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A Theorems and proofs

Theorem A.1. L%, is a lower bound on the evi-
dence log p(x).
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Theorem A.2. When K > 1, LI, .5 is a tighter
lower bound than E?WAE'
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B Experimental Details

For all experiments, we assume that the data was
generated according to the following graphical model:

fori=1...n:
Zi~1(Z) (3)
yi ~ p(YilZ;) (4)

Here, for each instance of the data, we sample the
local representation of this data z; from its marginal
distribution r(Z) and draw the observed data y; from
the conditional distribution p(Y;|Z;). In this section,
we present specific details of the implementation of each
of these experiments, including training and evaluation
procedures.

B.1 Single Column MNIST Classification

Architecture. For our experiments, we use an MLP
architecture with 4 layers of 128 hidden units and
ELU activation functions [Clevert et al., 2015] for the
encoder. The last layer predicts the parameters for a
distribution over a two dimensional latent variable (in
subsection C.2, we run the same experiment but with a
one dimensional latent variable). For all models, we use
a mixture of K multivariate normal distributions with
full covariance with mixture weights as a learnable
parameter which is predicted by the encoder. For
models with K = 1, this reduces to a single multivariate

normal distribution with no learnable mixture weights.

For the decoder, we use an affine transformation that
outputs the logits for a categorical distribution. We use
such a simple architecture for decoder to encourage the

encoder to capture potentially multimodal information
about the class of an image. For our prior distribution
r(2), we use a trainable mixture of Gaussians, although
we found the prior makes relatively little difference in
the final results.

Training Procedure. For a single component model,
we optimize both the traditional evidence lower bound
(ELBO), as well as the importance weighted estimate of
the evidence (IWAE). For the mixture models, we use
stratified sampling to compute the ELBO (SELBO),
as well as the Stratified-IWAE (SIWAE) derived in
Section 2. We use K = [1,2,5,10] for the number
of mixture components, and T = [1,2,5,10] for the
number of samples drawn per component. To regulate
the information content of the posterior, we use a
B = 0.05 penalty on the KL divergence term (and
the equivalent term in the STWAE objective), as used
in Higgins et al. [2017]. Because one-column MNIST
does not have an established benchmark, we also train
two deterministic models to use as baselines: (1) a
“pyramid” MLP with 5 layers of 256 hidden units to
approximate the peak deterministic accuracy, and (2)
a “bottleneck” MLP with the same architecture as our
VIB models, therefore containing a two dimensional
“latent space.” All models were trained for 50 epochs
using the Adam optimizer Kingma and Ba [2014] with
a learning rate of 0.001 which was decayed by 0.5 every
15000 train steps. When training SELBO models, T
refers to the number of samples drawn to compute the
Monte-Carlo estimate of the objective.

Evaluation. To evaluate the accuracy of the model,
we first need the posterior predictive distribution. We
sample the posterior predictive by decoding 10 sam-
ples from g4 (z|x) and averaging the class probabilities
returned by each sample. This marginalizes over the
uncertainty in the latent variables and if our prior
beliefs are correct, nominally produces calibrated prob-
abilities. From these probabilities, we take the highest-
probability class, and consider that the prediction of
the model. Accuracy is then defined as the number
of correct predictions divided by the total number of
examples in the test set.

We also compute the Expected Calibration Error [ECE;
Guo et al., 2017]. For this, we decode 1000 samples
from the posterior and compute the average probability
of each class. We take the model prediction to then be

§ = argmaxp(y|z) (5)

