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Abstract

Automatic Differentiation Variational Infer-
ence (ADVI) is a useful tool for efficiently
learning probabilistic models in machine learn-
ing. Traditionally, approximate posteriors
learned by ADVI are forced to be unimodal
in order to facilitate use of the reparameteri-
zation trick. In this paper, we show how strat-
ified sampling may be used to enable mixture
distributions as the approximate posterior,
and derive a new lower bound on the evi-
dence analogous to the importance weighted
autoencoder (IWAE). We show that this “SI-
WAE” is a tighter bound than both IWAE
and the traditional ELBO, both of which are
special instances of this bound. We verify em-
pirically that the traditional ELBO objective
disfavors the presence of multimodal posterior
distributions and may therefore not be able
to fully capture structure in the latent space.
Our experiments show that using the SIWAE
objective allows the encoder to learn more
complex distributions which contain multi-
modality, resulting in higher accuracy, better
calibration, and improved generative model
performance in the presence of incomplete,
limited, or corrupted data.

1 Introduction

Variational inference has become a powerful tool for
Bayesian modeling using deep neural networks, with
successes including image generation [Kingma et al.,
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2014], classification [Alemi et al., 2017], uncertainty
quantification [Snoek et al., 2019] and outlier detec-
tion [Bishop, 1993, Nalisnick et al., 2018]. Much of
the recent success in variational inference have been
driven by the relative ease of fitting models using ADVI,
where small numbers of samples can be used for in-
dividual forward passes through a model, and noisy
but unbiased gradients can be determined using the
reparameterization trick, allowing the use of backprop-
agation in training and enabling traditional stochastic
gradient methods [Rezende et al., 2014, Kingma et al.,
2014]. Currently, one major limitation of ADVI is
that it is only possible if the posterior distribution
is reparameterizable. This has to date forced ADVI
methods to utilize a limited set of possible distribu-
tions. While there have been developments in extending
reparameterization to broader classes of distributions
[e.g., gamma and beta distributions; Ruiz et al., 2016],
multimodal distributions have remained elusive.

This paper explores using ADVI with mixture posterior
distributions. Mixture distributions present an advan-
tage over unimodal distributions due to their flexibility
[Bishop et al., 1998, West, 1993]. The contributions of
this paper are as follows:

1. We propose the SIWAE, a new lower bound on
the evidence for the specific case of a mixture vari-
ational posterior. When applicable, the SIWAE is
tighter than the evidence or importance-weighted
evidence lower bounds.

2. We demonstrate on toy problems that SIWAE is
better suited to approximate a known multimodal
posterior distribution than the traditional ELBO
or the score function estimator.

3. We empirically show that models trained using
the traditional ELBO objective often fail to dis-
cover multimodality in the latent space even if
mixtures are used for the posterior. We also show
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that SIWAE allows models to more easily infer
multimodality when it exists.

4. We demonstrate that models trained with SIWAE
achieve higher classification accuracy and better
model calibration than ELBO using incomplete
feature information.

2 Approach

Consider a simple latent variable model with a single
observed data point x and corresponding latent variable
z along with a prior distribution r(z) and likelihood
p(x|z). In probabilistic modeling, we are interested in
the posterior distribution p(z|x), but generally, comput-
ing the posterior analytically is intractable. Variational
inference is a strategy that reframes Bayesian inference
as an optimization problem by first introducing a sur-
rogate variational posterior qφ(z|x), where φ are free
parameters, and then maximizing the evidence lower
bound (ELBO) with respect to φ. The ELBO is defined
as,

LELBO(φ) , Eqφ(z|x) [log p(x|z)]−DKL(qφ(z|x), r(z))
(1)

and is a lower bound on the marginal probability of the
data log p(x) [Jordan et al., 1999]. In ADVI, we aim to
compute ∇φL(φ), but computing the exact ELBO is
generally analytically intractable. Both terms in L(φ)
are expectations over qφ(z|x), so we approximate the
gradient by first drawing samples from qφ(z|x) and com-
puting the gradient of a Monte-Carlo approximation of
the ELBO, i.e., for a single sample z′ ∼ qφ(z|x), we see
that LELBO(φ) ≈ log p(x|z′)− log qφ(z

′|x) + log r(z′).

