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A Proof of Theorem 1

The log-pdf of x̃ is given by, using the probability transformation formula,

log p(x̃(t)) = log p(xt,xt−1,ut)

= log ps̃(g̃(xt,xt−1)|ut) + log p(ut) + log |detJg̃(xt,xt−1)|
= log ps̃(g(xt,xt−1),xt−1|ut) + log p(ut) + log |detJg̃(xt,xt−1)|
= log ps(g(xt,xt−1)|ut) + log px(xt−1|ut) + log p(ut) + log |detJg̃(xt,xt−1)| (11)

where ps̃, ps, and px are the conditional pdfs of (s,x), s, and x, respectively, J denotes the Jacobian, and
si = gi(xt,xt−1) by definition. The third equation is from the structure of the augmented demixing model
(Eq. 3), and the last equation is from the temporal independence of st (assumption 2).

By well-known theory (Gutmann and Hyvärinen, 2012; Hastie et al., 2001), after convergence of logistic regression,
with infinite data and a function approximator with universal approximation capability, the regression function
(Eq. 6) will equal the difference of the log-pdfs in the two classes:

n∑
i=1

k∑
j=1

ψij(hi(xt,xt−1))µij(ut) + ϕ(xt−1,ut) + α(ut) + β(h(xt,xt−1)) + γ(xt−1)

= log ps(g(xt,xt−1)|ut) + log px(xt−1|ut) + log p(ut) + log |detJg̃(xt,xt−1)|
− log ps̄(g(xt,xt−1))− log px̄(xt−1)− log p(ut)− log |detJg̃(xt,xt−1)|

=

n∑
i=1

Qi(gi(xt,xt−1))− Zi(ut) +

k∑
j=1

qij(gi(xt,xt−1))λij(ut)

+ log px(xt−1|ut)

− log ps̄(g(xt,xt−1))− log px̄(xt−1) (12)

where ps̄ and px̄ are the marginal pdfs of the innovations and observations when u is integrated out, and the
last equation came from the conditional exponential pdf model of s (A1). The Jacobians and marginals log p(u)
cancel out here. Considering its factorization form and the distinctive dependency of each term on xt, xt−1, and
ut, the approximation solution is possible as

ψij(hi(xt,xt−1)) = qij(gi(xt,xt−1))

µij(ut) = λij(ut)

ϕ(xt−1,ut) = log px(xt−1|ut)

α(ut) = −
n∑

i=1

Zi(ut)

β(h(xt,xt−1)) =

n∑
i=1

Qi(gi(xt,xt−1))− log ps̄(g(xt,xt−1))

γ(xt−1) = − log px̄(xt−1). (13)

Next, we have to prove that this is the only solution up to the indeterminacies given in the Theorem. Let
u0, . . . ,unk be the points given by assumption 3 in the Theorem. We plug each of those ul to obtain nk + 1
equations. By collecting those equations into rows, with subtracting the first equation for u0 from the remaining
nk equations:

MTψ(h(xt,xt−1)) + ϕ(xt−1) +α = LTq(st) + p(xt−1) + z, (14)

where M ∈ Rnk×nk is a matrix of µij(ul) − µij(u0), with the product of i, j giving row index and l col-
umn index, L is a matrix of λij(ul) − λij(u0) given in the assumption 3 in the Theorem, ψ(h(xt,xt−1)) =
(ψ11(h1(xt,xt−1)), . . . , ψnk(hn(xt,xt−1)))

T , q(st) = (q11(s1(t)), . . . , qnk(sn(t)))
T , and the other vectors are
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the collection of the corresponding terms in Eq. 12 at the nk points with all subtracting the one with
l = 0; ϕ(xt−1) = (ϕ(xt−1,u1), . . . , ϕ(xt−1,unk))

T − 1ϕ(xt−1,u0), 1 is a nk × 1 vector of ones, α =
(α(u1), . . . , α(unk))

T − 1α(u0), p(xt−1) = (log px(xt−1|u1), . . . , log px(xt−1|unk))
T − 1 log px(xt−1|u0), and

z = (−
∑n

i=1 Zi(u1), . . . ,−
∑n

i=1 Zi(unk))
T + 1

∑n
i=1 Zi(u0). In both sides of the equation, the terms not

depending on ut disappeared by the subtraction with l = 0. Let a compound demixing-mixing function
v(st,xt−1) = h ◦ f̃(st,xt−1), and change variables to y = [y1,y2] = [st,xt−1], we then have

MTψ(v(y)) + ϕ(y2) +α = LTq(y1) + p(y2) + z. (15)

Firstly, we will show that M is invertible. From the definition of q(y1), its partial derivative with respect to y1i
is q′(y1i) = (0, . . . , 0, q′i1(y1i), . . . , q

′
ik(y1i), 0, . . . , 0)

T . According to Lemma 3 of Khemakhem et al. (2020), for
y1i which satisfies A1, there exist k points (ȳ11i, . . . , ȳ

k
1i) such that (q′(ȳ11i), . . . ,q

′(ȳk1i)) are linearly independent.
By differentiating Eq. 15 with respect to y1i and collecting their evaluations at such k distinctive points for all
i, we get

MT Q̃ = LTQ, (16)

where Q ∈ Rnk×nk is a matrix collecting q′(ȳl1i) to the columns indexed by (i, l), and Q̃ is a collection of partial
derivatives of ψ(v(y)) evaluated at the same points. Q is invertible (through a combination of Lemma 3 of
Khemakhem et al. (2020) and the fact that each component of q is univariate), and thus the right-hand side
is invertible because L is invertible as well (assumption 3). The invertibility of the right-hand side implies the
invertibility of M and Q̃.

Now, let an augmented compound demixing-mixing function ṽ(y) = [ṽ1(y), ṽ2(y)] = h̃ ◦ f̃(y), where h̃ is the
augmented function defined in the assumption 5 in the Theorem. The ṽ1(y) corresponds to v(y) defined above.
Note that ṽ is invertible because both h̃ and f̃ are invertible. What we need to prove is that ṽ is a block-wise
invertible point-wise function, in the sense that ṽ1i is a function of only one y1ji and not of any of y2ji , and vise
versa. This can be done by showing that the product of any two distinct partial derivatives of any component is
always zero, and the Jacobian Jṽ ∈ R2n×2n is block diagonal; the upper and lower block correspond to y1 and
y2 respectively. Along with invertibility, this means that each component depends exactly on one variable of the
corresponding block (y1 or y2). Below, we show that separately for Jv ∈ Rn×2n and Jṽ2 ∈ Rn×2n. Firstly, this
is obviously true for Jṽ2 because ṽ2(y) is just an identity mapping of y2 from the definitions of h̃ and f̃ , and
does not depend on y1; the lower non-zero block of Jṽ is an identity matrix. Next, we will show that for Jv. We
differentiate Eq. 15 with respect to yc, 1 ≤ c ≤ n (an element of y1 = st), and yd, c < d ≤ 2n, and get

MT ∂2

∂yc∂yd
ψ(v(y)) = 0. (17)

