mator.

For the case of phase retrieval, Ma et al. (2018) pro-
vided a heuristic argument for the validity of spectral
initialization, and stated that establishing a rigorous
proof is an open problem. Our paper not only solves
this open problem, but it also gives a provable initial-
ization method valid for a class of GLMs.

We note that, for some GLMs, AMP does not require
a special initialization that is correlated with the sig-
nal . In Section 3, we give a condition on the GLM
output function that specifies precisely when such a
correlated initialization is required (see (3.13)). This
condition is satisfied by several popular GLMs, includ-
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ing phase retrieval. It is in these cases that AMP with
spectral initialization is most useful.

Other related work. For the problem of phase re-
trieval, several algorithmic solutions have been pro-
posed and analyzed in recent years. An inevitably non-
exhaustive list includes semi-definite programming re-
laxations (Candes et al., 2013, 2015a,b; Waldspurger
et al., 2015), a convex relaxation operating in the nat-
ural domain of the signal (Goldstein and Studer, 2018;
Bahmani and Romberg, 2017), alternating minimiza-
tion (Netrapalli et al., 2013), Wirtinger Flow (Candes
et al., 2015¢; Chen and Candes, 2017; Ma et al., 2020),
iterative projections (Li et al., 2015), the Kaczmarz
method (Wei, 2015; Tan and Vershynin, 2019), and
mirror descent (Wu and Rebeschini, 2020). A gen-
eralized AMP (GAMP) algorithm was introduced by
Schniter and Rangan (2014), and an AMP to solve the
non-convex problem with ¢y regularization was pro-
posed and analyzed by Ma et al. (2019). Most of the
algorithms mentioned above require an initialization
correlated with the signal x and, to obtain such an
initialization, spectral methods are widely employed.

Beyond the Gaussian setting, spectral methods for
phase retrieval with random orthogonal matrices are
analyzed by Dudeja et al. (2020). Statistical and
computational phase transitions in phase retrieval for
a large class of correlated real and complex random
sensing matrices are investigated by Maillard et al.
(2020), and a general AMP algorithm for rotationally
invariant matrices is studied by Fan (2020). Emami
et al. (2020) characterize the generalization error of
GLMs via the multi-layer vector AMP (ML-VAMP) of
Fletcher et al. (2018) and Pandit et al. (2020). Thus,
the extension of our techniques to more general sens-
ing models represents an interesting avenue for future
research.

2 Preliminaries

Notation and definitions. Given n € N, we use
the shorthand [n] = {1,...,n}. Given a vector x, we
denote by |||z its Euclidean norm. The empirical
distribution of a vector © = (21,...,14)" is given by
52?:1 0z,, where 0., denotes a Dirac delta mass on
x;. Similarly, the empirical joint distribution of vectors
ol CRI i T S

Generalized linear models. Let z € R? be the
signal of interest, and assume that ||z||3 = d. The sig-
nal is observed via inner products with n sensing vec-
tors (@;)ic[n), with each a; € R? having independent
Gaussian entries with mean zero and variance 1/d, i.e.,
(a;) ~iia. N(0,I4/d). Given g; = (x,a;), the com-
ponents of the observed vector y = (y1,...,yn) € R®

are independently generated according to a conditional
distribution pyq, i.e., 4 ~ py|e(yi | 9i). We stack
the sensing vectors as rows to define the n x d sensing
matrix A, i.e., A = [ay,...,a,]". For the special case
of phase retrieval, the model is y = | Az|*+w, where w
is a noise vector with independent entries. We consider
a sequence of problems of growing dimension d, and as-
sume that, as d — oo, the sampling ratio n/d — 9, for
some constant § € (0, 00). We remark that, as d — oo,
the empirical distribution of g = (g1, . .., gn) converges
in Wasserstein distance (W3) to G ~ N(0, 1).

Spectral initialization. The spectral estimator z°
is the principal eigenvector of the d x d matrix D,,
defined as

D, = ATZ A, with Z, = diag(Ts(y1), - -, Ts(yn)),
(2.1)
where T; : R — R is a preprocessing function. We
now review some results from Mondelli and Montanari
(2019) and Lu and Li (2019) on the performance of the

spectral estimator in the high-dimensional limit.

Let G ~ N(0,1), Y ~ p(- | G), and Z, = T4(Y). We
will make the following assumptions on Z,.

(A1) P(Z, =0) < 1.

(A2) Z, has bounded support and 7 is the supremum
of this support, i.e., 7 = inf{z: P(Z, < z) = 1}.

(A3) As X approaches T from the right, we have

Z. 7. G2
im B4 —25 L jiy {2 — 0.
fareest { A — Z,)2 } et { A— 7, } >

(2.2)
For X € (1,00) and § € (0, 00), define
Z, G? A Z,
¢>(A>:AE{A_ZS}, 1/15(>\)—6+)\]E{/\_Zs}.
(2.3)

Note that ¢(\) is a monotone non-increasing func-
tion and that vs5(\) is a convex function. Let \s
be the point at which s attains its minimum, i.e.,
As = argminys, 1¥s(A). For A € (1,00), also define

s(A) = ths(max(X, As)).

We remark that (5 is an increasing function and, from
Lemma 2 by Mondelli and Montanari (2019), we have
that the equation {5(A) = ¢(A) admits a unique solu-
tion for A > 7.

(2.4)

The following result characterizes the performance of
the spectral estimator &°. Its proof follows directly
from Lemma 2 by Mondelli and Montanari (2019).