When computing the gradient, ADVI differentiates
through the sampling procedure itself, utilizing the
reparameterization trick [Kingma et al., 2014, Rezende
et al., 2014]. The reparameterization trick expresses
sampling a random variable z from its distribution as a
transformation of noise drawn from a base distribution
ε ∼ p(ε), where the transformation is a deterministic
function of the parameters of the sampling distribution
φ. In ADVI, we are restricted to “reparameterizable”
posterior distributions – distributions whose sampling
procedure can be expressed in this way. Although there
has been notable work in growing this class of distribu-
tions, such as in Figurnov et al. [2018] and Jankowiak
and Obermeyer [2018], the choice of posterior in ADVI
remains limited.

In this paper, we consider mixture posteriors for ADVI,
specifically mixtures whose component distributions
are reparameterizable. Mixture distributions are a
powerful class of posteriors, as growing the number of
components can make them arbitrarily expressive, but

are challenging to use as posteriors in ADVI as sam-
pling from a mixture is not naively reparameterizable
due to the discrete categorical variable that is sampled
to assign a data point to a mixture component. As
seen in [Roeder et al., 2017], stratified sampling can
address this issue. In stratified sampling, we compute
expectations by sampling evenly over component dis-
tribuions (“strata”) and averaging using the weights of
each stratum. For a mixture distribution, the natural
stratification is each of the mixture component distri-
butions. Rather than initially drawing an assignment
and then drawing a sample from the corresponding
component distribution, we draw one sample from each
component individually and compute a weighted av-
erage over the samples. Formally, for any continuous
and differentiable function f(z) and mixture distribu-
tion q(z) ,

∑K
k=1 αkqk(z), where αk are the mixture

weights and qk(z) are the components, we can compute
the expectation Eq(z)f(z) as follows:

Eq(z)f(z) =
∫
f(z)

(
K∑
k=1

αkqk(z)

)
dz

=

K∑
k=1

αk

∫
f(z)qk(z)dz

=

K∑
k=1

αkEqk(z) [f(z)] (2)

By pulling the sum over the mixture components out-
side of the integral over z and sampling from each of the
K mixture components, we are able to compute the ex-
pectation using the reparameterization trick, so long as
the component distributions from the mixture are them-
selves reparameterizable. Returning to ADVI, when
the posterior qφ(z|x) is a mixture distribution with
weights {αk,φ(x)}Kk=1 and components {qk,φ(z|x)}Kk=1,
we can compute the “stratified ELBO,” or SELBO:

LSELBO(φ) ,
K∑
k=1

αk,φ(x)Eqk,φ(z|x)
[
log

p(x|zk)r(zk)
qφ(zk|x)

]
While SELBO is technically the same objective as the
ELBO but specialized to mixtures, we draw this distinc-
tion to imply that we are drawing K reparameterizable
samples to compute a differentiable, Monte-Carlo es-
timate of the SELBO whereas the traditional ELBO
formulation implies we take a single sample to compute
a non-differentiable estimate. While this is an increase
in compute budget (needing to draw K samples v.s.
just one), we are now able to compute gradients w.r.t.
more expressive variational posterior.

2.1 A tighter bound for mixture posteriors

While the SELBO objective allows us to fit a mix-
ture posterior using ADVI, it falls prey to the same



Morningstar, Vikram, Ham, Gallagher, Dillon

issues that make fitting multimodal distributions with
the ELBO difficult, namely the ELBO’s mode-seeking
behavior. Furthermore this mode-seeking behavior ac-
tively works against the goal of learning a multimodal
posterior. Consider fitting a multimodal variational dis-
tribution q(z) to a multimodal distribution p(z) using
the ELBO. Since maximizing the ELBO corresponds to
minimizing DKL(q(z), p(z)), the ELBO only meaning-
fully depends on regions where q(z) has significant mass.
This results in the well-known phenomenon where a
q(z) fit via variational inference only captures one of
the modes of the target distribution p(z).

Now consider optimizing the SELBO, which is a
weighted average of the ELBO for each mixture com-
ponent, with ADVI. For components that produce low
ELBO values, gradients of SELBO will downweight
those components, potentially all the way to 0. Since
the ELBO is content with q(z) fitting just a single
mode of p(z), there is no reason for the components to
ever be upweighted, resulting in mode collapse. Unless
the variational distribution is initialized perfectly (i.e.
it has significant density at each of the true posterior’s
modes), we argue that ADVI on SELBO will collapse
mixture components and learn an overly conservative
approximate posterior.

