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Density of States Estimation for
Out-of-Distribution Detection:

Supplementary Material

A Isotropic Gaussian Densities

Here we work through the simple example given in the
main text in detail.

A high-dimensional spherically symmetric Gaussian
distribution with mean zero and unit variance in D
dimensions has the probability density:
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Transformed for spherical coordinates, this becomes a
distribution over the norm of the vectors:
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The energy of the original distribution is:

u
def
= − log p(X = x) = −x

T x

2
− D

2
log(2π)

= −r
2

2
− D

2
log(2π) (7)

The density of states in this case is given by:
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B Vulnerability of Likelihoods in
Flow-based Models

In many previous works on unsupervised OOD detec-
tion [e.g., Nalisnick et al., 2019b, Ren et al., 2019,
Choi et al., 2018, Bishop, 1994], it has been taken for
granted that the likelihood q(X|θn) (which is usually
the optimization target for a deep generative model)
should be the most informative statistic either by in-
terpreting it directly as a “likelihood,” or by using
it as a measurement of typicality. We found in our
experiments that tests solely utilizing the likelihood
of a deep generative model were often vulnerable to
OOD data. Nalisnick et al. [2019b] attributed this to
a defect in deep generative models themselves. In this
section, we aim to show that this is at least partially
due to the methodologies for OOD detection rather
than pathologies of generative models themselves.

Let us consider a flow-based model, such as Glow
[Kingma and Dhariwal, 2018]. In flow-based mod-
els, the log-likelihood is computed as log q(X|θn) =

T
(latent)
n (X) +T

(jac)
n (X), where T (jac)

n (X)
def
= log | J(X)|

is the Jacobian of the transformation from X to Z, and
T

(latent)
n (X) = q(Z|X, θn) is the log-probability of the

latent variable Z. Consider the example shown in Fig-
ure 5. In this example, we show the two-dimensional
distribution of metrics for an in-distribution dataset
(blue) and an OOD dataset (red). The two dimensions
in this case are q(Z) and log |J|, which are added to-
gether to compute the log-likelihood. From this, it is
straightforward that curves of constant likelihood have
a slope of -1 in this space.

Consider how different decision rules reject data in this
space. If we assume that data with low likelihood were
OOD, then our decision rule would be approximately
equivalent to that shown in the left panel of Figure 5. If
we instead use the typicality test (TT) from Nalisnick
et al. [2019b], we observe the result shown in the center
panel. Effectively, excluding examples with low log-
likelihood determines a half-space for which the data is
assumed to be in-distribution. Similarly, TT identifies
in-distribution data as the intersection of two half-
spaces. However, in both cases, OOD data falls within
the region classified as in-distribution. As a result,
both metrics do extremely poorly on OOD detection.
In contrast, DoSE operates over each dimension of the
space separately (or all jointly), and is able to find a
more optimal decision boundary.

This behavior is not restricted to flow-based models.
In VAEs, the log-evidence is approximated as q(X) =
EZ∼q(Z|X) [q(X|Z)r(Z)/q(Z|X)], a nonlinear function
of a sum of the cross-entropy between the posterior
and the prior, the log-likelihood from the decoder, and
the entropy of the encoder. Therefore, models that use
only the log-evidence of a VAE as a decision rule can
exhibit a similar vulnerability to a flow-based model
doing the same.

Furthermore, we observe this phenomenon experimen-
tally. Figure 2 shows a decomposition similar to Fig-
ure 5 for a model trained on CelebA, using CIFAR10
as OOD data. We observe that, in this space, the
OOD data is projected such that it is nearly perfectly
confounded for both q(X|θn) as well as TT. DoSE oper-
ates on the granularity of the statistics themselves, and
therefore achieves a much better AUROC because it
partitions the space using all of the constituent statis-
tics, from which the OOD data is noticeably shifted
from the in-distribution data.