Lemma 2.1. Let x be such that |z|3 = d,
{aiticn) ~iia. N(0g, Ia/d), and y = (y1,...,yn) with
{Yitiem) ~iia. pyja. Let n/d — §, G ~ N(0,1) and
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define Z; = T(Y) for Y ~ py|q. Assume that Z, sat-
isfies the assumptions (A1)-(A2)-(A3). Let &° be
the principal eigenvector of the matriz D, defined in
(2.1), and let X} be the unique solution of (s(A) = $(N)
for A > 7. Then, as n — o,

0, if ¥5(A5) <0,
V5(A3)
Y5(A;) — @' (A5)

1@ 2)P s 0s
<5112 2 -
12°[15 [l L if Y5(A5) >0,

(2.5)
where 5 and ¢' are the derivatives of the respective
functions.

Remark 2.1 (Equivalent characterization). Using
the definitions (2.3)-(2.4), the conditions (s(\}) =
#(A3) and ¥5(A}) > 0 are equivalent to

ZJ(G* -1 1 z? 1
R R = SR}

(2.6)
When these conditions are satisfied, the limit of the
normalized correlation in (2.5) can be expressed as

z:
2 %_E{(/\E—ZS)Q}
FeE{Ae)

Remark 2.2 (Optimal preprocessing function). Mon-
delli and Montanari (2019) derived the preprocessing
function minimizing the value of § necessary to achieve
weak recovery, i.e., a strictly positive correlation be-
tween £° and . In particular, let 6, be defined as

bu = </ (o (0| O/ b)) dy>_17 (2.8)

Ec {p(y | G)}
with G ~ N(0,1). Furthermore, let us also define

- Vou - T*(y)

(2.7)

W= vsverw &Y
where
T*(y) = Ec{p(y | G)} (2.10)

CEc{ply[G)-G?Y

Then, by taking 7, = T, for any § > &,, we almost
surely have
~8
)

s > €
oo |, flzfl, ~

(2.11)

for some € > 0. Furthermore, for any § < ¢, there is
no pre-processing function 7 such that, almost surely,
(2.11) holds. For a more formal statement of this re-
sult, see Theorem 4 of Mondelli and Montanari (2019).
The preprocessing function that, at a given § > 4y,
maximizes the correlation between &° and z is also re-
lated to T*(y) as defined in (2.10), and it is derived in
Luo et al. (2019).

3 Generalized Approximate Message
Passing with Spectral Initialization

We make the following additional assumptions on the
signal x, the output distribution py g, and the pre-
processing function 75 used for the spectral estimator.

(B1) Let Px}d denote the empirical distribution of
x € RL As d — oo, ISXVd converges weakly to
a distribution Px such that limy,eEp_ {| X[’} =

Ep, {|X[*}. We note that Ep, {|X|*} = 1, since we
assume ||z||]3 = d.

(B2) We have E{|Y |’} < oo, for Y ~ py|a(-|G) and
G ~ N(0,1). Furthermore, there exists a function q :
R x R — R and a random variable V' independent
of G such that Y = ¢(G, V). More precisely, for any
measurable set A C ) and almost every g, we have
P(Y € A|G=g) =P(q(g,V) € A). We also assume
that E{|V|?} < co. This is without loss of generality
due to the functional representation lemma, see p. 626
of El Gamal and Kim (2011).

(B3) The function 75 : R — R is bounded and Lips-
chitz.

Following the terminology of Rangan (2011), we refer
to the AMP for generalized linear models as GAMP. In
each iteration ¢, the proposed GAMP algorithm pro-
duces an estimate ! of the signal . The algorithm
is defined in terms of a sequence of Lipschitz functions
fi : R—=Rand hy : RxR — R, for ¢ > 0. We initialize
using the spectral estimator &°:

(3.1)

1 Vo
0= —_Afy(x®) — by~— Z,Ax’,
7 fo(x”) 0)\E (

where by = %Z?Zl f5(29), the diagonal matrix Zj is

defined in (2.1), and A} is given by (2.6). Then, for
t > 0, the algorithm computes:

U (3.2)

1
't = \ﬁATht(ut; y) — tht(wt)» (3.3)
1
Ut+1 = %Aft+1($t+1) - bt+1ht(ut;y). (34)
Here the functions f; and h; are under-
stood to be applied component-wise, i.e.,
ft(wt) = (ft(ﬂ?ﬁ% --,ft(xiz)) and hi(ulyy) =
(he(uls91), ... he(ul;yn)).  The scalars by, c; are
defined as

. d
1 1
=7 Zh;(Uf;yi), bey1 = n Z:féﬂ(m?l)v
i=1 =1

(3.5)
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where h} (-, -) denotes the derivative with respect to the
first argument.

The asymptotic empirical distribution of the GAMP
iterates !, u!, for t > 0, can be succinctly charac-
terized via a deterministic recursion, called state evo-
lution. Our main result, Theorem 1, shows that for
t > 0, the empirical distributions of u! and x' con-
verge in Wasserstein distance W5 to the laws of the
random variables U; and X3, respectively, with

Xi = px X +ox,:Wx s,
Ui = pu G+ ov:Wu,

where (G,WU)t) ~ii.d. N(O,l). Similarly, X ~ PX
and Wx; ~ N(0,1) are independent. The determin-
istic parameters (fy ¢, out, Bx,t, 0x ) are recursively
computed as follows, for ¢t > 0:

1
Huit = %E{Xft(xt)},

ohe = SELA(X)?) — i (38)
px.e41=VOE{Ghe(Uy; Y)} —E{h}(Uy; Y ) YE{X fo(X:)},
0% 41 = E{m(Ui; Y)?}.