To combat this harmful exploration penalty, we can
use importance sampling. An importance-weighted
estimate of the ELBO first draws T i.i.d. samples from
the posterior {zt}Tt=1 ∼ qφ(z|x), computing a lower
bound using the ratio of the densities of a sample under
the joint distribution and posterior (i.e., importance
weights) for each sample (called “IWAE” in Burda et al.
[2015]):

LTIWAE(φ) , E{zt∼qφ(z|x)}Tt=1

[
log

1

T

T∑
t=1

p(x|zt)r(zt)
qφ(zt|x)

]

Burda et al. [2015] shows that if the importance weights
are bounded, then as T increases the IWAE grows
tighter and approaches log p(x) as T → ∞. Unlike
the regular ELBO, the posterior in the IWAE is less
penalized for generating samples that are unlikely.

Our main contribution is a novel importance-weighted
estimator for the ELBO when using mixture posteriors.
To incorporate importance sampling into the SELBO,
we first draw T samples from each of the mixture com-
ponents, {zkt}K,Tk=1,t=1. We then compute importance
weights that are themselves weighted by the mixture

def siwae(prior, likelihood , posterior , x, T):
q = posterior(x)
z = q.components_dist.sample(T)
z = tf.transpose(z, perm=[2, 0, 1, 3])
loss_n = tf.math.reduce_logsumexp(
(− tf.math.log(T) + tf.math.log_softmax(

mixture_dist.logits)[:, None, :]
+ prior.log_prior(z) + likelihood(z).

log_prob(x) − q.log_prob(z)),
axis=[0, 1])

return tf.math.reduce_mean(loss_n, axis=0)

Figure 1: TF Probability implementation of SIWAE
loss for local latent variable models (e.g., VAE).

weights, arriving at the “stratified IWAE,” or SIWAE:

LTSIWAE(φ) , E{zkt∼qk,φ(z|x)}K,Tk=1,t=1

[

log
1

T

T∑
t=1

K∑
k=1

αk,φ(x)
p(x|zkt)r(zkt)
qφ(zkt|x)

]
Intuitively, in SIWAE, “bad” samples contribute less to
the objective thanks to importance weighting. There-
fore, the “bad” components responsible for those sam-
ples will contribute less to the objective, and thus while
the gradients w.r.t. their parameters might be smaller,
their mixture weights will not collapse to zero. We
thus conjecture that SIWAE encourages mixture com-
ponents to increase their variance and spread their
mass in more regions of the true posterior. This is a
desirable property to avoid component collapse when
fitting mixture distributions using ADVI and it better
allows components to explore distinct modes.

By repeated application of Jensen’s equality, we demon-
strate that LTSIWAE is a valid lower bound that is tighter
than LTIWAE when K > 1 (see theorems and proofs
in Appendix A). LSIWAE is also equivalent to LTIWAE
and LSELBO under certain circumstances (K = 1 and
K = T = 1, respectively). Because LIWAE is tighter
than LSELBO even when T = 1, LSIWAE is also tighter
than LSELBO. Furthermore the importance sampling
step enables higher-variance posteriors, as it mitigates
the penalty for low-likelihood samples. Consequently,
the implicit posterior [Cremer et al., 2017] (defined by
importance sampling the learned posterior) can better
capture different modes. Furthermore, SELBO and
SIWAE are both easy to implement and are simple
augmentations of existing variational inference code.
See Figure 1 for a code snippet in TensorFlow [Abadi
et al., 2016] which evaluates the SIWAE for a latent
variable model.

3 Related Work

Salimans and Knowles [2013] and Kingma et al. [2014]
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show that sampling from a distribution can be reparam-
eterized as a deterministic function of the parameters
of the distribution and some auxiliary variable, thereby
facilitating the propagation of gradients through the
distribution. They also introduce the Variational Auto
Encoder (VAE), which uses an amortized variational
posterior for a deep generative model. Burda et al.
[2015] showed that the bound on the evidence could
be tightened using importance sampling, and that the
tightness of the bound was improved by the number
of importance samples. Cremer et al. [2017] suggest
that the IWAE can be viewed as fitting the traditional
ELBO, but using a richer latent space distribution de-
fined by the importance-reweighting of samples from
the posterior, and further explore the functional forms
of these implicit posteriors.

