Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

Appendix

A Omitted Proofs

Proof of [Lemma 4] Let ¢ be the point that minimizes
avg(C, o) in S. Let Be(co,r) be a ball around ¢y of
radius 7, which contains the set of points in C' with
distance less than some r from ¢y. Correspondingly
let B (co,) denote the ball with same center and ra-
dius, but including its boundaries. For any radius r,
to simplify the notation we denote the two balls by
B, and B, respectively. We can find a r. such that
|Be| < ¢€[C], but B, > ¢|C|. We will prove any point in
B, is a good center for C. For any point q € B, by
the triangle inequality, ZpGC d(p,q) < ZpGC d(p,co) +
ZpEC d(q,co) < ZpEC d(p,co) + |C|re. Notice that
ZPEC d(p’ CO) = z:peB€ d(pa CO) + Zpre d(p,Co) >
(1- e)|C’|r€, since d(p,co) > re if p ¢ B.. Therefore,
Clre < 12 X pec d(ps o), giving us 30 - d(p,q) <
(1 + 1_5) Zpec d(p,Co) < 2(1 + 6) ZPEC d(p, 00)7 SO
avg(C,q) < 2(1 4 €)avg(C, cp).

This implies that it is sufficient to sample a single
point from B.. There are ¢/C| points in the ball B..
Every time we sample we have e probability of getting
a point p such that avg(C,p) < 2(1 + €)avg(C,co).
Chernoff bounds ensure a buch a point is sampled with
probability at least 1 — Q(- O

B Correctness and Run Time of
Average Linkage Algorithm

The following theorems show that the algorithm approx-
imates the decision of average linkage up to a constant
factor, and the algorithm runs in near-linear time. The
value of p is asdescribed in the data strcutre in the
preliminaries.

Theorem 9 (Running Time). Let n = |S| and A be
the aspect ratio in S. The run time of the algorithm is
O(in? log?n -log A - H(n)).

Proof. We first analyze the time needed to construct
the data structures. there are = log A number of thresh-
old §’s. For every 4, it takes O(n*log? nH(n)) time
to build the data structure. The total time to con-

struct each of these data structures is bounded by
O(in® log?n -log A - H(n)).

Now we analyze the total time the algorithm spends
querying the data structure or deleting a point. These
queries occur to discover whether a cluster can be
merged. If a cluster cannot be merged, its correspond-

ing point is removed from the data structure for the
given threshold §. Thus the total number of queries is

OgC (log A)n). Every query takes O(n”logn) time. In
total more time is spent constructing the data struc-

tures.

Next, we analyze the total time it takes to update the
data structures. By Lemma 7, every time we update the
center and deviation for cluster C it takes O(£|C|logn)
time. The amortized cost on every point in C is
O(% logn). Pick any point p € S, every time p receives
an amortized cost of O(logn), the size of the cluster
p belongs to grows by a factor of 1 + n where n = %
Thus the total merging and updating cost on point p is
bounded by O(log, 1, (n)- £ logn) = O(% logn-*logn).
This is bounded by O(% log? n). Taking the sum over
all points in S gives a total update time of O(e%n log? n).
This is a lower order term because it is bounded by the
time to construct the data structures if H(n) = Q(n).

3

The next theorem bounds the approximate ratio of the
algorithm.

Theorem 10 (Approximation Guarantees). With high
probability, Algorithm 1 gives an approximation ratio
of (5y+4)(1 4+ O(e)) for average linkage and completes
the hierarchical clustering tree.

Our remaining goal is to prove Theorem 10. The the-
orem would be immediate from Lemma 6 if o and ¢
were updated every time two clusters were merged.
However, these are not always updated to ensure an
efficient running time. Instead, we show the following
key properties of the algorithm. Intuitively, they guar-
antee that if the cluster size does not grow significantly,
"borrowing" the center and deviation from a cluster
it is merged from will only cause the distance to be
slightly distorted. The first property is critical and
what allows us to derive the second and third.