From the invertibility of M and the calculation of differentials, we get

∂2

∂yc∂yd
ψ(v(y)) = Ψ(y)Tυ(y) = 0, (18)

where Ψ(y) = (e(1,1)(y1), . . . , e
(1,k)(y1), . . . , e

(n,1)(yn), . . . , e
(n,k)(yn)) ∈ R2n×nk, e(a,b) =

(0, . . . , 0, ψ′
ab(va), ψ

′′
ab(va), 0, . . . , 0)

T ∈ R2n, such that the non-zero entries are at indices (2a − 1, 2a),

υ(y) = (vc,d1 (y), vc1(y)v
d
1(y), . . . , v

c,d
n (y), vcn(y)v

d
n(y))

T ∈ R2n, vci = ∂vi

∂yc
(y), and vc,di = ∂2vi

∂yc∂yd
(y). From

Lemma 4 and 5 of Khemakhem et al. (2020), assumption 6 implies that Ψ(y) has full row rank 2n, and thus
the pseudo-inverse of Ψ(y)T fulfils Ψ(y)+TΨ(y)T = I. We multiply the equation above from the left by such
pseudo-inverse and obtain

υ(y) = 0. (19)

In particular, vca(y)v
d
a(y) = 0 for all 1 ≤ a ≤ n, 1 ≤ c ≤ n, and c < d ≤ 2n. This means that a row of Jv ∈ Rn×2n

at each y has either 1) only one non-zero entry somewhere in the former half block (corresponding to the partial
derivatives by y1) or 2) non-zero entries only in the latter half block (corresponding to the partial derivatives by
y2). The latter case is contradictory because it means that the component vi is a function of only y2 = xt−1, and
cannot hold Eq 15, which right-hand side is a function of all components of y1 (and y2). Therefore, Jv should
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have only one non-zero entry in the former half block for each row. From the results of Jv and Jṽ2 , we deduce
that Jṽ is a block diagonal matrix. Now, by invertibility and continuity of Jṽ, we deduce that the location of
the non-zero entries are fixed and do not change as a function of y. This proves that ṽ = h̃ ◦ f̃(y) is a block-wise
invertible point-wise function, and vi (= hi(xt,xt−1)) is represented by only one y1ji (= sji(t)) up to a scalar
(component-specific) invertible transformation, and the Theorem is proven.

B Proof of Theorem 2

The conditional joint log-pdf of a data point (xt,xt−1) is given by, using the probability transformation formula,

log p(xt,xt−1|ut) = log ps̃(g̃(xt,xt−1)|ut) + log |detJg̃(xt,xt−1)|
= log ps(g(xt,xt−1)|ut) + log px(xt−1|ut) + log |detJg̃(xt,xt−1)|

=

n∑
i=1

Qi(gi(xt,xt−1))− Zi(ut) +

k∑
j=1

qij(gi(xt,xt−1))λij(ut)


+ log px(xt−1|ut) + log |detJg̃(xt,xt−1)| (20)

where ps̃, ps, and px are the conditional pdfs of (s,x), s, and x, respectively, J denotes the Jacobian, and
si = gi(xt,xt−1) by definition. The second equation is from the structure of the augmented demixing model
(Eq. 3) and the temporal independence of s (assumption 2), and the last equation is from the conditional
exponential family model of the innovation (A1). On the other hand, by applying Bayes rule on the optimal
discrimination relation given by Eq. 8, after dividing all the exponential term by the one of τ = 1 to avoid the
well-known indeterminacy of the softmax function,

log p(xt,xt−1|ut = τ) =

n∑
i=1

k∑
j=1

(wijτ − wij1)ψij(hi(xt,xt−1)) + ϕ(xt−1,ut = τ)

− ϕ(xt−1,ut = 1) + log p(xt,xt−1|ut = 1) + ατ , (21)

where ατ = bτ − b1 − log p(ut = τ) + log p(ut = 1). Substituting Eq. 20 with ut = 1 into Eq. 21, we have;

log p(xt,xt−1|ut = τ) =

n∑
i=1

k∑
j=1

[(wijτ − wij1)ψij(hi(xt,xt−1)) + qij(gi(xt,xt−1))λij(ut = 1)]

+

n∑
i=1

[Qi(gi(xt,xt−1))− Zi(ut = 1)] + ϕ(xt−1,ut = τ)− ϕ(xt−1,ut = 1)

+ log px(xt−1|ut = 1) + log |detJg̃(xt,xt−1)|+ ατ (22)

Setting Eq. 22 and Eq. 20 with ut = τ to be equal for arbitrary τ , we have:

n∑
i=1

k∑
j=1

(wijτ − wij1)ψij(hi(xt,xt−1)) + ϕ(xt−1,ut = τ)− ϕ(xt−1,ut = 1) + ατ

=

n∑
i=1

k∑
j=1

(λij(ut = τ)− λij(ut = 1)) qij(gi(xt,xt−1)) + log px(xt−1|ut = τ)− log px(xt−1|ut = 1) + zτ (23)

where zτ =
∑n

i=1 Zi(ut = 1) − Zi(ut = τ). By collecting this equation for all the T labels into rows, except
τ = 1, which makes both-sides zero;

WTψ(h(xt,xt−1)) + ϕ(xt−1) +α = LTq(st) + p(xt−1) + z, (24)

where W ∈ Rnk×(T−1) is a matrix of wijτ − wij1, with the product of i, j giving row index and τ col-
umn index, L is a matrix of λij(ut = τ) − λij(ut = 1) given in the assumption 4 in the Theorem,
ψ(h(xt,xt−1)) = (ψ11(h1(xt,xt−1)), . . . , ψnk(hn(xt,xt−1)))

T , q(st) = (q11(s1(t)), . . . , qnk(sn(t)))
T , ϕ(xt−1) =

(ϕ(xt−1,ut = 2), . . . , ϕ(xt−1,ut = T ))T − 1ϕ(xt−1,ut = 1), 1 is a (T − 1)× 1 vector of ones, α = (α2, . . . , αT )
T ,
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p(xt−1) = (log px(xt−1|ut = 2), . . . , log px(xt−1|ut = T ))T − 1 log px(xt−1|ut = 1), and z = (z2, . . . , zT )
T . Let

a compound demixing-mixing function v(st,xt−1) = h ◦ f̃(st,xt−1), and change variables to y = [y1,y2] =
[st,xt−1], we then have

WTψ(v(y)) + ϕ(y2) +α = LTq(y1) + p(y2) + z. (25)

Firstly, we will show that W has full row rank nk. From the definition of q(y1), its partial derivative with
respect to y1i is q

′(y1i) = (0, . . . , 0, q′i1(y1i), . . . , q
′
ik(y1i), 0, . . . , 0)

T . According to Lemma 3 of Khemakhem et al.
(2020), for y1i which satisfies A1, there exist k points (ȳ11i, . . . , ȳ

k
1i) such that (q′(ȳ11i), . . . ,q

′(ȳk1i)) are linearly
independent. By differentiating Eq. 25 with respect to y1i and collecting their evaluations at such k distinctive
points for all i, we get

WT Q̃ = LTQ, (26)

where Q ∈ Rnk×nk is a matrix collecting q′(ȳl1i) to the columns indexed by (i, l), and Q̃ is a collection of partial
derivatives of ψ(v(y)) evaluated at the same points. Q is invertible (through a combination of Lemma 3 of
Khemakhem et al. (2020) and the fact that each component of q is univariate), and thus the right-hand side has
full column rank nk because L has full row rank nk (assumption 4). The full column rank of the right-hand side
implies the full row rank of W and the invertibility of Q̃.