This prediction is labeled correct if it is equal to the
true class label y, otherwise it is labeled incorrect. In
addition to checking if each prediction is correct, we also
get the predicted confidence for the true class p(Ytrue)-
We then rank our data and divide into 10 bins such
that each bin contains 10% of the examples, ranked by
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Figure B.1: On the left is a toy dataset generated by sampling z ~ N(0,1);x ~ N(|z|,0%I). On the right are
SIWAE values at each epoch while training posteriors using SELBO, SIWAE, and score function estimators of
the evidence. Due to mixture components collapse, the SELBO and score function posteriors achieve lower values

of SIWAE.
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Figure B.2: Training results for the toy experiment
with the addition of “sticking-the-landing” versions of
SELBO and SIWAE. We observe no significant differ-
ence between the final training SIWAEs of STL-SELBO
vs. SELBO (-2.026 vs. -2.024 respectively) and STL-
SIWAE vs. SIWAE (-1.505 and -1.505 respectively)

confidence in the true class p(y¢ryue). The confidence
of a bin is computed as p""(yyye = L+ 3V p(ygfge).
The probability of the truth for a given bin is given
by the fraction of predictions in the bin which were
correct. The expected calibration error is then defined
as the average absolute value of difference between the
confidence in a bin and the probability of correctness
in that bin.

In the main paper, we also included no discussion of the
relative computational cost between methods. Because
SELBO/SIWAE require stratification over components,
they by design have to use more samples than EL-
BO/IWAE models, which only need to sample from
one mode and therefore have T' samples (compared to
K x T). SELBO and SIWAE have comparable cost

r

.

(a) STL-SELBO (b) STL-SIWAE posterior
Figure B.3: Samples from of the learned (implicit)
posteriors for the observed data point (1,1) for the
STL-SELBO and STL-SIWAE [Roeder et al., 2017].

to each other, as they only run different mathematical
operations when computing the loss (a sum versus a
log-sum-exp).

B.2 Single Column MNIST VAE

Architecture. For the encoder, we used the same
architecture as in subsection 4.2. For the decoder, we
used the same architecture as used in the Tensorflow
Probability GitHub example with a few small differ-
ences. In order to ensure that gradients were passed to
the encoder early on in training, we used a skip connec-
tion, represented as a single affine layer to project the
latent space directly to the output space. We also exper-
imented with both the affine and tensorflow probability
decoders separately, and found that the final results
did not depend on the decoder architecture, though
the overall performance of all models was better for
the nonlinear decoder architectures. For the prior, we
used a mixture distribution with 200 components.
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Figure B.4: Similar to Figure 4, but for two examples where the input to the model is extremely similar even
though the inputs are from different classes. We find that while all models infer the correct class, models trained
with SIWAE are better suited to recognize the similarity between these two images, assigning some probability to

the other class.

Training. For a single component model, we optimize
both ELBO and IWAE, and for mixture models we use
the corresponding stratified loss. We experiment with
k =11,2,5,10] for the number of mixture components
and T = [1,2,5,10] for the number of samples drawn
per component. All models are trained for 100 epochs
using Adam with a learning rate of 0.0001, decayed by
0.5 every 15000 training steps.

Evaluation. We evaluate models as a function of
k and T. To ensure consistency in the evaluation, we
used 100 samples from the posterior of each model to
evaluate an IWAE estimate of the evidence.

B.3 Burn-in against the prior

Typical initialization schemes attempt to facilitate gra-
dient backpropagation by ensuring that the first two
moments of the activations remain approximately 0,
and 1, respectively. We found that these initialization
schemes don’t typically produce a posterior distribu-
tion tuned reasonably to the prior. This violates our
intuition, as the posterior in the absence of evidence
should be identical to the prior. Furthermore, even
if the model were initialized such that the posterior
and prior were aligned, the alignment would quickly
be broken by large bulk gradients being given to the
posterior from the likelihood. We observed that this

was a consequence of the decoder being not well tuned
to the dataset at initialization. For example, the edge
pixels in MNIST are essentially all zero, but the ini-
tial decoder predicts a uniform distribution over these
pixels. The model would therefore systematically shift
the posterior to compensate for the poor initialization
of the likelihood. This bulk shift early on in training
often produced a final posterior that was well tuned to
the likelihood, but poorly tuned to the prior.