C Additional details of experiments

To evaluate the performance of DoSE, we first train
a generative model on an in-distribution dataset, and
fit density of states estimators to statistics from the
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Figure 5: In this toy example, we show the distribution of two statistics, log q(Z) and log | J |, returned from a
flow-based model on in-distribution data (blue) and OOD data (red). Each panel shows the decision regions
produced by different OOD detection techniques operating on these metrics. The left column shows the decision
boundaries produced using the log-likelihood. The middle column shows the decision boundaries produced by
TT, a typicality test of the log-likelihood. The right column shows the decision boundaries produced by DoSE. In
this particular case, the likelihood is the least useful projection over which to attempt to identify OOD data,
leading to poor performance of both TT and q(X|θn). DoSE achieves approximately perfect OOD detection in
this same setting.

generative model on the training set. Before performing
inference, we evaluate the memorization of the model
using a random heldout set of 10% of the training
examples. When performing inference, we compute
the same set of statistics from the generative model
on new input data, and calculate the DoSE scores
for each example. We measure performance use the
AUROC measured using the DoSE scores found from
an evaluation set and a specific OOD set. For each
trained model, we evaluate the performance against
multiple OOD datasets.

Datasets. We use common dataset pairings for the
OOD detection task. For our in-distribution datasets,
we use MNIST and Fashion MNIST, along with CI-
FAR10, Street View Housing Numbers (SVHN), and
CelebA. These datasets are then paired with the other
datasets having the same dimensions, which are taken
to be OOD data. Similar to [Choi et al., 2018, De-
Vries and Taylor, 2018], we also use uniform and Gaus-
sian noise, and horizontally- and vertically-flipped ver-
sions of the in-distribution test set as additional OOD
datasets. We also use Omniglot for MNIST and Fashion
MNIST, and ImageNet-32 and CIFAR100 for CIFAR10,
SVHN, and CelebA.

Many of these dataset pairings are “simple,” in
that likelihood alone would be a reasonable rule
to detect OOD data. However, there are several
“hard” OOD dataset pairings identified by previous
work. FashionMNIST→MNIST and CIFAR10→SVHN
were both identified as difficult dataset pairings by

Nalisnick et al. [2019a]. Additionally, Nalisnick
et al. [2019b] identified CelebA→ CIFAR10/100 and
CIFAR10→CIFAR100 to be particularly difficult pair-
ings. The latter is particularly difficult, since both are
subsets of the 80 million tiny images dataset [Torralba
et al., 2008], but have non-overlapping class labels.

Architectures. Similar to [Choi et al., 2018, Nalisnick
et al., 2019b], we train β-VAEs [Higgins et al., 2017]
for MNIST and Fashion MNIST, and Glow [Kingma
and Dhariwal, 2018] for CIFAR10 and SVHN. For
the β-VAE models, our encoder and decoder followed
the architecture from Choi et al. [2018]. We use a 2-
dimensional latent space, and a trainable mixture of 200
Gaussians for the marginal distribution r(Z). We also
considered higher dimensional latent spaces where the
model would measure higher log-likelihoods, and found
that the DoSE results were similar, but the results from
competing techniques worsened substantially. We fix
the mean and logit of the first component of r(Z) to im-
prove training stability. For MNIST, we use a Bernoulli
distribution for the decoder log-likelihood. For Fashion-
MNIST, we instead used a Logit-Normal distribution,
a bijective transformation of the normal distribution
to the interval (0, 1) using a sigmoid bijector, since
the majority of the spatial variation between pixels in
FashionMNIST occurs at values near 0.5, where the
Bernoulli distribution struggles to capture variation.