Now, let an augmented compound demixing-mixing function ṽ(y) = [ṽ1(y), ṽ2(y)] = h̃ ◦ f̃(y), where h̃ is the
augmented function defined in the assumption 6 in the Theorem. The ṽ1(y) corresponds to v(y) defined above.
Note that ṽ is invertible because both h̃ and f̃ are invertible. What we need to prove is that ṽ is a block-wise
invertible point-wise function, in the sense that ṽ1i is a function of only one y1ji and not of any of y2ji , and vise
versa. This can be done by showing that the product of any two distinct partial derivatives of any component is
always zero, and the Jacobian Jṽ ∈ R2n×2n is block diagonal; the upper and lower block correspond to y1 and
y2 respectively. Along with invertibility, this means that each component depends exactly on one variable of the
corresponding block (y1 or y2). Below, we show that separately for Jv ∈ Rn×2n and Jṽ2

∈ Rn×2n. Firstly, this
is obviously true for Jṽ2

because ṽ2(y) is just an identity mapping of y2 from the definitions of h̃ and f̃ , and
does not depend on y1; the lower non-zero block of Jṽ is an identity matrix. Next, we will show that for Jv. We
differentiate Eq. 25 with respect to yc, 1 ≤ c ≤ n (an element of y1 = st), and yd, c < d ≤ 2n, and get

WT ∂2

∂yc∂yd
ψ(v(y)) = 0. (27)

From the full row rank of W and the calculation of differentials, we get

∂2

∂yc∂yd
ψ(v(y)) = Ψ(y)Tυ(y) = 0, (28)

where Ψ(y) = (e(1,1)(y1), . . . , e
(1,k)(y1), . . . , e

(n,1)(yn), . . . , e
(n,k)(yn)) ∈ R2n×nk, e(a,b) =

(0, . . . , 0, ψ′
ab(va), ψ

′′
ab(va), 0, . . . , 0)

T ∈ R2n, such that the non-zero entries are at indices (2a − 1, 2a),

υ(y) = (vc,d1 (y), vc1(y)v
d
1(y), . . . , v

c,d
n (y), vcn(y)v

d
n(y))

T ∈ R2n, vci = ∂vi

∂yc
(y), and vc,di = ∂2vi

∂yc∂yd
(y). From

Lemma 4 and 5 of Khemakhem et al. (2020), assumption 7 implies that Ψ(y) has full row rank 2n, and thus
the pseudo-inverse of Ψ(y)T fulfils Ψ(y)+TΨ(y)T = I. We multiply the equation above from the left by such
pseudo-inverse and obtain

υ(y) = 0. (29)

In particular, vca(y)v
d
a(y) = 0 for all 1 ≤ a ≤ n, 1 ≤ c ≤ n, and c < d ≤ 2n. This means that a row of Jv ∈ Rn×2n

at each y has either 1) only one non-zero entry somewhere in the former half block (corresponding to the partial
derivatives by y1) or 2) non-zero entries only in the latter half block (corresponding to the partial derivatives by
y2). The latter case is contradictory because it means that the component vi is a function of only y2 = xt−1, and
cannot hold Eq 25, which right-hand side is a function of all components of y1 (and y2). Therefore, Jv should
have only one non-zero entry in the former half block for each row. From the results of Jv and Jṽ2

, we deduce
that Jṽ is a block diagonal matrix. Now, by invertibility and continuity of Jṽ, we deduce that the location of
the non-zero entries are fixed and do not change as a function of y. This proves that ṽ = h̃ ◦ f̃(y) is a block-wise
invertible point-wise function, and vi (= hi(xt,xt−1)) is represented by only one y1ji (= sji(t)) up to a scalar
(component-specific) invertible transformation, and the Theorem is proven.
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C Discussion on the identifiability of IIA-HMM

We obtain the following Theorem on identifiability of IIA-HMM.

Theorem 3. Assume the following:

1. We obtain observations from an NVAR model (Eq. 1), whose augmented model (Eq. 2) is invertible and
sufficiently smooth.

2. The latent innovations of the process follow the assumption A1 with k ≥ 2, and the sufficient statistics qij
are twice differentiable.

3. The u are unobserved (in contrast to the previous frameworks), and follow A2, where the transition matrix A
has full rank with non-zero diagonal entries, and induces irreducible stationary Markov chain with a unique
stationary state distribution π.

4. The conditional distributions p(·|xt−1,ut),ut = 1, . . . , C are all generically distinct for any xt−1, meaning
that the set of points for which this doesn’t hold is measure zero.

5. The modulation matrix of size nk × (C − 1)

L = (λ(2)− λ(1), . . . ,λ(T )− λ(1)) (30)

has full row rank nk, where λ(c) = (λ11(u = c), . . . , λnk(u = c))T ∈ Rnk.

6. We estimate the transition matrix, parameters of the innovation model, latent state at each data point,
and demixing model h(xt,xt−1) : R2n → Rn with universal approximation capability, by maximizing the
likelihood of the observations.

7. The augmented function h̃(xt,xt−1) = [h(xt,xt−1),xt−1] : R2n → R2n is invertible.

Then, in the limit of infinite data, h provides a consistent estimator of the IIA model: The functions hi(xt,xt−1)
give the independent innovations, up to permutation and scalar (component-wise) invertible transformations.

Proof. Assume equality of joint-data distributions for 2T + 1 observations from the IIA-HMM model with two
different sets of parameters θ, θ̂:

p(x1, . . . ,xT , . . . ,x2T+1;θ) = p(x1, . . . ,xT , . . . ,x2T+1; θ̂)

With the Assumptions 1, 3, and 4, we can apply Lemma 1 below and identify the following:

A = Â (31)

π = π̂ (32)

p(xt|ut = c;θ) = p(xt|ut = σ(c); θ̂) (33)

p(x1, . . . ,xT |xT+1,uT+1 = c;θ) = p(x1, . . . ,xT |xT+1,uT+1 = σ(c); θ̂). (34)

where σ(·) accounts for permutation of labels. For rest of the proof, without loss of generality, we assume label
ordering matches. Since joint distributions identify their marginals uniquely, equation (34) implies

p(xT |xT+1,uT+1;θ) = p(xT |xT+1,uT+1; θ̂) (35)

=⇒ p(xT ,xT+1|uT+1;θ)

p(xT+1|uT+1;θ)
=
p(xT ,xT+1|uT+1; θ̂)

p(xT+1|uT+1; θ̂)
. (36)

This, with (33), implies that the following is identified:

p(xT ,xT+1|uT+1;θ) = p(xT ,xT+1|uT+1; θ̂) (37)
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Finally, notice that