Our simple solution to this problem was to burn in
the decoder so that the initial decoder distribution was
reflective of our prior distribution over the dataset. To
do this, we fed samples from the prior to the decoder,
and attempted to maximize the expected log-likelihood
of the images given the prior samples p(z|z). Further-
more, because the encoder could often be improperly
tuned against the prior (a worsening problem in higher
dimensionality), we attempted to uniformly spread the
encoder across the prior. This was accomplished by
minimizing the cross entropy between the prior and the
posterior H,(r,q) = E..,()q(z|z). This optimization
was performed jointly for both the encoder and de-
coder variables, with the prior held fixed. Our specific
procedure to do this was as follows.

1. Draw samples from the prior distribution r(z).

2. For the prior samples, compute the expected
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log-likelihood E., <y (2) 2,:i=1...m [log p(w4|2:)] over
a batch of images in the training set.

3. For the prior samples, also compute the cross en-
tropy from the posterior H, (r(z;, q(z;|x;)).

4. Compute and apply the gradients of the loss £ =

E.,or(2),zi5i=1...0 [~ 1og p(24|2;) —log q(z|x)] for all
encoder and decoder variables.

5. Repeat until converged.

In practice, we found that convergence was typically
achieved within a single epoch, so for simplicity we ran
burn-in for a single epoch. This produced a decoder
which, when fed samples from the prior, would produce
predictions consistent with random samples of each
pixel from the dataset. Note that prior samples from
the burned in decoder do not resemble images from the
dataset, but merely draw from a simplified estimate of
the prior distribution for each pixel. At the same time,
this burn in procedure matches the encoder to the prior,
which makes some sense, given that we initially only
know samples from the prior. We think that this burn
in procedure is a worthwhile practice for initializing
latent variable models.

C Additional Experiment Results

C.1 Toy Problem

In Figure B.1 we visualize the data from the toy experi-
ment and the training curves for the ELBO estimators.

In addition to the experiments presented in the main
body of the paper, we also ran a comparison to the
"sticking the landing" (STL), pathwise derivative esti-
mator, which results in reduced variance in the model
gradients (with a potential increase in bias Tucker et al.
[2019]). Our main interest lies in determining if the
STL gradient estimator is itself sufficient for fitting
multimodal posteriors, or if the use of SIWAE is truly
necessary for inferring multimodality. We ran our test
on the toy problem using STL to evaluate both the
SELBO and the SIWAE losses. We show the evidence,
as measured by a 10° sample SIWAE as a function of
training epochs in Figure B.2. We find that for both
SELBO and SIWAE, the model evidence is unchanged
by using the STL gradient estimator, indicating that
STL does not help in converging to a better model.
Furthermore, in Figure B.3, we show samples from the
learned posterior. We find that using SELBO, even
with STL, results in a model which does not discover
all modes in the posterior. The fact that SELBO and
SIWAE give the same results as STL-SELBO and STL-
SIWAE suggests that it is the SIWAE loss itself, rather

than the gradient estimator, that is providing the neces-
sary ingredients for detecting multimodality. However,
we speculate that STL may offer more relative improve-
ment in situations where the bias introduced by SELBO
is low compared to the variance introduced by SIWAE.

In the main text of the paper, we showed the latent
space distribution for an image wherein the ambiguity
introduced by the use of a single column in the inference
resulted in a multimodal latent space. Furthermore
we showed that SIWAE was able to detect and cap-
ture this multimodality much better than ELBO or
SELBO, which either are structurally unequipped to
do so (ELBO), or which are penalized for doing so
(SELBO). To show that the capacity for multimodality
aids in the interpretability of our model, consider the
images shown in Figure B.4. Both images, while having
quite different true appearances, appear nearly identi-
cal when viewed as only their center column. Therefore,
a model should classify this pair as "either a 0 or a
3" since both of these classes have this appearance.
However, this is not observed when SELBO is used.
The model (correctly) predicts a zero for the top image,
and a three for the bottom image, with no indication
that the other is a possibility. In contrast, the SIWAE
model also predicts the correct class, but correctly as-
signs a non-negligible fraction of its samples to the
other class. In this sense, uncertainty is measured in
the latent space itself using the posterior distribution.