For the spectral initialization in (3.1)-(3.2), with a as
defined in (2.5), the recursion is initialized with
px.0 = a/Vo, a®)/s.

ko= (1- (3.9)

We state the main result in terms of pseudo-Lipschitz
test functions. A function ¥ : R™ — R is pseudo-
Lipschitz of order 2, i.e., ¢ € PL(2), if there is a con-
stant C' > 0 such that

() — (Yl < CA+ [lzl2 + lyll2) Iz =yl
(3.10)
for all z,y € R™. Examples of test functions in PL(2)
with m = 2 include 9 (a,b) = (a — b)?, ¥(a,b) = ab.

Theorem 1. Let = be such that ||z||3 = d,
{aitiem) ~iid. N(0g, Iq/d), and y = (y1,...,yn) with
{Yitiemn) ~iia pyig- Let n/d — 6, G ~ N(0,1), and
Zs =T(Y) for Y ~ pya(-|G). Assume that (A1)-
(A2)-(A3) and (B1)-(B2)-(B3) hold. Assume fur-
ther that Y5(X;) > 0, and let ° be the principal eigen-
vector of Dy, defined as in (2.1), with the sign of &°
chosen so that (@°, x) > 0.

Consider the GAMP iteration in Eqs. (3.4)—(3.3) with
initialization in Egs. (3.1)-(3.2). Assume that for
t > 0, the functions fi, hy are Lipschitz with deriva-
tives that are continuous almost everywhere. Then,
the following limits hold almost surely for any PL(2)
function i : RxR — R and t such that 0% ; is strictly

positive for 0 < k < t:

d
o1 t+1
Jim _Eﬂ%b(xz‘,xi ) (3.11)

=E{(X, px 11X +0ox401Wx141)},

1
Jim =S (yi,u) = E{U(Y, p0aG + ovaWore)}-
=1
(3.12)

The result (3.11) also holds for (t + 1) = 0. In
(3.11) (resp. (3.12)), the expectation is over the in-
dependent random wvariables X ~ Px and Wx, ~
N(0,1) (resp. (G,Wuy) ~iia. N(0,1)). The scalars
(MX,MMU,taUg(’pU%@t)tzO are given by the recursion
(3.8) with the initialization (3.9).

We give a sketch of the proof in Section 5 and defer
the technical details to the appendices.

We now comment on some of the assumptions in the
theorem. The assumption ¢5(A5) > 0 is required to
ensure that the spectral initialization 2° has non-zero
correlation with the signal  (Lemma 2.1). From Re-
mark 2.2, we also know that for any sampling ratio
d > 0y there exists a choice of 7 such that ¥5(\5) > 0.
We also note that, for § < §,, GAMP converges to the
“un-informative fixed point” (where the estimate has
vanishing correlation with signal) even if the initial
condition has non-zero correlation with the signal, see
Theorem 5 of Mondelli and Montanari (2019).

There is no loss of generality in assuming the sign of
2" to be such that (°, ) > 0. Indeed, if the sign
were chosen otherwise, the theorem would hold with
the state evolution initialization in (3.9) being px o =

~a/VB, 0% g = (1 - a?)/s.

The assumption that crg(’ i 18 positive for £ < ¢ is natu-
ral. Indeed, if agf, x = 0, then the state evolution result
for iteration k implies that ||x — ,u)_(’lkmkHQ/d — 0 as
d — co. That is, we can perfectly estimate x from =,

and thus terminate the algorithm after iteration k.

Let us finally remark that the result in (3.11) is equiv-
alent to the statement that the empirical joint distri-
bution of (z, z'*!) converges almost surely in Wasser-
stein distance (W2) to the joint law of (X, ux 41X +
ox,t+1W). This follows from the fact that a sequence
of distributions P, with finite second moment con-
verges in Wy to P if and only if P, converges weakly
to P and [|lal3dP,(a) — [ |al|3dP(a), see Defini-
tion 6.7 and Theorem 6.8 of Villani (2008).

When does GAMP require spectral initializa-
tion? For the GAMP to give meaningful estimates,
we need either £° or x! to have strictly non-zero
asymptotic correlation with . To see when this can
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be arranged without a special initialization, consider
the linear estimator &"(¢) :== AT¢(y), for some func-
tion £ : R — R that acts component-wise on y. If
there exists a function £ such that the asymptotic nor-
malized correlation between &"(¢) and @ is strictly
non-zero, then AMP does not require a special ini-
tialization (spectral or otherwise) that is correlated
with ®. Indeed, in this case we can replace the ini-
tialization in (3.1)-(3.2) by = = 0, u® = 0 (by
taking fo = 0), and let ho(u%y) = V0&(y). This
gives &' = ATg(y) = @L(g), which has strictly non-
zero asymptotic correlation with @. This ensures that
lux 1| > 0, and the standard AMP analysis (Javan-
mard and Montanari, 2013) directly yields a state evo-
lution result similar to Theorem 1.

The output function py|g determines whether a non-
trivial linear estimator exists for the GLM. From Ap-
pendix C.1 in Mondelli et al. (2020), we have that,
if

/ (Econio1) {Gryic(y | G)})2 dy=0, (3.13)
R

Ecnon) {pyvicly | G)}

then the correlation between AT&(y) and x will
asymptotically vanish for any choice of &. The con-
dition (3.13) holds for many output functions of inter-
est, including all distributions py|g that are even in
G (and, therefore, including phase retrieval). It is for
these models that spectral initialization is particularly
useful.

We remark that our analysis covers not only the
(Wirtinger flow) phase retrieval model y = |Az|?,
but also the amplitude flow phase retrieval model
y = |Ax|. In fact, one can analyze the approximate
model y = y/|Ax|? + € and then let ||€|| — 0. This is
similar to the approach taken e.g. by Ma et al. (2018)
and Luo et al. (2020). Since the functions used in each
AMP iteration are Lipschitz, state evolution holds as
llellz — 0. For other GLMs with non-differentiable
output functions, we can use a similar approach to
construct a smooth approximation to the output func-
tion and obtain the state evolution result.