C∑
k=1

p(xT |uT = k;θ)p(uT = k|uT+1;A) =

C∑
k=1

p(xT |uT = k; θ̂)p(uT = k|uT+1; Â)

=⇒ p(xT |uT+1;θ) = p(xT , |uT+1; θ̂) (38)

Writing out the log-likelihoods in equation (37), we get:

log ps̃(g̃(xT ,xT+1)|uT+1) + log |detJg̃(xT ,xT+1)| = log p̂s̃(ˆ̃g(xT ,xT+1)|uT+1) + log |detJˆ̃g(xT ,xT+1)|
=⇒ log ps(g(xT ,xT+1)|uT+1) + log px(xT |uT+1) + log |detJg̃(xT ,xT+1)|

= log p̂s(ĝ(xT ,xT+1)|uT+1) + log p̂x(xT |uT+1) + log |detJˆ̃g(xT ,xT+1)|,

where ps̃, ps, and px are the conditional pdfs of (s,x), s, and x, respectively, and J denotes the Jacobian. Using
the result in (38), gives us

log ps(g(xT ,xT+1)|uT+1) + log |detJg̃(xT ,xT+1)| = log p̂s(ĝ(xT ,xT+1)|uT+1) + log |detJˆ̃g(xT ,xT+1)|.

Remainder of the proof follows as in Hälvä and Hyvärinen (2020) and is not shown here for brevity. The general
idea is to take the above equation for different values of uT+1 and use one of them as a ‘pivot’ in order to get
rid of the Jacobians. Finally, the exponential family distribution properties, as done in the earlier proofs of this
paper, are used to show identifiability.

C.1 Lemmas

Set-up: These Lemmas follow, in general, those of Alexandrovich et al. (2016) but with substantial modifications
made to accomodate our model. We first define some relevant notation. Let (Xt)t∈N denote the observed process
and (Ut)t∈N the discrete latent first-order Markov chain. Assume these processes are time-homogeneous. K is
the cardinality of the state-space of Ut, that is, the number of latent states. The first-order Markov chain for Ut

is governed by transition matrix A = (αj,k)j,k=1,...,K . Define S ⊂ Rq as any subset of Euclidean space. Suppose
that Xt takes values in S, and its distribution depends on its most recent past Xt−1 and the current latent state
Ut – this distribution function is denoted by FUt,Xt−1

(Xt) and is time-homogeneous. Notice that subsequently,
Xt is independent of all Xt+s for |s| ≥ 2 given Xt−1, Xt+1 and Ut. FUt

(Xt) is used to denote the conditonal
distribution of Xt on Ut alone; that is, all other variables have been integrated out. π = (π1, . . . , πK) denotes a
stationary distribution of A. In the following proofs, xt is not a random variable, but represents a point in S.

Let dim(V ) denote the dimension of vector space V . For v1, . . . ,vn ∈ V let span{v1, . . . ,vn} denote the subspace
of V spanned by v1, . . . ,vn. For scalars x1, . . . , xn ∈ R let diag(x1, . . . , xn) denote n-dimensional diagonal matrix
with x1, . . . , xn along the diagonal. 1K is a K-dimensional vector of ones. Let Mi ∈ RK×ni (ni ∈ N; i = 1, 2, 3),
then [Mi,Mj ] denotes the K × (ni + nj) matrix made by joining the two matrices at their columns. (M)m,n

denotes the element of matrix M on the m-th row and n-th column. Finally, let’s define three-way arrays,
indexed by (i1, i2, i3), where the corresponding element is given by:

⟨M1,M2,M3⟩(i1,i2,i3) =
K∑

k=1

(M1)k,i1(M2)k,i2(M3)k,i3 (ij = 1, . . . , nj) (39)

Define kruskal rank Rκ(M) as the maximal j such that any selection of j rows of M are linearly independent.
Theorem 4a of Kruskal (1977) states that if:

Rκ(M1) +Rκ(M2) +Rκ(M3) ≥ 2K + 2 (40)

and
⟨M1,M2,M3⟩ = ⟨N1,N2,N3⟩

then there exist permutation matrix P and diagonal matrices Λi, such that Λ1Λ2Λ3 = IK and Ni = ΛiPMi.

Lemma 1. Assume that:

1. The latent state transition matrix A has full rank and is ergodic.
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2. The conditional emission distributions Fut,xt−1(xt) for k = 1, . . . ,K are generically distinct for each given
xt−1. That is, the set of points (xt−1,xt) for which this doesn’t hold is measure zero.

3. First-order Markov chain (Ut) is stationary with starting distribution π, which is thus the stationary distri-
bution of A

then the marginal emission distributions Fut
(xt), the transition matrix A, the initial state probabilities π are all

identified from the joint distribution of the observation process (X1, . . . , X2T+1) where T ≥ K − 1, up to label
swapping.

Proof. Step 1 (factorizing likelihood into blocks by conditional independence): Consider we have 2T + 1 obser-
vations from our model. The likelihood of the model can be factored by conditioning on the variables at the
central time point T + 1 as per below:

Pr(X1:2T+1 ≤ x1:2T+1) =
∑
k

Pr(X1:T ≤ x1:T |UT+1 = k,XT+1 ≤ xT+1)πk (41)

× Pr(XT+1 ≤ xT+1|UT+1 = k) Pr(XT+2:2T+1 ≤ xT+2:2T+1|UT+1 = k,XT+1 ≤ xT+1),

where notation x1:2T+1 = (x1, . . . ,x2T+1) is used, and πk represents the stationary distribution Pr(UT+1 = k).
Assume T ≥ K − 1. The factorial structure of the likelihood allows us to consider two random variables

VT = X1:T = (X1, . . . , XT ) and WT = XT+2:2T+1 = (XT+2, . . . , X2T+1).

The conditional distribution of WT , evaluated at some y1:T ∈ ST , given XT+1 = y0 ∈ S and UT+1 = k can be
written as:

GT (y0:T ; k) = Pr(WT ≤ y1:T |UT+1 = k,XT+1 ≤ y0) =
∑

k1···kT

αk,k1

T∏
t=2

αkt−1,kt

T∏
t=1

Fkt,yt−1
(yt).

For the conditional likelihood of VT on UT+1 and XT+1, we must consider time reversal:

Ã = (α̃j,k)j,k=1,...,K , α̃j,k =
πkαk,j

πj
,

F̃k,x(xt) = Pr(Xt ≤ xt|Ut = k,Xt+1 ≤ x).

Then for yT :1 = (yT , . . . ,y1) ∈ ST , and given XT+1 = y0 ∈ S and UT+1 = k can be written as:

HT (yT :0; k) = Pr(VT ≤ yT :1|UT+1 = k,XT+1 ≤ y0)

=
∑

k1···kT

α̃k,k1

T∏
t=2

α̃kt−1,kt

T∏
t=1

F̃kt,yt−1
(yt).