We also included an ablation study to compare the
gains from using SIWAE compared to alternative means
of improving gradient flow in VAE models. For this
study, we trained models using 8 different losses to
compare their performance. In particular, we trained
models using the C-IWAE and M-IWAE from Rain-
forth et al. [2018], which reduce the gradient variance
and purportedly result in better models than those
trained with IWAE. For both of these, we use an ap-
propriately modified SIWAE for K > 1. We also train
models using the “sticking the landing” gradient esti-
mator from Roeder et al. [2017] which was also sug-
gested to improve variance in the gradient estimates.
We added the stl estimator to SELBO, SIWAE, and
C-IWAE to examine if the stl estimator has an ef-
fect on performance compared to models which use
the naive implementations of the gradient. Finally,
we compare SIWAE to the PAC™-Bayes loss from
Morningstar et al. [2020], which maximizes a bound
on the log posterior predictive probability: Lppp =
—log (1/TK >/ 3%, p(x]2)) + Dkw(q(zlz),7(2),). We
trained all of these losses as a function of K and T
to compare the relative gains in performance with ad-
ditional components or samples. For all of these, we
followed the same training procedure as SIWAE and
SELBO, as mentioned in Appendix B.
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Figure C.1: Accuracy and calibration error of a model as a function of K and T for fixed values of K and 7. We
compared multiple different losses to study the effect of the loss on performance, focusing on different means
of reducing gradient variance such as “sticking the landing”“ Roeder et al. [2017], and alternatives discussed in

Rainforth et al. [2018].

We show the performance as a function of K and T for
several choices of T and K respectively in Figure C.1.
In the main paper, we already showed that SIWAE ex-
hibits increasing classification accuracy and decreasing
expected calibration error as a function of K. Here we
also observe that the “sticking the landing” gradient es-
timator offers little benefit, since the accuracy returned
from all corresponding naive implementations of each
loss have comparable performance. This result agrees
with our results from Figure B.3, where we show that
this estimator does not help SELBO to recover mul-
timodality. We also find that C-IWAE does not offer
improvement over SIWAE, with both the naive and
stl versions performing equally to alternatives when
T = 1, and proportionally worse otherwise, though
they both still appear to have improved performance
as a function of K. It appears that C-IWAE also ex-
hibits worsening performance as a function of T' for
K = 5. We also observe that M-IWAE exhibits similar
performance to SIWAE as a function of K, but observes
no improvement with 7. This behavior is expected,
as our M-IWAE implementation follows SIWAE over
mixture components, but follows SELBO over samples.
Finally, we also observe that the PAC™ objective ex-
hibits comparable performance to SIWAE as a function
of K and T. We also expect this behavior, since both
objectives allow for similar degrees of mode exploration.
From all of these results, we draw the conclusion that

the SIWAE objective provides advantages to models
which cannot be replicated simply by stratification over
mixture components, or by reducing gradient variance
either by blocking gradient flow through noisy parts of
the loss or by softening the tightness of the bound.

C.2 One-dimensional latent variable

We ran the same MNIST classification experiment us-
ing a one-dimensional latent variable. In general, fit-
ting a one-dimensional latent variable should result
in an appreciable drop in accuracy because a single-
dimensional bottleneck allows for a maximum of two
decision boundaries for a particular class, and therefore
forces a latent representation which becomes multi-
modal in the presence of any complex structure in the
uncertainty. Therefore, a reasonable expectation is that
this should force a model trained with SELBO to learn
distinct modes in the encoder. However, we experi-
mented with training for this objective using multiple
components as well as with a single component, and in
all cases achieve an accuracy of 51% or lower, which is
substantially worse than can be reached in two dimen-
sions. By dissecting this model, we see again that the
model reduces to a single mode in the posterior, either
by assigning all of the component weights to a single
mode, or by merging all of the separate modes together
(Figure C.2). This strongly suggests that the SELBO
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Figure C.2: Similar to Figure 4, but using a one-dimensional latent variable. The input example is the same
as in Figure 4. The left panel shows the latent representation found by optimizing the SELBO objective. Only
a single mode is identified in the latent space. In contrast, optimizing the SIWAE objective produces a latent

representation with multiple distinct modes.

objective actively opposes the formation of multiple
modes in the posterior.