For the Glow models, we replicated the architecture
from [Nalisnick et al., 2019b], using 3 spatial hierarchies
of 8 steps of the flow. Each step of the flow consists of
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actnorm, an invertible 1× 1 convolution, and an affine
coupling layer. We use a RealNVP bijector [Dinh et al.,
2017] for the coupling layer, which uses a 3-layer con-
volutional stack with ReLU activations and 400 filters.
For stability in training, the last convolutional layer
is set to 0 at initialization for each stack, which corre-
sponds to the full Glow network simply producing an
identity transformation (with some rearranging of the
pixels) at initialization. Between each spatial hierarchy,
we remove half of the data to create multiple different
levels of spatial variation. Altogether the Glow network
constructs a bijective transformation which projects
the data X into a latent space Z with the same dimen-
sionality (3072, in these experiments). The full Glow
model is then created as a transformed distribution
using N (0, 1) as the base distribution, and the Glow
network as the bijector. All experiments were per-
formed using TensorFlow and TensorFlow Probability
[Abadi et al., 2015].

Training details Following Kingma and Dhariwal
[2018], we train Glow models using the Adamax op-
timizer [Kingma and Ba, 2014] with a learning rate
initialized to 0 and gradually increased to 0.001 over
10 epochs, after which point it is held constant. We
trained the models for 250 epochs in total. We opti-
mize the negative log-likelihood q(X|θn) with added
L2-regularization of the weights to reduce memoriza-
tion in the model. We explored regularization con-
stants of λ = [0., 0.01, 0.05, 0.1, 0.5], and determined
that λ = [0.05, 0.1] limited memorization without also
limiting generative model performance.

For VAE models, convergence was much faster, so we
train for 50 epochs using a learning rate initialized at
0.0001, and decayed exponentially by half every 10000
training steps. We follow Choi et al. [2018] and use the
Adam optimizer to optimize the traditional Evidence
Lower Bound (ELBO). We evaluate the ELBO using
16 samples from the posterior distribution. To prevent
memorization, we employ two additional procedures:
First, we “burn-in” the decoder for one epoch by draw-
ing samples from the prior, and use the decoder to
estimate the log-likelihood for each input given the
samples. This has the effect of initializing our likeli-
hood to be properly conditioned on the prior, keeping
small initial gradients for the encoder early on in train-
ing. Second, we employ “reverse beta-annealing” during
training. We start with a large value of β = 100, and
we decay its value by a factor of 2.0 every 3 epochs.
We found that this causes the posterior to be more
effectively anchored to the prior during training, which
ultimately results in more informative latent spaces
and a more useful sampling distribution (and therefore
more reliable outlier detection).

For each dataset, we trained 5 separate models follow-

ing [Lakshminarayanan et al., 2017, Choi et al., 2018,
Nalisnick et al., 2019b]. This allows us to both quantify
the variability in performance over separate training
runs, as well as to utilize an ensemble of all 5 models in
order to produce a stronger and more robust estimator.

Evaluation of performance. Once a model is
trained, we construct our DoSE by measuring the value
of summary statistics of the model, computed on the
elements of the training set. For VAEs, we have an
abundance of possibilities:

• KL divergence between the posterior and marginal
T

(rate)
n (X) = KL[q(Z|X, θn), q(Z)] (rate)

• Cross-entropy between the posterior and marginal
T

(xent)
n (X) = H[q(Z|X, θn), q(Z)]

• Entropy of the posterior T (ent)
n (X) = H[q(Z|X, θn)]

• Expected log-likelihood computed over the posterior
T

(dist)
n (X) = Eq(Z|X,θn)[q(X|Z, θn)] (distortion)

• Estimate of the evidence computed using a
16-sample importance weighted autoencoder
(IWAE) given by T

(iwae)
n (X) = q(X|θn) =

Eq(Z|X)[q(X|Z, θn)q(Z)/q(Z|X, θn)] (log-likelihood,
following the terminology of Nalisnick et al.
[2019a,b], Choi et al. [2018], Ren et al. [2019])

For Glow models, the number of statistics is more
constrained because Glow does not have as many ways
to evaluate summaries on the generative model. In this
work, we use:

• “Log-likelihood” T (like)
n (X) = q(X|θn), and its two

constituents

• Log-probability of the latent variable T (latent)
n (X) =

q(Z(X)|θn)