Now, take any arbitrary points x̄ ∈ S and zj , z̃j ∈ ST for j = 1, . . . ,K. Define z+j = (x̄, zj) and z̃+j = (x̄, z̃j).
The likelihood in (41), at these arbitrary points, for some j, can thus be formulated as:

Pr(X1:2T+1 ≤ (z̃j , x̄, zj)) =
∑
k

HT (z̃
+
j ; k)πkFk(x̄)GT (z

+
j ; k). (42)

Note the correspondence of the above equation to (39). Now consider K ×K matrix:

G1 = (GT (z
+
j ; k))k,j=1,...,K = (GT ((x̄, zj); k))k,j=1,...,K . (43)

From Lemma 3 below we have that there exist z1, . . . , zK ∈ ST such that G1 is full rank, for any x̄. Similarly,
we form matrix:

H1 = (HT (z̃
+
j ; k))k,j=1,...,K = (HT ((x̄, z̃j); k))k,j=1,...,K . (44)

Again, by Lemma 3, there exists z̃1, . . . , z̃K ∈ ST for which H1 has full rank.
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Step 2 (Identifying the distribution as a three-way array): Now, let v, ṽ ∈ ST be any arbitrary points (c.f.
(43),(44) focused on the existence of some points). Let x̄ ∈ S also be any point but such that it matches always
the one in G1 and H1. From Assumption 2, we have that K × 2 matrix

M2 = [(Fi(x̄))i=1,...,K ,1K ] (45)

has Kruskal rank of 2. From Step 1, the K × (K + 2)-matrices

M3 = [G1, (GT ((x̄,v); k))k=1,...,K ,1K ], M1 = [H1, (HT ((x̄, ṽ); k))k=1,...,K ,1K ]

M̃1 = diag(π)M1, (46)

all have full ranks, K, where πk > 0 (k = 1, . . . ,K), and hence the Kruskal rank condition

Rκ(M̃1) +Rκ(M2) +Rκ(M3) ≥ 2K + 2 (47)

is satisfied for the three-way array
M⋆ = ⟨M̃1,M2,M3⟩. (48)

The question now is whether the distribution of (X1, . . . , X2T+1) is alone sufficient to identify M⋆. To see that
this is the case, consider the following, exhaustive, possibilities:

For i < K + 2; j = 1; r < K + 2

M⋆
(i,1,r) =

K∑
k=1

πkHT ((x̄, ṽi); k)Fk(x̄)GT ((x̄,vr); k) = Pr(X1:T ≤ ṽi, XT+1 ≤ x̄, XT+2:2T+1 ≤ vr)

For i = K + 2; j = 1; r < K + 2

M⋆
(K+2,1,r) =

K∑
k=1

πkFk(x̄)GT ((x̄,vr); k) = Pr(XT+1 ≤ x̄, XT+2:2T+1 ≤ vr)

For i < K + 2; j = 1; r = K + 2

M⋆
(i,1,K+2) =

K∑
k=1

πkHT ((x̄, ṽi); k)Fk(x̄) = Pr(X1:T ≤ ṽi, XT+1 ≤ x̄)

For i = K + 2; j = 1; r = K + 2

M⋆
(K+2,1,K+2) =

K∑
k=1

πkFk(x̄) = Pr(XT+1 ≤ x̄).

For i < K + 2; j = 2; r < K + 2

M⋆
(i,2,r) =

K∑
k=1

πkHT ((x̄, ṽi); k)GT ((x̄,vr); k) = Pr(X1:T ≤ ṽi, XT+2:2T+1 ≤ vr|XT+1 ≤ x̄)

=
Pr(X1:T ≤ ṽi, XT+1 ≤ x̄, XT+2:2T+1 ≤ vr)

Pr(XT+1 ≤ x̄)

For i = K + 2; j = 2; r < K + 2

M⋆
(K+2,2,r) =

K∑
k=1

πkGT ((x̄,vr); k) = Pr(XT+2:2T+1 ≤ vr|XT+1 ≤ x̄)

For i < K + 2; j = 2; r = K + 2

M⋆
(i,2,K+2) =

K∑
k=1

πkHT ((x̄, ṽi); k) = Pr(X1:T ≤ ṽi|XT+1 ≤ x̄)

For i = K + 2; j = 2; r = K + 2

M⋆
(K+2,2,K+2) = 1

These are all uniquely determined by the joint distribution of (X1, . . . , X2T+1) (joint distribution uniquely defines
marginals).
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Step 3 (identifying parameters from three-way arrays): Next assume we have an alternate set of parameters

to those above; transition matrix Â, arbitrary initial state distribution π̂ (not necessarily stationary), and

distribution function F̂u,x defined analogously to above. These parameters define matrices Ni(i = 1, 2, 3), which

are defined, and evaluated at the same points, asMi from above. Further, Ñ1 = diag(π̂ÂT )N1, where π̂Â
T is the

marginal distribution of UT+1. If the two sets of parameters induce the same joint distribution (X1, . . . , X2T+1)
then Step 2 ensures that

⟨M̃1,M2,M3⟩ = ⟨Ñ1,N2,N3⟩
And, due to Theorem 4a Kruskal (1977), since M̃1, M2, M3 satisfy (40), there are K ×K permutation matrix
P and scaling matrices Λi, (i = 1, 2, 3) with Λ1Λ2Λ3 = IK , such that

Mi = ΛiPNi (i = 2, 3) and M̃1 = Λ1PÑ1. (49)

Since Mi,Ni (i = 2, 3) have only ones in the last column, Λ2 = Λ3 = IK and thus also Λ1 = IK . The first
consequence of this is that HT ((x̄, ṽ); k), Fu(x̄), and GT ((x̄,v); k) are identified, up to simultaneous permutation
of labels, for arbitrary v, ṽ ∈ S and given x̄. But notice that we can construct above argumentation for any x̄.

Further, as M̃1 and M3 are full rank, then so must be Ñ1 and N3. This in turn means that P is uniquely
determined and π = π̂ÂT as they are both in the last columns of M̃1 = Ñ1.

Step 4 (identifying the transition matrix): We show this for T = K − 1. In Step 1, we considered the matrix

G1 = (GT ((x0, zj); k))k,j=1,...,K . (50)

Now consider instead a one time-step longer sequence, with only the first observation different, keeping labeling
fixed:

G = (GT+1((x,x0, zj); k))k,j=1,...,K . (51)

From Step 2, HT+1(·; k), Fk, GT+1(·; k) are identified up to joint label swapping and thus so is G. G1 and A are
related by

G = ADx(x0)G1,

where Dx(x0) = diag(F1,x(x0), . . . , FK,x(x0)), and therefore

A = GG−1
1 Dx(x0)

−1.

ThusA can be identified from above (for a large enough x0 as to avoid issues in the inverse), as all the constituents

are identified, so A = Â. Also, as A is invertible and from above we can now get that π = π̂AT , which combined
with πA−1 = π gives π = π̂.