Bayes-optimal GAMP. Applying Theorem 1 to the
PL(2) function 9 (z,y) = (z — fi(y))?, we obtain the
asymptotic mean-squared error (MSE) of the GAMP
estimate f;(x!). In formulas, for ¢ > 0, almost surely,

lim 2~ (@)} = E{(X — fulpx.eX +ox.W))2).
d—oo d

(3.14)
If the limiting empirical distribution Px of the signal is
known, then the choice of f; that minimizes the MSE
in (3.14) is

Ji(8) =E{X | ux X +ox W = s}. (3.15)

Similarly, applying the theorem to the PL(2) functions

U(z,y) = 2 fi(y) and P(z,y) = fi(y)*, we obtain the
asymptotic normalized correlation with the signal. In

formulas, for ¢ > 0, almost surely

fn @ @] X i X + ox W)}
e R S
3.16

For fixed ([LX7t,O'§(7t), the normalized correlation in
(3.16) is maximized by taking f; = cf;" for any ¢ # 0.
This choice also maximizes the ratio ug;, /o7, in (3.8).
For f: = cff, from (3.8) we have

Cc

Vs

Cc

MUt \/SE{ft*(Xt)Qh Ofy = —=Hu,t — M-

(3.17)

We now specify the choice of h(u;y) that maximizes
the ratio p% /0% 4, for fixed (uv,0f,)-

Proposition 3.1. Assume the setting of Theorem 1.
For a gwen (uus,ofr,), the ratio p3 /0% 11 is
mazximized when hy(u; y) = chi(u; y) where ¢ # 0 is
any constant, and

éIE{G\Ut:u,Y:y}—IE{G\Ut:u}

hy(u; ) Var(G | Uy = u)

(3.18)
_ Ew{Wpyc(y|pru+ /1 = prpus W)}
V1= pepve Ewi{pyicy|pow+ /1= prpoe W)Y

(3.19)

where p; = ,uUﬂg/(u?Lt + O’?Lt) and W ~ N(0,1). In
(3.18), the random variables Uy and Y are condition-
ally independent given G with

Y ~pyie(-1G), Ui = nutG + ov,Wu g,

(G, Wuy) ~iia. N(O,1). (3-20)

The optimal choice for A} in Proposition 3.1 was de-
rived by Rangan (2011) by approximating the belief
propagation equations. For completeness, we provide
a self-contained proof in Appendix A. The proof also
shows that with h; = chf,

HX t+1

75

pix,ee1 = cVOR{|R; (U Y)*}, U§<,t+1 =

As the choices f;, hy maximize the signal-to-noise ra-
tios pgr, /ot and p% . /0% 41, Tespectively, we re-
fer to this algorithm as Bayes-optimal GAMP. We note
that to apply Theorem 1 to the Bayes-optimal GAMP,
we need f7, hi to be Lipschitz. This holds under rel-
atively mild conditions on Px and py|q, see Lemma
F.1 by Montanari and Venkataramanan (2021).
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Figure 1: Performance comparison between GAMP with
spectral initialization (in red) and the spectral method
alone (in black) for a Gaussian prior Px ~ N(0,1). The
solid lines are the theoretical predictions of Theorem 1 for
GAMP with spectral initialization, and of Lemma 2.1 for
the spectral method. Error bars indicate one standard de-
viation around the empirical mean.

4 Numerical Simulations

We now illustrate the performance of the GAMP al-
gorithm with spectral initialization via numerical ex-
amples. For concreteness, we focus on noiseless phase
retrieval, where y; = |(a;, z)|°, i € [n].

Gaussian prior. In Figure 1, x is chosen uniformly
at random on the d-dimensional sphere with radius
Vd and {aitiem) ~iia. N(0,Ig4/d). Note that, as
d — oo, the limiting empirical distribution Px of x
is a standard Gaussian. We take d = 8000, and the
numerical simulations are averaged over ngample = 50
independent trials. The performance of an estimate &
is measured via its normalized squared scalar product
with the signal . The black points are obtained by
estimating x via the spectral method, using the opti-
mal pre-processing function T reported in Eq. (137)
of Mondelli and Montanari (2019). The empirical re-
sults match the black curve, which gives the best pos-
sible squared correlation in the high-dimensional limit,
as given by Theorem 1 of Luo et al. (2019). The
red points are obtained by running the GAMP algo-
rithm (3.3)-(3.4) with the spectral initialization (3.1)-
(3.2). The function f; is chosen to be the identity, and
hy = \/Shzﬂ for h} given by Proposition 3.1. The al-
gorithm is run until the normalized squared difference
between successive iterates is small. As predicted by
Theorem 1, the numerical simulations agree well with
the state evolution curve in red, which is obtained by
computing the fixed point of the recursion (3.8) initial-
ized with (3.9). We also remark that the threshold for
exact recovery can be obtained from the fixed points
of state evolution, see e.g. Barbier et al. (2019).

(a) Original image.

(b) Proposed, § = 2.2. (c) Spectral, 6 = 2.2.

(d) Proposed, ¢ = 2.4.

(e) Spectral, 6 = 2.4.

Figure 2: Visual comparison between the reconstruction
of the GAMP algorithm with spectral initialization and
that of the spectral method alone for measurements given
by coded diffraction patterns.

In Appendix D, we consider a binary-valued prior, and
compare the performance of the Bayes-optimal choice
fi against f; equal to the identity.