While our work explores mixtures for the variational
posterior, we’d like to draw distinctions from other
works that have studied the use of (trainable) mixtures
for the prior. Dilokthanakul et al. [2016], Johnson et al.
[2016], Jiang et al. [2017] introduce a VAE which uses
a learnable mixture of Gaussians to represent the prior
distribution of a latent variable. Learning a mixture
prior does not require differentiating through the prior’s
sampling procedure as draws ADVI draws samples from
the posterior, not prior. Dilokthanakul et al. [2016]
and Jiang et al. [2017] find that their models achieve
competitive performance on unsupervised clustering,
with the mixture components learning clusters that
approximate the different classes present in the data.
Similarly, Tomczak and Welling [2017] use a mixture
of Gaussians trained on learnable pseudo-inputs as the
prior, which allows them to introduce greater flexibility
in the latent space distribution. They find that their
generative performance improves on a number of bench-
marks using this procedure. While using a mixture
distribution as a prior enables modeling global struc-
ture in the latent space, it does not explicitly model
ambiguity or competing explanations for a single obser-
vation. The uses of mixture distributions for either the
prior or posterior are orthogonal and complementary,
and a mixture distribution in either part of the model
is a valid option.

Domke and Sheldon [2019] propose to use alternative
sampling schemes (including stratified) from a uniform
distribution defined over a state space, along with a
coupling transformation to the latent space in order to
design a sampling scheme which results in better cover-
age of the approximating posterior distribution. They
also show that the divergence of this approximation
from the true posterior is bounded by the looseness of
the evidence bound.

When using mixture distributions as the posterior, the
typical strategy is to fix component weights [Oh et al.,

2019], or by using a continuous relaxation (e.g., the con-
crete relaxation of the categorical distribution [Poduval
et al., 2020]). Graves [2016] proposes an algorithm that
allows for gradients to be backpropagated through the
mixture distribution when the component distribution
have diagonal covariances by composing the sampling
procedure as a recursion over the dimensions. Our
method only requires that the component distributions
is subject to reparameterization, and therefore can be
used with a wider class of distributions. Furthermore
it does not require explicit specification of the gradient
updates to be hard-coded, making it easy to integrate
mixtures into existing models. Roeder et al. [2017]
derives a pathwise gradient extension to the SELBO
that lowers the variance of gradient estimates, but still
suffers from the mode-seeking properties of the SELBO.

4 Experimental Results

In this section, we aim to demonstrate that SIWAE
not only works as conjectured, i.e. it enables captur-
ing distinct modes where SELBO does not, but also
that SIWAE can improve the quality and calibration
of posterior distributions on large scale tasks. First
we evaluate SIWAE against a suite of baselines on two
synthetic examples that have explicitly multimodal
posteriors. We then evaluate SIWAE on an image gen-
erative modeling task and an image classification task,
comparing to both non-probabilistic models, and uni-
modal posteriors, showing that multimodality enables
more expressive and better calibrated posteriors. We
also provide additional experiments exploring exten-
sions to the those in the main body of the paper in
Appendix C.6 and Appendix C.7 .

4.1 Toy Problems

We construct two illustrative examples, each designed
to have a multimodal ground-truth posterior distribu-
tion. Our goal is to demonstrate situations in which
not only are multimodal variational posteriors neces-
sary, but that good performance is dependent on being
trained with SIWAE as opposed to SELBO.

4.1.1 Generative Model

We define a latent variable model where the true pos-
terior is multimodal by construction, with the hope of
recovering the distinct modes. Specifically, we sample
1000 datapoints from the following two-dimensional
generative model:

z ∼ N (0, I) x ∼ N
(
|z|, σ2I

)
where σ2 = 0.005, i.e., we first sample a latent z from
an isotropic normal, but observe |z| with some Gaussian
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(a) True posterior (b) SELBO posterior (c) Score function poste-
rior

(d) SIWAE posterior

Figure 2: We sample the true posterior along with each of the learned posteriors for the observed data point
(1, 1). We see that the SELBO- and score function-trained posteriors are unable to capture all 4 modes of the
true posterior.