Lemma 11 (Properties of Merging). During any iter-
ation of Algorithm 2 for some fixed §, these properties
always hold.

(1) For any cluster C' € C, use C to denote the sub-
cluster of C whose center and deviation are used
by C. For any cluster C; € C, and another cluster
C; # C; € C. Then we have the following two

equations,

(1 - 1wy (€, Cy) < ave(Ci, C)

< (1428 B have (@0 (1)

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

and
Ci| — || G5l =G, A
1———)(1 - L ——L)avg(C;,C;
gavg(Ci,C’j)
1+¢ |G| -G
<(1+ :
(T
14105 — |G S
1+ —g%ﬂﬁwg(cﬁ) @)
J

(2) At the end of the iteration, no pairs of unmerged
clusters have average distance less than ﬁ.

(8) During this iteration, every pair of clusters we
merge has distance at most (5y + 4)(1 + €)34.

In Section D in the appendix, we will see the detailed
proof of this lemma. Notice that Theorem 10 is a
corollary of the lemma.

C Algorithm for Single Linkage

Proof of [Theorem 3] First we analyze the approxima-
tion ratio. Notice that after all merges for threshold
4, there is no edge of weight at most § that can be
added without creating a cycle. Indeed, say such an
edge (p,q) exists. Assume p gets added into the query
list before g. Consider the time when p is deleted from
the query list. ¢ is not in the same component with p,
so since d(p,q) < §, querying p should have returned
another point and p should not be deleted at this time,
contradiction. Thus for threshold ¢, we have guarantee
that the shortest edge that could be added has distance
at least 1o + . Since all queries are (d,7)-NN queries,
the edges found have weights bounded by ~d, giving
the approximation ratio (1 + ¢).

Now we analyze the running time. There are
log; . A = ©(1logA) threshold values in total. Fix
any threshold value §. The construction of data struc-
ture takes log?n - n”H(n). For every point p, every
query of p either results in merging the component
containing p with some other component, or deleting
p from the query list and thus never querying p again
for the current threshold §. So the total number of
queries performed for any point in S is bounded by
O(n), taking O(nQ(n,v)) = O(n**?log?n) time in to-
tal. Any point p € S gets deleted once from the data
structure, so the algorithm performs O(n) deletions,
taking O(nD(n,v)) = O(n'*log?n) time. The time
spent on adding and deleting points to the query list
can be in O(n). Assuming H(n) = Q(n), the data
construction time dominates the run time of algorithm,
thus the run time is O(n” log® nlog AH (n)). |

D Algorithm for Average Linkage

The aim of this section is to prove Theorem 10 and
Theorem 9. Before we prove correctness and run time,
we need to establish the properties in Lemma 11 first.
The proof follows logic similar to that of Lemma A.6
in (1).

Proof of [Lemma 11]

We prove this by induction. Assume we choose to
merge C; with C; in the k-th iteration, for threshold
5 = (1 +¢)*"!. Assume all properties hold in all
iterations for § = (1 +¢€)* for t = 0,1,...,k — 2, and
all the time in the current iteration, until the merge.
Specifically, we assume the algorithm finds the pair
C; and Cj correctly before merging them. Let C be
the current partition of S. We will prove that after
the merge of C; and Cj, 1) the approximation ratio in
property one still holds, 2) the next pair of clusters we
found are close to each other, and eventually 3) there
will be no clusters with average linkage less than 4
by the end of iteration for current threshold 4.

Notice that the following always holds. Let & =
(1 + €)%05y + 4). For any other cluster C €
C, avg(CZ,C) < fmln{avg(Cl,C) avg(C’],C’)} and
avg(C“C) < ¢minfavg(C;, 0), avg(C C)}. This
will be used in the proof.

1+ T+e?