Coded diffraction patterns. We consider the model
of coded diffraction patterns described in Section 7.2
of Mondelli and Montanari (2019). Here the signal x
is the image of Figure 2a, and it can be viewed as a
dy X dg x 3 array with d; = 820 and dy = 1280. The
sensing vectors are given by

ar(tl,tQ) — de(tl,tQ) . 6i27rk1t1/d1 . ei2‘n’k?2t2/d27 (41)

where 7 € [n], t1 € [di], t2 € [d2], i denotes the imag-
inary unit, a,(t1,t2) is the (¢1,t3)-th component of
a, € C? and the (dy(t1,t2))’s are i.i.d. and uniform
in {1,—1,4,—i}. The index r € [n] is associated to a
pair (£, k), with £ € [L]; the index k € [d] is associated
to a pair (k1, ke) with k; € [d1] and ko € [d2]. Thus,
n = L - d and, therefore, § = L € N. To obtain non-
integer values of §, we set to 0 a suitable fraction of
the vectors a.., chosen uniformly at random.

In this model, the scalar product (x;,a,) can be com-
puted with an FFT algorithm. Furthermore, in order
to evaluate the principal eigenvector for the spectral
initialization, we use a power method which stops if
either the number of iterations reaches the maximum
value of 100000 or the modulus of the scalar product
between the estimate at the current iteration 7" and at
the iteration T'— 10 is larger than 1 — 1077,
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The GAMP algorithm with spectral initialization for
the complex-valued setting is described in Appendix E.
Figure 2 shows a visual representation of the results.
The improvement achieved by the GAMP algorithm
over the spectral estimator is impressive, with GAMP
achieving full recovery already at § = 2.4. A numerical
comparison of the performance of the two methods
is given in Figure 5 in Appendix E. We emphasize
that the state evolution result of Theorem 1 is only
valid for Gaussian sensing matrices. Extending it to
structured matrices such as coded diffraction patterns
is an interesting direction for future work.

5 Sketch of the Proof of Theorem 1

We give an outline of the proof here, and provide the
technical details in the appendices.

The artificial GAMP algorithm. We construct an
artificial GAMP algorithm, whose iterates are denoted
by &', @', for t > 0. Starting from an initialization

(&°,a°), for t > 0 we iteratively compute:

- 1 = - F

gt = %ATht(Ut§y) - tht(wt)7 (5.1)

- 1 = - s

Ut+1 = %Aft+1(wt+1) — bt+1ht(ut;y). (52)
For t > 0, the functions ft R — Rand by : RxR — R

are Lipschitz, and will be specified below. The scalars
¢; and byy are defined as

) 1 no . _ 1 d ~ }
ctzﬁzhé(wi;yi), bty1 Zngt’ﬂ(xﬁ“h
i=1 i=1

B (5.3)
where h; denotes the derivative with respect to the
first argument. The iteration is initialized as follows.
Choose any « € (0,1), and a standard Gaussian vector
n ~ N(0, I;) that is independent of x and A. Then,

0

1 -
2 =ax+ a’ = —Afy(a").

7 (5.4)

1—a2n,

The artificial GAMP is divided into two phases. In
the first phase, which lasts up to iteration T, the func-
tions f;, hy for 0 < ¢ < (T — 1), are chosen such that
as T — oo, the iterate &7 approaches the initializa-
tion ° of the true GAMP algorithm defined in (3.1).
In the second phase, the functions f;, hy for ¢ > T,
are chosen to match those of the true GAMP. The key
observation is that a state evolution result for the arti-
ficial GAMP follows directly from the standard analy-
sis of GAMP (Javanmard and Montanari, 2013) since
the initialization Z° is independent of A. By showing
that as T' — oo, the iterates and the state evolution

parameters of the artificial GAMP approach the corre-
sponding quantities of the true GAMP, we prove that
the state evolution result of Theorem 1 holds.

We now specify the functions used in the artificial

GAMP. For 0 <t < (T —1), we set
o)=L e y) = Ver—2W
flw) =2 Iu(wiy) = Voa T 09

where T is the pre-processing function used for the
spectral estimator, A} is the unique solution of {5(\) =
¢(A) for A > 7 (also given by (2.6)), and (B:)i>0 are
constants coming from the state evolution recursion
defined below. Furthermore, for ¢t > T', we set

ft(ﬂﬁ) = fth($)7 iLt(l'; y) = hth(QTQ Y)-

With these choices of ft, ﬁt, the coefficients & and by
n (5.3) become:

(5.6)

(5.7)

Since the initialization 2" in (5.4) is independent of A,
the state evolution result of Javanmard and Montanari
(2013) can be applied to the artificial GAMP. This
result, formally stated in Proposition B.1 in Appendix
B.1, implies that for ¢ > 0, the empirical distributions
of &' and @' converge in W, distance to the laws of
the random variables X, and U, respectively, with

Xe=pg X +ox Wiy Ur=pp,G+o5,Wp,
(5.8)
Here WX,ta WU,t are standard normal and independent
of X and G, respectively. The state evolution recur-
sion defining the parameters (1 g ,, 0% 4, 1 1 T4 Bt)
has the same form as (3.8), except that we use the
functions defined in (5.5) for 0 < ¢ < (T'— 1), and the
functions in (5.6) for t > T'. The detailed expressions

are given in Appendix B.1.