noise. For an observed x, there are 4 distinct modes
in z-space that could have generated it, since z is two-
dimensional. We initialize the variational posterior
qφ(z|x) as a multilayer perceptron (MLP) with 2 layers
of 100 hidden units that outputs a 4-component mixture
of Gaussians distribution. We evaluate three different
estimators of the ELBO: (1) SELBO, (2) SIWAE, and
(3) a score function estimator as a baseline. We fit the
posterior for 1000 epochs, with a batch size of 32 and
using the Adam [Kingma and Ba, 2014] optimizer with
a learning rate of 0.001, using 10 importance samples
for SIWAE and 100 for both SELBO and score function.
Each baseline was initialized and trained identically
(same initial weights and order of batches).

We measure performance using a 106-sample SIWAE
estimate, and observe that the SIWAE-trained estima-
tor achieves the highest value of -1.505, compared to
-2.024 and -2.038 from the SELBO and score function
estimators, respectively. Investigating further, we plot
samples from each of the posteriors in the latent space.
We find that in many cases, the SELBO and score func-
tion posteriors are unable to capture the four distinct
modes (see Figure 2), whereas the higher-variance SI-
WAE posterior is able to cover the modes successfully.
We also observe similar results to those found in Rain-
forth et al. [2018], where tighter variational bounds
result in lower signal-to-noise ratios in the gradients to
the posterior. This is reflected by on-average higher-
variance gradients while training a SIWAE posterior vs.
a SELBO posterior (1.16 vs. 0.48 average elementwise
variance, respectively). However, the score function
estimator has significantly higher empirical variance
(261.4) than that of both SIWAE and SELBO, indicat-
ing that the variance reduction coming from the use
of the reparameterization trick offsets the additional
variance from a tighter variational bound. We also
found that using the “sticking-the-landing” (stl) esti-
mator [Roeder et al., 2017] (Figure B.2, Figure B.3)
does not significantly improve the SELBO or SIWAE
in the toy experiment.

Figure 3: Red points show the observed data. The black
histogram shows the posterior predictive distribution.
The left panel shows a model trained with SELBO, and
the right panel shows a model trained with SIWAE.

4.1.2 Predictive Model

We also consider a predictive task where the latent
variable must contain multimodality in order to produce
accurate predictions. Specifically, we sample data from
the following one dimensional model:

x ∼ Uniform(−10, 10)
z ∼ Rademacher()

m ∼ Normal(µ(x), σ2
1)

y ∼ Normal
(
zm, σ2

2

)
where µ(x) = 7 sin(3x/4)+x/2 is a sinusoidal function.
We set σ2

1 = 0.1, and σ2 = 0.9 so that the total variance
of data generated from a single mode is 1.

We set up our model in a Variational Information Bot-
tleneck (VIB) architecture [Alemi et al., 2017], a variant
of the VAE in which the decoder predicts a distribution
over an output y which is assumed to be different from
the input x. We use a 2 dimensional encoding, and a
mixture of K = 10 multivariate normal distributions
for our posterior. We use a single Normal Distribution
for the prior. For the decoder, we use a single affine
layer to predict the means of the likelihood, and fix the
variance to 1, which corresponds to the observed em-
pirical variance for a given mode. Additional details of
the training procedure can be found in the supplement.
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Figure 4: An illustration of the difference between the latent spaces learned by mixtures versus those found using
unimodal variational posterior distributions. The left panel shows the input to the network, for which all but the
center-most column has been discarded. The contour shows the true image of the data. The second column shows
a model trained using a unimodal latent space distribution and optimizing the ELBO. The third column shows
the latent space learned using the SELBO objective with 20 mixture components. On the right, we show the
latent space for the same example found using the SIWAE objective. The latent space is colored by the predicted
class from that position in the latent space, and the transparency of that color indicates the confidence of the
predicted class relative to the second most probable class.

In Figure 3, we show the data generated from 10k sam-
ples from the model alongside the posterior predictive
distribution trained using either SIWAE or SELBO.
The difference is striking: SELBO appears to make
meaningless predictions, while SIWAE makes nearly
perfect predictions. We attribute this to a harmful
property of SELBO, namely the fact that SELBO re-
quires that all of the samples from the posterior pre-
dict the output data equally well (by weighting them
equally in the computation of the loss). This specifi-
cally predisposes models against learning multimodal
posteriors which offer multiple competing (and distinct)
explanations for the observed data, for which all but
one will always be a “bad” explanation. In contrast,
SIWAE offers penalties relative to the best samples
from the predictive distribution, softening the blow
against modes which do not explain a single instance of
data and thereby facilitating exploration in the model.
This exploration is aided by different training exam-
ples which in this case have similar input features but
different observed outcomes.