• Log of the determinant of the Jacobian between X
and Z (i.e., T (jacobian)

n (X) = log | J(X)|)

For each statistic that we measure in the training set,
we compute a Kernel Density Estimate (KDE), using
the default implementation in SciPy [Virtanen et al.,
2020] to build an individual DoSE. DoSEKDE is then
simply the sum over all the DoSE scores for an individ-
ual statistic:

DoSEKDE =

m∑
j
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We build DoSESVM by creating an n-dimensional fea-
ture vector of the n metrics for each observation. We
first use Principal Components Analysis (PCA) to learn
a whitening transformation from the training set to help
correct against the wildly different variance observed in
different statistics. We then use the transformed space
to learn a one-class SVM. Both PCA and the SVM use
the default implementations in scikit-learn [Pedregosa
et al., 2011].

Before we evaluate the DoSE performance on OOD
data we check its memorization. To do this we mea-
sure the expected calibration error (ECE) [Guo et al.,
2017] of DoSEKDE using a small heldout subset of 10%
of the examples from the training set. These exam-
ples are in-distribution but never seen during training,
and therefore the ECE measures the degree to which
the DoSE scores given to new in-distribution data are
consistent with the scores given to data seen during
training. In our experiments, we found that without
some form of intervention, both VAE and Glow models
exhibited extreme capacity for memorization, and there-
fore had high ECE. This inspired our earlier described
preventative measures, such as reverse beta-annealing
for VAEs, and L2-regularization for Glow. Using these
additional procedures, we found that our memorization
scores were typically around 1% for most models.

We evaluate the performance of DoSEKDE and
DoSESVM by computing the scores on the specified
OOD datasets, and use these scores to measure the
AUROC for OOD detection. We compare our method
against four unsupervised baselines: the vanilla likeli-
hood q(X|θn), Watanabe-Akaike information criterion
(WAIC) [Choi et al., 2018], the typicality test (TT) us-
ing a batch size of 1 (which represents a more realistic
application than a larger batch size), [Nalisnick et al.,
2019b], and likelihood ratios (LLR) [Ren et al., 2019].
For WAIC, we use Eq. 1 from their paper to compute
the scores. For LLR, we train a background model
using their method of mutations to perturb the input
data. We use a mutation rate of 0.15, which is in the
middle of the range of values they found to produce
acceptable results. The LLR score is then the difference
between the scores from models trained without and
with mutations. With the exception of the background
models used for LLR, all methods are evaluated on
the same models. This provides an apples-to-apples
comparison between methods, and highlights the differ-
ences between them as a function of the method itself,
rather than the underlying model.

D Histograms of Statistics

We show histograms of statistics for VAE on MNIST
and FashionMNIST in Figure 6 and Figure 7 respec-

tively. We show histograms for Glow on CIFAR10,
SVHN and CelebA in Figures 8,9 and 10 respectively.
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Figure 6: Histograms of 5 different statistics evaluated on a VAE trained on the MNIST dataset. The leftmost
column shows the KL divergence between the posterior and the prior. The second column shows the cross-entropy
between the posterior and the prior. The third column shows the entropy of the encoder. The fourth shows the
distortion (the expected log-likelihood from the decoder). The last column shows the log-evidence, computed
using a 16-sample IWAE estimate. For each metric, we show the distribution of that metric observed in the test
set, along with multiple different OOD datasets.

Figure 7: Same as Figure 6, but for a VAE trained on FashionMNIST. Note that while the log-likelihood is
a successful OOD detection metric when trained on MNIST, it does not perform similarly when trained on
FashionMNIST, often overlapping strongly with various OOD datasets. Other statistics, such as the KL divergence
between the posterior and the prior appear to be much more informative in this case.

Figure 8: Same as Figure 6, but for a Glow model trained on CIFAR10.

Figure 9: Same as Figure 6, but for a Glow model trained on SVHN.

Figure 10: Same as Figure 6, but for a Glow model trained on CelebA.