Analysis of the first phase. The first phase of the
artificial GAMP is designed so that its output vectors
after T iterations (&7, @’) are close to the initializa-
tion (2%, u®) of the true GAMP algorithm given by
(3.1)-(3.2). This part of the algorithm is similar to
the GAMP used in Mondelli et al. (2020) to approxi-
mate the spectral estimator 2°. In particular, the state
evolution recursion of the first phase (given in (B.2))
converges as T — oo to the following fixed point:

I 1—a?
1m O'~ =
T— 00 X, T 1) ’

. a
Tlgnoo Kz o= %v (5.9)
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where a is the limit (normalized) correlation between
the spectral estimator &° and the signal, see (2.7). Fur-
thermore, the GAMP iterate 7 approaches &°, i.e

o VA~ VBT
lim lim

T—o0 d—oo d

=0 as. (5.10)

These results are formally stated in Lemma B.2 and
B.3, respectively, contained in Appendix B.2.

Analysis of the second phase. The second phase
of the artificial GAMP is designed so that its iterates
2T 4™t are close to !, u!, respectively for ¢ > 0,
and the corresponding state evolution parameters are
also close. In particular, in order to prove Theorem
1, we first analyze a slightly modified version of the
true GAMP algorithm in (3.3)-(3.4) where the ‘mem-
ory’ coefficients b; and ¢; in (3.5) are replaced by de-
terministic values obtained from state evolution. The
iterates of this modified GAMP, denoted by &', @', are
as follows. Start with the initialization

1

2 =" =Vd —=a°, 5.11
Vo (5.11)

-0 1 oy - Vo -0
u = —Afo(x") — Z AZ, 5.12

where by = +E{f}(Xo)}. Then, for t > 0:
2 — AT (aty) — c 5.13
N (@' y) — ¢ fi(@'), ( )

1 _

a'tt = fAft+1(§3t+l) — by lu(a’y).  (5.14)

Vo

Here, for ¢ > 0, the deterministic memory coefficients
b; and ¢; are

Ct = E{h;(Ut; Y)}> Bt = ]E{ft/(Xt)}/(Sv

where X, U, are defined in (3.6)-(3.7).

(5.15)

Let us now summarize our approach. We have defined
three different GAMP iterations: (4) the true GAMP
with iterates (z,u') given by (3.3)-(3.4) and initial-
ization (%, u°) given by (3.1)—(3.2)7 (i) the modified
GAMP with iterates (A a') given by (5.13)-(5.14)
and initialization (", 4") given by (5.11)- (5.12)7 and
(#i) the artificial GAMP with 1terates (', u") given
by (5.1)-(5.2) and initialization (z°, %) given by (5.4).
We recall that the true GAMP is the algorithm with
spectral initialization that is actually implemented and
whose performance we want to study. As the true
GAMP is initialized with the spectral estimator &°
which depends on A, its performance cannot be char-
acterized using the existing theory. To solve this prob-
lem, we introduce the artificial GAMP purely as a
proof technique. In fact, the initialization of the arti-
ficial GAMP assumes knowledge of the signal, which

makes it impractical. Finally, the modified GAMP is a
slight modification of the true GAMP to simplify the
proof.

Lemma B.5 in Appendix B.3 proves that, for each
t >0, (i) the iterates (277, @'™7) are close to (z', @)
for sufficiently large T', and ( 11) the corresponding state
evolution parameters are also close. We then use this
lemma to prove Theorem 1 by showing that the it-
erates of the true GAMP have the same asymptotic
empirical distribution as those of the modified GAMP.
In particular, we show in in Appendix B.4 that, almost
surely,

d
i 3t = fin 5t

=E{y(X, px X +ox w)}.

(5.16)

6 Discussion

A major shortcoming in existing AMP theory for
GLMs, like phase retrieval, is the unrealistic assump-
tion that the initialization of the algorithm is corre-
lated with the ground-truth signal and, at the same
time, independent of the measurement matrix. This
paper solves this problem by providing a rigorous anal-
ysis of AMP with a spectral initialization. Spectral ini-
tializations have been widely studied in recent years,
and have two attractive features. First, for phase re-
trieval, they meet the information theoretic thresh-
old for weak recovery (Mondelli and Montanari, 2019).
This means that, when the spectral initialization fails,
no other method can work. Second, for a large class
of GLMs, if the spectral method is unsuccessful, then
AMP has an attractive fixed point at 0, see Theorem
5 in Mondelli and Montanari (2019). This is a strong
indication that, when the spectral initialization fails,
the problem is computationally hard. An interesting
future direction is to analyze the fixed points of AMP
with spectral initialization, and compare with those of
other algorithms that can be initialized with a spectral
estimator, e.g., gradient descent.

Our analysis is based on an artificial AMP that first
closely approximates the spectral estimator and then
the true AMP algorithm. This technical tool is ver-
satile and could be used beyond GLMs with Gaus-
sian sensing matrices. Examples include more general
measurement models (Fan, 2020; Emami et al., 2020),
other message passing algorithms, e.g., Vector AMP
(Schniter et al., 2016), or the design of an artificial
AMP that leads to a different estimator. We also high-
light that the AMP analyzed here is rather general,
and it includes as special cases both the Bayes-optimal
AMP for GLMs and AMPs designed to optimize ob-
jective functions tailored to the signal prior.



Approximate Message Passing with Spectral Initialization for Generalized Linear Models

Acknowledgements

The authors would like to thank Andrea Montanari
for helpful discussions. M. Mondelli was partially sup-
ported by the 2019 Lopez-Loreta Prize. R. Venkatara-
manan was partially supported by the Alan Turing
Institute under the EPSRC grant EP/N510129/1.

References

Anderson, G. W., Guionnet, A., and Zeitouni, O.
(2009). An introduction to random matrices. Cam-
bridge University Press.

Bahmani, S. and Romberg, J. (2017). Phase retrieval
meets statistical learning theory: A flexible convex
relaxation. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 252—
260.