Using the SIWAE objective instead of the SELBO, we
see our accuracy climb to 76%, nearly equivalent to the
peak accuracy in two dimensions. We also find that
using the SIWAE objective with only a single compo-
nent (.e. IWAE) outperforms the traditional ELBO
substantially as well, achieving 63% accuracy. However,
there is still a substantial gap between the IWAE model
and the SIWAE model. All of the probabilistic models
outperform a deterministic model in this case, which
achieves a peak accuracy of merely 25%.

C.3 Single Column MNIST VAE

One qualitative metric that helps to asses the perfor-
mance of VAEs, independent of quantitative metrics
such as the log-evidence, which may not always be
entirely informative, is the appearance of images drawn
from the model. This can be examined in multiple ways.
One can draw samples from the generative model to
see if they appear qualitatively similar to images from
the dataset. Alternatively, one can generate recon-
structions using samples from the inference model to
see if the inference appears reasonable. To assess the
performance of SIWAE compared to SELBO, we found
it more reasonable to examine the inference model.

To generate templates of each mode from the poste-
rior, we passed the mode of the encoder component
distributions to the decoder, and took the mode of
each decoded image. These are shown in Figure C.3.

We find that all modes from SELBO make roughly the
same prediction, showing that the modes have collapsed
together. We also find that these modes often do not
capture the correct appearance of the input data over
any component of the encoder. In some cases, this
may be an example of the decoder trying to "hedge
its bets" to make up for the inability of SELBO to
recover multimodality, and therefore predicting nearly
0.5 for pixels which have competing explanations. How-
ever, it should be pointed out that this cripples the
generative model, as the samples produced are of lower
quality than they could otherwise be if uncertainty
were represented correctly.

In contrast, SIWAE does not encounter issues with
collapsing modes, and produces multiple different ex-
planations for each instance fed to the encoder. Notably,
we find that for more unambiguous inputs (e.g. zeros),
the encoder produces multiple template images from
the correct class, but having different stylistic appear-
ance. For images which may be explained by multiple
different classes, we find that the modes produce a cen-
sus of the potential classes. We find that at least one
mode will typically provide a good explanation for the
output data, with some exceptions occurring for rarer
images (such as a crossed seven, which only occurs
in roughly 10% of sevens). For the same reason, we
suspect that samples drawn from the generative model
will exhibit qualitative appearance more indicative of
examples from the dataset. To this end, the ability to
represent multimodality has prevented the generative
model from being hindered by the inference model, as
is observed in models using SELBO.
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Figure C.3: A visualization of modes from the posterior
distribution of models trained with SELBO, compared
to models trained with SIWAE. The leftmost column
shows the true image, from which the centermost col-
umn was fed to the encoder. The central block of
images shows the reconstructed modes of the poste-
rior for a model trained with SELBO. The rightmost
block of images shows reconstructed modes from the
posterior of a model trained with SIWAE. Each column
corresponds to a different mode in the posterior. The
SELBO modes all appear identical, suggesting that the
model is not leveraging multimodality. In contrast, the
SIWAE models learn a diverse assortment of modes,
which offer competing explanations of the output data.
Note that at least one of the SIWAE modes provides
an accurate description of the data, while the same
cannot be said for SELBO modes.