Lemma 2. Let t ≤ K−1 and B1, . . . ,Bt be full-rank matrices in RK×K such that B11K , . . . ,Bt1K are linearly
independent vectors. Let A be a K × K full rank transition matrix, and F1,x0(x), . . . , FK,x0(x) distribution
functions satisfying Assumption 2. Then, for every x0, there exists some x⋆ ∈ S and j ∈ {1, . . . , t} for which
the K × (t+ 1)-matrix

[B1A1K , . . . ,BtA1K ,BjADx0
(x⋆)1K ]

is full rank.

Proof. Since A is a proper transition matrix, we have that

M = [B11K , . . . ,Bt1K ] = [B1A1K , . . . ,BtA1K ] ,

and therefore B1A1K , . . . ,BtA1K are linearly independent, with S1 = span{B1A1K , . . . ,BtA1K} and
dim(S1) = t. The Lemma can now be proven by contradiction. Assume that for any j, BjADx0

(x⋆)1K is
in the span S1. We can write Qj = BjA, and notice that this is full-rank for all j. Hence

BjADx0
(x⋆)1K = QjDx0

(x⋆)1K =

K∑
i=1

Fi,x0
(x⋆)qj,i,

where qj,i denotes the i-th column vector of Qj , and we thus have a conic (positive) combination of K linearly
independent vectors. If we consider all feasible x⋆, this defines a subspace of conical hull in K dimensions. This
contradicts the assumption of BjADx0

(x⋆)1K being in the span S1 for all x⋆ and thus concludes the proof.
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Lemma 3. Under Assumption 2 (of Lemma 1), for T ≥ K − 1 the conditional distributions of WT given
UT+1 = k(k = 1, . . . ,K) and XT+1 = x0 ∈ S, that is the functions GT ((x0, ·); k), are linearly independent over
k = 1, . . . ,K for any fixed x0, and furthermore, there exist z1, . . . , zK ∈ ST such that the matrix

G1 = (GT (z
+
j ; k))k,j=1,...,K = (GT (x0, zj ; k))k,j=1,...,K ,

has full rank K.

Proof. Recall:

Gt((x0,x1:t); k) =
∑

k1···kt

αk,k1

t∏
s=2

αks−1,ks

t∏
s=1

Fks,xs−1
(xs). (52)

Define K ×K stochastic diagonal matrix Dxt−1
(xt) = diag(Fkt=1,xt−1

(xt), . . . , Fkt=K,xt−1
(xt)), and αl the l-th

row vector of the transition matrix A. We can then write:

Gt((x0,x1:t); k) = αkDx0(x1)ADx1(x2)A · · ·ADxt−1(xt)1K . (53)

And define:
G̃t((x0,x1:t); k) = Fk,x0

(x1)αkDx1
(x2)A · · ·ADxt−1

(xt)1K . (54)

It follows that
G1 = A(G̃K−1((x0, zj); k)k,j=1,...,K = AG̃1,

and therefore it suffices to prove the lemma for G̃1.

Proof by induction is used to show that there exist

z
(t)
1 , . . . , z

(t)
t+1 ∈ St (t = 1, . . . ,K − 1), (55)

for which the vectors (i.e. columns of G̃
(t)
1 )

v
(t)
j =

[
G̃t((x0, z

(t)
j ; 1) · · · G̃t((x0, z

(t)
j ;K)

]′
(j = 1, . . . , t+ 1), (56)

are linearly independent, and v
(t)
1 has strictly positive entries. Note that the superscipts (t) are used just to

keep track of the t being considered. The case t = K − 1 will establish the lemma. In other words, we will only
prove the theorem up to T = K − 1. Since marginal distributions of linearly dependent distributions remain
linearly dependent, linear independence follow for any T ≥ K − 1, and the existence of corresponding points
z1, . . . , zK ∈ ST follows from Lemma 17 in Allman et al. (2009).

Proof by induction – base case: Set t = 1. In this instance, G̃
(1)
1 is K × 2, with columns given by:

v
(1)
j =

[
F1,x0

(z
(1)
j ), · · · , FK,x0

(z
(1)
j )

]′
(j = 1, 2).

By Assumption 2, the K density functions with fixed x0 are distinct and therefore v
(1)
1 and v

(1)
2 are linearly

independent with v
(1)
1 strictly positive.

Proof by induction – induction step: For induction, suppose that the claim (55)-(56) holds for some t < K − 1.
Equation (56) can be rewritten as:

v
(t)
j = [F1,x0,j (x1,j)α1Dx1,j (x2,j)A · · ·ADxt−1,j (xt,j)1K , · · · ,

FK,x0,j
(x1,j)αKDx1,j

(x2,j)A · · ·ADxt−1,j
(xt,j)1K ]′

= [Dx0,j
(x1,j)ADx1,j

(x2,j)A · · ·ADxt−1,j
(xt,j)︸ ︷︷ ︸

Bj(z
(t)
j )

1K ], (57)

and thus we have

G̃
(t)
1 = [v

(t)
1 , · · · ,v(t)

t+1] = [B1(z
(t)
1 )1K , · · · ,Bt+1(z

(t)
t+1)1K ].
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All Bj(j = 1, . . . , t+ 1) are full rank, and by the inductive assumption all the vectors are linearly independent.
It follows from Lemma 2 that there exists j ∈ (1, . . . , t+ 1) and x⋆ for which the K × (t+ 2) matrix:

M =
[
B1(z

(t)
1 )A1K , . . . ,Bt+1(z

(t)
t+1)A1K ,Bj(z

(t)
j )ADxt(x

⋆)1K

]
(58)

has full rank t+ 2,and hence a (t+ 2)× (t+ 2) submatrix of non-zero determinant. Since Dxt−1
(xt) → I when

xt → ∞, [
B1(z

(t)
1 )ADxt(x)1K , . . . ,Bt+1(z

(t)
t+1)ADxt(x)1K ,Bj(z

(t)
j )ADxt(x

⋆)1K

]
→ M, x → ∞ (59)

and hence the corresponding submatrix will also have non-zero determinant in above, for an appropriate x ∈ S.
Notice also how above defines v

(t+1)
j (j = 1, . . . , t + 2), as per equation (57). Therefore the claim for t + 1 is

satisfied by setting

z(t+1)
s =

[
z(t)s ,x

]
(s = 1, . . . , t+ 1) z

(t+1)
t+2 =

[
z
(t)
j ,x⋆

]
(60)

and so the proof concludes.

D Implementation Detail for Simulation 1

We give here more detail on the data generation, training, and evaluation for IIA-GCL in Simulation 1 (Sec-
tion 4.1).

Data Generation We generated data from an artificial NVAR process with time-index-parameterized non-
stationary innovations. The nonstationary innovations were randomly generated from a Gaussian distribu-
tion by modulating its mean and standard deviation across time t; i.e., the auxiliary variable ut = t, and
log p(si(t)) ∝ −λi1(t)si(t)2 − λi1(t)λi2(t)si(t), where λi1(t) and λi2(t) control the standard deviation and mean
of the i-th component at time point t, respectively. Each of λi1(t) and λi2(t) was modeled to be temporally
smooth and continuous, by 1) obtaining a combination of Fourier basis functions spanning the whole time series
(sine and cosine bases with 64 frequencies), which weights were randomly selected from uniform distribution, 2)
normalizing to [−2, 2], and 3) (only for λi1(t)) putting into exponential function. The dimensions of the obser-
vations and innovations (n) were 20. As the NVAR model, we used a multilayer perceptron we call NVAR-MLP,
which takes a concatenation of xt−1 and st as an input, then outputs xt. To guarantee the invertibility, we fixed
the number of units of each layer to n, and used leaky ReLU units for the nonlinearity except for the last layer
which has no-nonlinearity.