Barbier, J., Krzakala, F., Macris, N., Miolane, L., and
Zdeborovd, L. (2019). Optimal errors and phase
transitions in high-dimensional generalized linear
models. Proceedings of the National Academy of Sci-
ences, 116(12):5451-5460.

Bayati, M. and Montanari, A. (2011). The dynamics
of message passing on dense graphs, with applica-
tions to compressed sensing. IEEE Transactions on
Information Theory, 57:764-785.

Bayati, M. and Montanari, A. (2012). The LASSO
risk for gaussian matrices. IEEE Transactions on
Information Theory, 58:1997-2017.

Bolthausen, E. (2014). An iterative construction of
solutions of the TAP equations for the Sherrington—
Kirkpatrick model. Communications in Mathemat-
ical Physics, 325(1):333-366.

Boufounos, P. T. and Baraniuk, R. G. (2008). 1-bit
compressive sensing. In Conference on Information
Sciences and Systems (CISS), pages 16-21.

Candes, E. J., Eldar, Y. C., Strohmer, T., and
Voroninski, V. (2015a). Phase retrieval via matrix
completion. STAM Review, 57(2):225-251.

Candes, E. J., Li, X., and Soltanolkotabi, M. (2015b).
Phase retrieval from coded diffraction patterns.
Applied and Computational Harmonic Analysis,
39(2):277-299.

Candes, E. J., Li, X., and Soltanolkotabi, M. (2015¢).
Phase retrieval via Wirtinger flow: Theory and algo-

rithms. IEEFE Transactions on Information Theory,
61(4):1985-2007.

Candes, E. J., Strohmer, T., and Voroninski, V.
(2013). Phaselift: Exact and stable signal recov-
ery from magnitude measurements via convex pro-

gramming. Communications on Pure and Applied
Mathematics, 66(8):1241-1274.

Chen, Y. and Candes, E. J. (2017). Solving random
quadratic systems of equations is nearly as easy as
solving linear systems. Communications on Pure
and Applied Mathematics, 70(5):822-883.

Demanet, L. and Jugnon, V. (2017). Convex recovery
from interferometric measurements. IEEE Transac-
tions on Computational Imaging, 3(2):282-295.

Deshpande, Y. and Montanari, A. (2014).
Information-theoretically optimal sparse PCA.
In IEEE International Symposium on Information
Theory (ISIT), pages 2197-2201.

Donoho, D. L., Javanmard, A., and Montanari, A.
(2013).  Information-theoretically optimal com-
pressed sensing via spatial coupling and approxi-
mate message passing. IEEE Transactions on In-
formation Theory, 59(11):7434-7464.

Donoho, D. L., Maleki, A., and Montanari, A. (2009).
Message Passing Algorithms for Compressed Sens-
ing. Proceedings of the National Academy of Sci-
ences, 106:18914-18919.

Dudeja, R., Bakhshizadeh, M., Ma, J., and Maleki,
A. (2020). Analysis of spectral methods for phase
retrieval with random orthogonal matrices. IEEE
Transactions on Information Theory, 66(8):5182—
5203.

El Gamal, A. and Kim, Y.-H. (2011). Network infor-
mation theory. Cambridge university press.

Eldar, Y. C. and Kutyniok, G. (2012). Compressed
sensing: Theory and applications. Cambridge Uni-
versity Press.

Emami, M., Sahraee-Ardakan, M., Pandit, P., Ran-
gan, S., and Fletcher, A. (2020). Generalization er-
ror of generalized linear models in high dimensions.

In International Conference on Machine Learning,
pages 2892-2901. PMLR.

Fan, Z. (2020). Approximate message pass-
ing algorithms for rotationally invariant matrices.
arXiv:2008.11892.

Fannjiang, A. and Strohmer, T. (2020). The numerics
of phase retrieval. arXiv:2004.05788.

Fienup, C. and Dainty, J. (1987). Phase retrieval and
image reconstruction for astronomy. Image recovery:
theory and application, 231:275.

Fienup, J. R. (1982). Phase retrieval algorithms: A
comparison. Applied Optics, 21(15):2758-2769.

Fletcher, A. K., Rangan, S., and Schniter, P. (2018).
Inference in deep networks in high dimensions. In
2018 IEEE International Symposium on Informa-
tion Theory (ISIT), pages 1884-1888. IEEE.

Goldstein, T. and Studer, C. (2018). Phasemax: Con-

vex phase retrieval via basis pursuit. IEEE Trans-
actions on Information Theory, 64(4):2675-2689.



Marco Mondelli, Ramji Venkataramanan

Javanmard, A. and Montanari, A. (2013). State evo-
lution for general approximate message passing al-
gorithms, with applications to spatial coupling. In-
formation and Inference, pages 115-144.

Kabashima, Y., Krzakala, F., Mézard, M., Sakata, A.,
and Zdeborovd, L. (2016). Phase transitions and
sample complexity in Bayes-optimal matrix factor-

ization. IFEFE Transactions on Information Theory,
62(7):4228-4265.

Krzakala, F., Mézard, M., Sausset, F., Sun, Y., and
Zdeborova, L. (2012). Probabilistic reconstruc-
tion in compressed sensing: algorithms, phase di-
agrams, and threshold achieving matrices. Journal
of Statistical Mechanics: Theory and Ezperiment,
2012(08):P08009.

Li, G., Gu, Y., and Lu, Y. M. (2015). Phase retrieval
using iterative projections: Dynamics in the large
systems limit. In Allerton Conference on Commu-

nication, Control, and Computing (Allerton), pages
1114-1118.

Li, K.-C. (1992). On principal Hessian directions for
data visualization and dimension reduction: An-
other application of Stein’s lemma. Journal of
the American Statistical Association, 87(420):1025—
10309.