C.4 Single Column FashionMNIST VAE

We also replicated our single column VAE experiments
using the FashionMNIST dataset Xiao et al. [2017]. For
this experiment, we replicated the experimental setup
for the Single Column MNIST VAE, but with several
differences. First, instead of a Bernoulli distribution
for the likelihood, we use a Logit-Normal distribution.
This fits better with the observed FashionMNIST im-
ages, which take on approximately continuous values,
as compared to MNIST which is binarized to be ei-
ther 0 or 1. For this, we transform the pixel values of
the output image into the range 0.001 to 0.999, which
avoids any instability brought about by pixels at the
edge of the support of the distribution. To implement
our likelihood, we use a transformed Normal distribu-
tion, and use the Sigmoid bijector to transform this
distribution. We further use a single shared variance
for all images, which we constrain to the positive real
numbers and allow to be learnable. We find that this
resulted in better output reconstructions, due to the
reduced variance in the output images. We also use
a 16 dimensional latent space, since we expect that
the information content of each image is a lot richer
for FashionMNIST than for MNIST. Similar to our
experiments with MNIST, we evaluate performance
using the log-evidence, as measured using a 100 sample

IWAE estimate.

We show the log-evidence as a function of components
and samples in Figure C.4. We observe that SIWAE
causes rapid improvement in the log-evidence as a
function of bpth K and T, while SELBO does not
appear to observe any improvement with either. This
follows our results as observed in Section 4.3, where we
also see SIWAE offer improvements where SELBO does
not. This offers further confirmation of the advantages
of SIWAE as compared to SELBO.

C.5 Single Column CIFAR-10 VAE

We further replicated our single column VAE experi-
ments using the CIFAR-10 dataset Krizhevsky et al.
[2009]. Here, we replicated our problem setup for Fash-
ionMNIST, where we used a Logit-Normal distribution
with learnable shared variance for our likelihood, a
multivariate normal distribution for our posterior, and
a mixture of multivariate normal distributions for the
prior. We scaled the output image pixel values to the
range 0.001 to 0.999, and the input pixel values from
-1to 1.

We show the log-evidence as a function of the number
of components and samples in Figure C.5. As we
observed with MNIST and FashionMNIST, we also
observe that the log-evidence improves with K and
T on CIFAR-10. This further indicates that SIWAE
allows for an increased model capacity to model data
which is particularly uncertain.

C.6 Full Image VAE

Our previous experiments all indicate that SIWAE of-
fers advantages over SELBO when the input data does
not contain sufficient information to unambiguously de-
termine the output quantity. However, when the input
data is not ambiguous, these advantages are no longer
present and SIWAE may therefore offer fewer relative
improvements compared to SELBO. At the same time,
experiments comparing IWAE to ELBO indicate that
losses like SIWAE may also exhibit higher variance in
the gradients, which may affect the training dynamics of
the model, resulting in worse outcomes Rainforth et al.
[2018]. While our previous experiments have shown
that higher variance in the gradients is overcome by
the ability to successfully leverage multimodality when
it exists, it is logical that higher variance gradients
could become a detriment to the relative performance
when multimodality offers no advantages. We therefore
expect that SELBO should perform equal to or better
than SIWAE in clean and simple problems where there
is no need for multimodality in the latent representation
of the data.
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Figure C.4: Log-evidence as a function of K and T for fixed values of T" and K, evaluated on the FashionMNIST
dataset. Models trained with ELBO and SELBO are shown in red, while models trained with IWAE and SIWAE

are shown in Blue.
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Figure C.5: Log-evidence as a function of the number of mixture components K or samples T, at several fixed
values of T" and K, evaluated on the CIFAR-10 dataset. Blue points show SIWAE, which outperforms SELBO,

shown in red.

To that end, we trained a VAE for 100 epochs on the
standard binarized MNIST benchmark dataset, with
no corruption of the inputs. Similar to our previous
experiment, we evaluate performance as a function of K
and T, and the dimensionality of the latent space using
a 100 sample SIWAE estimate of the evidence. The
training procedure follows that outlined in Appendix B.