4.2 Single Column MNIST Classification

To evaluate SIWAE’s efficacy on a more challenging
problem, we trained a classifier on the benchmark
dataset MNIST [LeCun et al., 1998]. We again use a
VIB model for our classifier. To induce multimodality
in this problem, we give the model incomplete infor-
mation about the input. In particular, Doersch [2016]
shows that training a VAE using only the centermost
column of the image introduces multimodality into the
dataset that is difficult to capture using a unimodal
encoder. We replicate this multimodality in the clas-
sification setting by taking the centermost column of

each training image. An example of a corrupted input
can be seen in Figure 4. In general, it can be difficult
even for a human to correctly classify the image given
this type of corruption. In this scenario, we look for
not only accurate predictions but also well-calibrated
uncertainty for those predictions.

In the middle two columns of Figure 4, we visualize
samples from the posterior of a single validation set
example learned by optimizing the ELBO/SELBO ob-
jective. We find that, while SELBO enables the use
of multiple mixture components in the variational pos-
terior distribution, the model only learns a unimodal
representation of the latent variable. This is a direct
consequence of the ELBO objective, which disincen-
tivizes exploration and encourages mode-seeking in the
variational posterior. In this case, we observe the poste-
rior “hedging its bets,” where the single mode sits across
several decision boundaries. These decision boundaries
are also quite wide, suggesting that the model is using
variance in the decoder as a source of uncertainty. We
find this behavior undesirable, and show later that it
negatively affects how well calibrated the model is.

The rightmost column of Figure 4 shows the latent
space learned by optimizing the SIWAE objective. In
stark contrast to models trained with SELBO, we find
that SIWAE learns posteriors that have many active
and distinct modes. This implies that rather than
“ ‘hedging its bets” as in the SELBO, a SIWAE-trained
posterior offers multiple competing explanations, mov-
ing the uncertainty in the final prediction into the
latent space rather than the output of the decoder.
This can be directly seen by looking at the lightness of
the background colors in Figure 4, which indicate the
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Figure 5: Top row: Classification accuracy of a model trained using the SELBO and SIWAE objectives as we
vary the number of mixture components (K, left two panels) and the number of samples per component (T , right
two panels). Bottom row: Expected Calibration Error as a function of the number of mixture components K,
or samples T .

confidence in the decoder prediction (less transparent,
more saturated colors indicate more confidence in a
prediction and vice-versa). Where the SELBO-trained
decoder tends to have fuzzier, more transparent deci-
sion regions, the SIWAE-trained decoder has sharper,
more confident decision boundaries. We later see how
this property is critical for well-calibrated predictions.
Furthermore, while it is difficult to evaluate the in-
terpretability of the latent space quantitatively, the
SIWAE models are qualitatively easier to interpret
using the latent space, with the model very clearly
predicting the example shown as either a 5, an 8, or a
6 (with some additional limited probability that it is
a 3). This appears to reflect our own intuition of the
output class of this example.

To quantitatively compare SIWAE and SELBO, we
consider how classification performance varies as the
number of mixture components are varied. For this,
we train models using K = [1, 2, 5, 10] for the number
of mixture components. We also use T = [1, 2, 5, 10]
for the number of samples drawn per component. For
a single component model, we optimize both the tra-
ditional evidence lower bound (ELBO), as well as the
importance weighted estimate of the evidence (IWAE).
For the mixture models, we use stratified sampling to
compute the ELBO (SELBO), as well as SIWAE. To
evaluate the accuracy of the model, we first compute
the predictive distribution by decoding 104 samples

from qφ(z|x) and averaging the class probabilities re-
turned by each sample. This marginalizes over the
uncertainty in the latent variables and if our prior
beliefs are correct, nominally produces calibrated prob-
abilities. The predicted class is the one with the largest
probability under the predictive distribution, and ac-
curacy of these predictions is measured on the test
set. Because one-column MNIST does not have an
established benchmark, we also train two deterministic
models to use as baselines: (1) a “pyramid” MLP with 5
layers of 256 hidden units to approximate the peak de-
terministic accuracy, and (2) a “bottleneck” MLP with
the same architecture as our VIB models, therefore con-
taining a two dimensional “latent space.” Additional
experimental details can be found in the supplement.