Training Considering the innovation model with ut = t, we here used IIA-GCL for the estimation of the latent
innovations. We adopted MLPs as the nonlinear scalar functions in Eq. 6. The MLP for h (h-MLP) outputs
n-dimensional feature values from an input (xt,xt−1), which is supposed to represent the latent innovations after
the training. The number of layers was selected to be the same as that of the NVAR-MLP, and the number of
node in each layer was 4n except for the output layer (n), so as to make it have enough number of parameters
as the demixing model. A maxout unit was used as the activation function in the hidden layers, which was
constructed by taking the maximum across two affine fully connected weight groups, while no-nonlinearity was
applied at the last layer. The scalar functions ψij , µij , and α(ut) were modeled to be consistent with the NVAR
model; i.e., we incorporated the information into the model that 1) the innovations were generated based on
the Gaussian distribution with mean and std modulations by the log-pdf shown above, and 2) λi1 and λi2 were
generated through a combination of Fourier basis functions with 64 frequencies, while their weights have to be
estimated from the data. For ϕ, which has dependency on ut, we used the same structure as the combination of
h, ψij , and µij explained above, which we call ϕ-MLP, except that the ϕ-MLP takes a single data point (xt−1)
as an input, instead of a set of the consecutive points (xt,xt−1). The regression function also needs additional
terms representing the marginal distributions of s and x (β and γ), which were here modeled by the weighted
squared sum of the output units of the h-MLP and ϕ-MLP, respectively.

The nonlinear regression function was trained by back-propagation with a momentum term so as to discriminate
the real dataset from its ut-randomized version. The initial parameters were randomly drawn from a uniform
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distribution. The performance was evaluated by the Pearson correlation between the true innovations and the
estimated feature values h. It was averaged over 10 runs, for each setting of the complexity (number of layers)
L ∈ [1, 3, 5] of the NVAR-MLP and the number of data points.

For comparison, we also applied NICA based on GCL (NICA-GCL; Hyvärinen et al. (2019)), an NVAR with
additive innovation model (AD-NVAR), and variational autoencoder (VAE; Kingma and Welling (2014)) to the
same data. For all of them, we fixed the number of layers of the demixing model to be the same as that of the
NVAR-MLP. We fixed L ∈ [1, 2] exceptionally for VAE because of the instability of training in high layer models.
See Supplementary Material I for the details of the baseline methods.

E Implementation Detail for Simulation 2

We give here more detail on the training for IIA-TCL in Simulation 2 (Section 4.2).

Training We applied IIA-TCL to the same data used in Simulation 1. For IIA-TCL, we first divided the time
series into 256 equally-sized segments, and used the segment label as the auxiliary variable ut; i.e., we assume
that the data are segment-wise stationary, Although this assumption is not consistent with the real innovation
model (Simulation 1), it is approximately true because the modulations were temporally smooth and continuous;
we thus consider here data with a realistic deviation from model assumptions. We adopted MLPs as the nonlinear
scalar functions in the regression function (Eq. 8). The architecture of the MLP for h (h-MLP) was the same
as that in Simulation 1. Considering the log-pdf of the innovation, we fixed ψi1(yi) = y2i , and ψi2(yi) = yi. For
ϕ, which has dependency on ut, we used the same structure as the combination of h, ψij , and wijτ , except that
ϕ takes a single data point (xt−1) as an input, instead of a set of consecutive points (xt,xt−1). The training
and evaluation methods follow those in Simulation 1. We discarded the cases of small data sets (210 and 212,
corresponding to 4 and 16 samples in a segment) because of the instability of training.

For comparison, we also applied NICA (TCL; Hyvärinen and Morioka (2016)). See Supplementary Material I
for the details of the baseline methods.

F Simulation 2 in two-dimensional space

We conducted an additional simulation to visually demonstrate the advantage of the IIA framework. The settings
were the same to Simulation 4.2 (see Supplementary Material E) except that the dimensions of the observations
and the innovations were two, the number of layers was 5, and the number of data points was 218. The estimated
innovations by IIA-TCL looks clearly better demixed compared to the baseline methods (AD-NVAR and NICA-
TCL; see Supplementary Material I for the details).

b Observationa Innovation (true)
IIA-TCL (0.99)
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Figure 3: Estimation of the latent innovations from unknown artificial two dimensional NVAR process. (a) Scat-
ter plot of the true innovations. (b) Observations. (c) Innovations estimated by IIA-TCL, and for comparison,
by AD-NVAR, and NICA-TCL. The values show the mean absolute correlation coefficients between innovations
and their estimates.

G Implementation Detail for Simulation 3

We give here more detail on the training for IIA-HMM in Simulation 3 (Section 4.3).
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Data Generation We generated data from an artificial NVAR with hidden Markov chain. The innovations
were generated based on the method used in Hälvä and Hyvärinen (2020). Briefly, the innovations were generated
by Gaussian emission distributions of an HMM with C discrete states, where the means and the variances of
the Gaussian distribution were selected to be distinctive across components/states. The transition matrix was
defined to have 99% probability to stay at the current state, and 1% probability to switch to the next state,
in cyclic manner. We fixed the dimension of the innovations (n) to 5, and the number of latent states was set
to C = 2n + 1. The observations were then obtained by randomly generated NVAR-MLP (see Supplementary
Material D), using the generated innovations.

Training We used here EM algorithm to maximize the likelihood for estimating the demixing model h based
on MLP (h-MLP), the transition probability matrix A, the latent state at each data point, and the mean and the
variance parameters of each state. The implementation is based on that of NICA-HMM (Hälvä and Hyvärinen
(2020); github.com/HHalva/hmnlica), with some differences such as the demixing model and the incorporation of
the margianl distribution p(x0) (see Eq. 10). Although the likelihood includes the determinant of the Jacobian,
which is widely considered difficult to compute, we can numerically calculate its gradient by utilizing recent
developments of the numerical calculation of gradients (here, JAX library). The number of layers of h-MLP was
selected to be the same as that of the NVAR-MLP, and the number of node in each layer was 2n except for
the output layer (n). A smooth version of leaky ReLU was used as the activation function in the hidden layers;
y = ax + (1 − a) log(1 + expx), where x is the input, y is the output, and a is the leak coefficient. This type
of differentiable function is useful for the stable estimation by the EM algorithm. No-nonlinearity was applied
at the last layer. For better initialization of the h-MLP parameters than the random values, we firstly applied
IIA-TCL to the observation with assuming segment-wise stationarity (length of segments was 32), then used it as
the initial values of the h-MLP. Due to the sensitivity of the algorithm to the initial values of the parameters, we
repeated the estimation 20 times with different initializations, then selected the one with the highest likelihood.
The evaluation methods follow those in Simulation 1. For comparison, we also applied NICA based on HMM
(NICA-HMM; Hälvä and Hyvärinen (2020)), an NVAR with additive innovation model (AD-NVAR), and IIA-
TCL which was also used as the initialization. For all of them, we fixed the number of layers of the demixing
model to be the same as that of the NVAR-MLP. See Supplementary Material I for the details of the baseline
methods.