We find that when the latent space is low dimensional-
ity, the results are similar to our results from previous
experiments. Model performance is improved by us-
ing SIWAE instead of SELBO, with the performance
improving by increasing either K or T (though the
improvement with 7' is ambiguous). This makes sense,
as the encoder is able to overcome the limitations im-
posed by low dimensionality by using multimodality
to represent complex nonlinear structure. In higher
dimensionality however, we find that SELBO performs
better than SIWAE. This also makes sense intuitively:
as the number of dimensions increases, so too does the
number of ways in which two unimodal entities can
differ. Therefore, the advantages that multimodality

provides in low dimensions no longer exist as the dimen-
sionality gets sufficiently large. We therefore expect
that using SELBO in larger encoding spaces gives qual-
itatively better results, though this comes at the cost
of explainability. In this regard we present SIWAE and
SELBO as two different tools enabling exploration of
two different regimes.

C.7 DMNIST Style Modality

Thus far, we have shown that when input information
to the encoder is limited, SELBO is unable to offer
competing explanations for data. We have shown in
subsection 4.2 that this is a detriment to model cali-
bration and we have also shown in subsection 4.3 that
this limits generative model performance. In these two
experiments, the model effectively had to represent
class-specific explanations as each mode in the poste-
rior. However, equally interesting is if multimodality
can be used to represent style in images.

To test this, we trained a VAE on MNIST, where the
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Figure C.6: Same as Figure 6, but for a model given the
full MNIST image as an input, and with a 2 dimensional
latent space. We find that STIWAE models improve with
increasing either K or 7', while SELBO models appear
to have ambiguous improvement with either K or T

output target was a randomly chosen image from the
same class as the input. This effectively gives the
model unambiguous information as to the class, but
is completely ambiguous with respect to style. Our
hypothesis is that because SIWAE can provide multiple
explanations for an input, that it will produce multiple
images with different styles. SELBO meanwhile would
be penalized for producing multiple explanations, and
would therefore produce a single fuzzy image for the
output.

In Figure C.7, we show the decoder means of the en-
coder style modes learned by SELBO and SIWAE mod-
els. As expected, we find that SELBO learns only a
single style mode, with all 5 possible encoder compo-
nents producing roughly the same image, indicating
that they have collapsed together. Furthermore, the
single mode learned by SELBO appears fuzzy, indi-
cating that uncertainty in the output pixels is being
explained by the decoder. This makes intuitive sense:
SELBO penalizes any posterior mode for providing an
explanation that is incorrect, even if that explanation is
reasonable. The model therefore compensates by learn-
ing only 1 explanation, but making that explanation
as reasonable as possible. However, the decoder can
only represent uncertainty on each pixel individually,
so in making a “reasonable” explanation, it can only
make an explanation that is a blurred combination of
all digits.

In contrast, when trained with SIWAE, each of the
posterior modes produces a different explanation for
the data. These different explanations correspond to
different styles of each digit. This corresponds to the
different styles of ones in the MNIST training set. By
allowing the posterior to provide multiple explanations,
the decoder produces outputs which are less uncertain.
This not only results in improved visual appearance
of the outputs, but also shows that SIWAE is able to
represent more complex forms of uncertainty in the
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Figure C.7: Posterior modes learned by SELBO and
SIWAE when trained to predict a random image from
the same class. SELBO learns only to infer the class
of the image, producing a fuzzy reconstruction that is
able to explain all different styles from that class simul-
taneously. SIWAE instead learns to encode multiple
different styles for each image. This results in percep-
tually sharper reconstructions, and also in a better
capture of uncertainty in the data.

posterior predictive distribution.

In the main text of the paper, we presented several
results with regard to VAE models which were given the
full image as an input. Here we will show the full details
informing these results. The first result was that in low
dimensionality, SIWAE models outperformed SELBO
models, and exhibited improving performance as a
function of K and 7. This is shown in Figure C.6. For
SELBO, we do not find a corresponding improvment,
as the K = 1 model outperformed K > 1. The origins
of this are unclear. Furthermore, we find that SELBO
does not appear to exhibit strong dependence on T