Lu, Y. M. and Li, G. (2019). Phase transitions of spec-
tral initialization for high-dimensional non-convex
estimation. Information and Inference.

Luo, Q., Wang, H., and Lin, S. (2020). Phase re-
trieval via smoothed amplitude flow. Signal Pro-
cessing, 177:107719.

Luo, W., Alghamdi, W., and Lu, Y. M. (2019). Op-
timal spectral initialization for signal recovery with
applications to phase retrieval. IFEFE Transactions
on Signal Processing, 67(9):2347-2356.

Ma, C., Wang, K., Chi, Y., and Chen, Y. (2020). Im-
plicit regularization in nonconvex statistical estima-
tion: Gradient descent converges linearly for phase
retrieval, matrix completion, and blind deconvolu-
tion. Foundations of Computational Mathematics,
20(3):451-632.

Ma, J., Xu, J., and Maleki, A. (2018). Approximate
message passing for amplitude based optimization.

In International Conference on Machine Learning
(ICML), pages 3371-3380.

Ma, J., Xu, J., and Maleki, A. (2019). Optimization-
based amp for phase retrieval: The impact of initial-
ization and {5 regularization. IEEE Transactions on

Information Theory, 65(6):3600-3629.
Maillard, A., Loureiro, B., Krzakala, F., and Zde-
borovd, L. (2020). Phase retrieval in high dimen-

sions: Statistical and computational phase transi-
tions. arXiv:2006.05228.

Maleki, A., Anitori, L., Yang, Z., and Baraniuk,
R. G. (2013). Asymptotic analysis of complex
lasso via complex approximate message passing
(CAMP). IEEE Transactions on Information The-
ory, 59(7):4290-4308.

McCullagh, P. (2018).
Routledge.

Millane, R. P. (1990). Phase retrieval in crystallogra-
phy and optics. JOSA A, 7(3):394-411.

Mondelli, M. and Montanari, A. (2019). Fundamental
limits of weak recovery with applications to phase
retrieval. Foundations of Computational Mathemat-

ics, 19:703-773.

Mondelli, M., Thrampoulidis, C., and Venkatara-
manan, R. (2020). Optimal combination of linear
and spectral estimators for generalized linear mod-
els. arXiv:2008.03326.

Montanari, A. and Venkataramanan, R. (2021). Esti-
mation of low-rank matrices via approximate mes-
sage passing. Annals of Statistics, 45(1):321-345.

Netrapalli, P., Jain, P., and Sanghavi, S. (2013). Phase
retrieval using alternating minimization. In Ad-
vances in Neural Information Processing Systems
(NIPS), pages 2796-2804.

Pandit, P., Sahraece-Ardakan, M., Rangan, S.,
Schniter, P., and Fletcher, A. K. (2020). Infer-
ence with deep generative priors in high dimen-

sions. IEEFE Journal on Selected Areas in Informa-
tion Theory, 1(1):336-347.

Perry, A., Wein, A. S., Bandeira, A. S., and Moitra,
A. (2018). Message-passing algorithms for syn-
chronization problems over compact groups. Com-

munications on Pure and Applied Mathematics,
71(11):2275-2322.

Rangan, S. (2011). Generalized Approximate Message
Passing for Estimation with Random Linear Mixing.
In IEEE International Symposium on Information
Theory (ISIT).

Rangan, S. and Fletcher, A. K. (2012). Iterative es-
timation of constrained rank-one matrices in noise.
In IEEE International Symposium on Information
Theory (ISIT), pages 1246-1250.

Rangan, S. and Goyal, V. K. (2001). Recursive consis-
tent estimation with bounded noise. IEEE Transac-
tions on Information Theory, 47(1):457-464.

Schniter, P. and Rangan, S. (2014). Compressive
phase retrieval via generalized approximate message
passing. IEEE Transactions on Signal Processing,
63(4):1043-1055.

Schniter, P., Rangan, S., and Fletcher, A. K. (2016).
Vector approximate message passing for the gener-
alized linear model. In 50th Asilomar Conference on

Generalized linear models.



Approximate Message Passing with Spectral Initialization for Generalized Linear Models

Signals, Systems and Computers, pages 1525-1529.
IEEE.

Shechtman, Y., Eldar, Y. C.,; Cohen, O., Chapman,
H. N., Miao, J., and Segev, M. (2015). Phase re-
trieval with application to optical imaging: a con-
temporary overview. IEEE Signal Processing Mag-
azine, 32(3):87-109.

Sur, P. and Candes, E. J. (2019). A modern maximum-
likelihood theory for high-dimensional logistic re-
gression. Proceedings of the National Academy of
Sciences, 116(29):14516-14525.

Tan, Y. S. and Vershynin, R. (2019). Phase retrieval
via randomized kaczmarz: Theoretical guarantees.
Information and Inference: A Journal of the IMA,
8(1):97-123.

Villani, C. (2008). Optimal transport: Old and new,
volume 338. Springer Science & Business Media.

Waldspurger, I., d’Aspremont, A., and Mallat, S.
(2015).  Phase recovery, maxcut and complex

semidefinite programming. Mathematical Program-
ming, 149(1-2):47-81.

Wei, K. (2015). Solving systems of phaseless equations
via Kaczmarz methods: A proof of concept study.
Inverse Problems, 31(12).

Wu, F. and Rebeschini, P. (2020). A continuous-time
mirror descent approach to sparse phase retrieval. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 20192-20203.

Yang, F., Lu, Y. M., Sbhaiz, L., and Vetterli, M. (2012).
Bits from photons: Oversampled image acquisition
using binary Poisson statistics. IEEE Transactions
on Image Processing, 21(4):1421-1436.