H Detail for Experiments on Real Brain Imaging Data

Data and Preprocessing We used a publicly available MEG dataset (Westner et al. (2018);
https://doi.org/10.17605/OSF.IO/M25N4). Briefly, the participants were presented with a random word se-
lected from 420 unrelated German nouns (duration = 697 ± 119 ms) either visually (projected centrally on
a screen) or auditorily (via nonferromagnetic tubes to both ears) randomly for each trial. The stimulus was
followed by a visual fixation cross until the end of the trial (2000 ms after the stimulus onset). MEG signals
were measured from twenty healthy volunteers by a 148-channel magnetometer (MAGNES 2500 WH, 4D Neu-
roimaging, San Diego, USA) inside a magnetically shielded room. The data were downsampled to 300 Hz, and
epoched into trials. The contaminated trials were rejected by visual inspections, and thereafter the blinks, eye
movements, and cardiac artifacts were corrected using ICA (see Westner et al. (2018) for more details of the
preprocessing). We further band-pass filtered the data between 4 Hz and 125 Hz, normalized them to have
zero-mean and unit variance at the base line period (−1,000 ms to 0 ms) for each channel and trial, and then
cropped from −300 ms to 2,000 ms after the onset for each trial. The dimension of the data was reduced to 30
by PCA. There were 219.1±22.4 trials (110.4±11.5 for auditory and 108.7±11.9 for visual) for each subject, and
in total, 2,207 auditory and 2,174 visual trials in the whole dataset.

IIA Settings We used IIA-TCL for the training, by assuming a third-order NVAR model (NVAR(3)) and the
segment-wise-stationarity of the latent innovations. The trial data were divided into 84 equally sized segments
of length of 8 samples (26.7 ms), and the segment label was used as the auxiliary variable ut. The same segment
labels were given across the trials; however, considering the possible stimulus-specific dynamics of the brain,
we assigned different labels for the auditory and visual trials. In total, there are 168 segments (classes) to be
discriminated by MLR. The network architectures of the MLPs are the same with those in Simulation 2, except
that h and ϕ take xt:t−3 and xt−1:t−3 as inputs, respectively, the number of units of each layer was fixed to 30,
and that of the last layer (number of components) was 5. The smaller number of components than the data
dimension can be justified by assuming the stationarity of the remaining components (the remaining innovations
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do not depend on u; Hyvärinen and Morioka (2016)). Considering the fast sampling rate of the data (300 Hz),
we fixed the time lag between two consecutive samples to 3 (10 ms). The other settings were as in Simulation 2.
The training of a four-layer model by IIA-TCL took about 2 hours (Intel Xeon 3.5 GHz 16 core CPUs, 376 GB
Memory, NVIDIA Tesla V100 GPU).

Evaluation Methods For evaluation, we performed classification of the stimulus modality (auditory or vi-
sual) by using the estimated innovations. The classification was performed using a linear support vector ma-
chine (SVM) classifier trained on the stimulation label and sliding-window-averaged innovations (width=16 and
stride=8 samples) obtained for each trial. The performance was evaluated by the generalizability of a classifier
across subjects, i.e., one-subject-out cross-validation (OSO-CV); the feature extractor and the classifier were
trained only from the training subjects, and then applied to the held-out subject. The hyperparameters of the
SVM were determined by nested OSO-CV without using the test data. For comparison, we also applied NICA
based on TCL (Hyvärinen and Morioka, 2016) and AD-NVAR(3) (See Supplementary Material I for the details
of the baseline methods, with changing xt−1 to xt−1:t−3). We additionally applied principal component analysis
(PCA) to the estimations by AD-NVAR(3) before applying linear ICA to reduce the dimension to 5 for fair
comparisons. We omitted L = 1 for IIA-TCL because of the instability of training.

We also visualized the spatial characteristics of each innovation component by estimating the optimal (maximal
and minimal) input xt while fixing xt−1:t−3 to zero. This method is commonly used in deep learning studies to
visualize the input specificities of a hidden node of a neural network. We used l2 regularization on the input to
avoid overfitting.

I Details of the baseline methods

NVAR with additive innovation model (AD-NVAR) AD-NVAR assumes NVAR with additive innova-
tion model:

xt = fad(xt−1) + st, (61)

where fad : Rn → Rn is an unknown mixing model, and st ∈ Rn is the latent innovations to be estimated. For the
estimation, we firstly estimate the mixing model from the observable time series, which can be done practically
by training a nonlinear predictor which takes xt−1 as an input and then outputs the estimation of xt so as to
minimize the mean squared prediction errors. The error term was then used as the estimation of the additive
innovation st. Since the obtained components are not guaranteed to be mutually independent, we additionally
applied linear ICA based on nonstationarity of variance (NSVICA; Hyvärinen (2001)) to the estimated additive
innovations for fair comparisons. For the mixing model fad, we used an MLP with the similar architecture as
IIA, except for the difference of the dimension of the input.

Variational auto encoder (VAE) We used VAE (Kingma and Welling, 2014) as a baseline of unsupervised
representation learning frameworks. VAE assumes that the latent variables have spherical Gaussian distribution,
then embed data into the latent space in an unsupervised manner by training an encoder, which embeds the data
into the latent space, and a decoder, which reconstructs the input from the latent variables, so as to minimize
the reconstruction error. In the simulations, we trained an encoder based on an MLP, which nonlinearly embeds
an input (xt,xt−1) ∈ R2n into an n-dimensional feature space representing the estimation of the innovation. The
number of nodes in each layer was designed to linearly decrease from input (2n) to the output (n). We addi-
tionally applied linear ICA based on nonstationarity of variance (NSVICA; Hyvärinen (2001)) to the estimated
innovations for fair comparisons because VAE does not assume the independence on the estimations.

Nonlinear Independent component analysis (NICA) NICA assumes instantaneous nonlinear mixture
model:

xt = fICA(st), (62)

where fICA : Rn → Rn is the instantaneous (nonlinear) mixture function, and st is the latent components. Since
general NICA problem has indeterminacy (Hyvärinen and Pajunen, 1999), we need some assumptions on the
latent components to guarantee the identifiability, similarly to the IIA frameworks. We here used NICA-GCL
(Hyvärinen et al., 2019), NICA-TCL (Hyvärinen and Morioka, 2016), and NICA-HMM (Hälvä and Hyvärinen,
2020) for comparison, which the basic proofs of IIA are based on. In the simulations, we estimated the inde-
pendent components by the similar architecture as IIA (e.g., latent components assumptions, MLPs, and so on),
except that it assumed the instantaneous mixture model for the observation.
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