Figure 5 shows the classification accuracy and expected
calibration error of our VIB model over a range of
K and T . For this figure, we use 104 samples from
qφ(z|x) to compute the posterior predictive distribu-
tion. From these results we make several observations:
1) We find that SELBO disfavors multimodality (as
seen in Figure 4), and therefore offers no improve-
ment (or only marginal improvement) with additional
mixture components or samples. 2) We find that SI-
WAE overcomes these deficiencies and therefore offer
increased accuracy with additional mixture components
(and samples for K = 1). For large K, T , the perfor-
mance approaches the deterministic baseline, but does
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Figure 6: Model evidence as a function of the number of mixture components K or the number of samples per
component T . The evidence was measured using a single SIWAE estimate with 100 samples. We find that models
trained with SELBO appear to offer little to no noticeable improvement with either K or T , while SIWAE offers
substantial improvements with both.

so using far fewer parameters. 3) Optimizing the SI-
WAE loss with a larger number of components leads
to an improvement in calibration, as measured by a
reduction in the expected calibration error [Guo et al.,
2017], which measures the difference between the prob-
ability of an outcome and the observed frequency at
which that outcome occurs. This is important, since
real-world decision-making systems not only require
accurate models, but also ones which quantify their
uncertainty correctly. It is also important to note that
arbitrarily growing the number of importance samples
may also be harmful, a phenomenon observed by Rain-
forth et al. [2018]. We do not see any evidence for this
over the range of T = 1 → 10 importance samples,
suggesting that positive effect of importance sampling
enabling fitting better mixture models outweighs the
negative effect of worse gradients. However we also
speculate that since the gradient variance scales as T 0.5,
the performance may turn over for sufficiently large T .

4.3 Single Column MNIST VAE

The SIWAE objective appears to successfully infer
latent structure indicative of class boundaries using
only a single column of the image. However, a different
and equally intriguing question is if this representation
is also sufficient to reconstruct the image itself. This
question was explored by Doersch [2016], who showed
that a class-conditional VAE was necessary to break
the class degeneracy that can exist when the images
are a single column. Our hypothesis was that the use
of a mixture posterior distribution can replicate this
conditionality, without using the class labels.

Our test setup is the same: train a model with either
the SIWAE or the SELBO loss, and observe perfor-
mance as a function of K and T . This time, we use
the log-evidence to measure performance, computed

with a SIWAE estimate using 100 samples from the
surrogate posterior. We thought this was the most fair
comparison, as it holds the total sample number fixed,
and therefore highlights the difference based solely on
the posterior expressiveness.

Figure 6 shows the model evidence as a function of
K and T . We find that for SIWAE trained models,
the log evidence increases substantially with increas-
ing K, indicative of the model successfully leverag-
ing representational multimodality. For SELBO-like
losses, we observe no improvement with K or T , in-
dicating unimodality and unsuccessful posterior ap-
proximation. Consequently SELBO shifts uncertainty
into the decoder, resulting in fuzzy, low confidence
outputs (see Appendix C.3). We replicated this result
using the FashionMNIST and CIFAR-10 datasets (see
Appendix C.4 and Appendix C.5). For comparison,
in Appendix C.6 we run the same experiment using
full-image MNIST; results indicate that SIWAE pro-
vides benefits over SELBO in lower dimensional latent
spaces and these benefits diminish as the dimensionality
increases.

5 Conclusion

We demonstrate that although stratified sampling en-
ables ADVI with mixture posterior distributions, the
ELBO impedes surrogate posterior multimodality. SI-
WAE, a tighter evidence lower bound analogous to
the IWAE, utilizes stratification over posterior mixture
components to make the bound tighter. We exper-
imentally verify that SIWAE facilitates discovery of
multimodality in the latent space, stratified ELBO does
not, and that multimodality improves generative model
performance, particularly for incomplete input data or
low dimensionality representations. We also show that
SIWAE enables better classifier accuracy and calibra-
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tion error and that both improve as as the number of
components is increased.
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