Since we choose to merge C; and C;, by third property
in Lemma 11 we must have the following by induc-
tion avg(C;, C;) < (1 + €)3(5y + 4)5. We also have
avg(C;, éj) < (1+¢€)(5y+4)d. This is because the (r,~)-
NN query picked the pair (@7 6]) Assume the cluster
C comes from merging C1, ..., Cj, where {C],...,C}}
are clusters in the partition at the end of the iteration
for the previous threshold

1+e

We first prove avg(C;, C;) < &avg(C;, C). By prop-
erty one, the average distance between C; and any
of C1,...,C} is at least (EaE) By an averaging argu-

ment we have avg(C;, C) = boriey (of “a‘llg(c .Ce) > (1f€)3.

Letting £ = (1 + €)%(5y + 4) gives avg(C;,C;) <
Eavg(Cy, O). Likewise we have avg(C;,C;) <
Eavg(Cy, O).

~

Next we prove avg(C; 6 i) < favg(i C’) By property
one avg(C;, C) > (1—¢)?avg(Cy, C) > (1—e)?

ﬁ. Since avg(C;, C;) <
equality holds.

§ _ ~
NEEEE
(57 +4)(1 + €)d, the in-

Now we prove the property one still holds after the
merge. Let C"" = C; U C; be the new cluster. Assume

first that (¢(C"),a(C")) got recalculated. Then C" =
C", s(C") =|C"]| and for any cluster C, avg(C"”,C) =

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

avg(C”,C). Both Inequality (1) and (2) are reduced
to:
€l 1]
1=
e
L+¢ [0 -|C]
+ € |C

Javg(C”,C) < avg(C”,C)

<

)avg(C”, C)

By induction we have
_lef-1c
C

1+¢ |C|-|C| 4
€ |C|)avg(cla C)

(1 Jave(Ci, C) < avg(C, C)

<(1+

and
[elite]
-2
|
1+¢ [C]=1C]
€ C
Taking the weighted average gives the inequality we
want.

For the following argument, assume that
(p(C"),c(C™)) is not recalculated. WLOG, assume
s(C;) > s(C;) and we used the center of deviation of

C;, so c" = C. Now, given another cluster C' € C,
we have that avg(C, C;) < avg(C;, C) + avg(Cy, C;) <
(1 4+ &avg(C;,C) by triangle inequality of average
distances. We first prove Inequality (1). That is,
[elte]
oAz
C
1+¢ [C|—|C
L1+ [o-18
€ |C|

Javg(Cy, 6) <avg(C;,C)

<(1+)avg(Cy, C)

Javg(C”,C) < avg(C”,C)

<

)avg(C”, C)

And

oM — 6//
0 len-ien

7]
L+¢ €]~ |C"|

B IC7|
The former inequality can be proved in the same way
as the case where C” is recalculated by taking weighted
average over two inequalities for C; and C;. Thus we
only need to prove the second one. This is done by
expanding the expression of avg(C”,C) as weighted

average of avg(C;, C) and avg(C}, C) and then leverage

the fact that avg(C;, C) < (1+&)avg(C;, C). For upper
bound,

Javg(C",C) < avg(C”,C)

<(1+ Javg(C", C)

_ |Cilave(Ci,) + |Cylavg(C5, O)
|Cil + |Cj]

< |Cilave(Ci, ©) +|Cy[(1 + Eave(Ci, C)

- |Ci| +|Cj

< |Ci| + |Cj|(1+§)(1Jr L+ |Ci| —s(Cy)

Ci| +|Cj) € |Cs

3@ 1+&|Ci| - s(C;)

L

o oA A oY

avg(C”, C)

)avg(@,)

=(1+ Jave(Ci, ©)

We prove that

1G]

_SIG1 1+¢ [Ci|=s(Ci)
(1+ ci\+|cj|)'(1+_e£"T)
1+ C//I_S C//
<14l EpRe) (3)
We have:
1 i — i
< (14 LtE [C1-s(C)
€ |Ci
£1C;] 1+¢ €
+ SIpnay
o o R w2l
1+& [0y —s(Cy) §1C51
=1+ : + (14—)
|Ci |C;| + 1C}|
§1C51 14+ [C;1s(C4)
We prove that (1 —|—26) [eAERLeA; é j). |Ci|(‘ci‘+|cjé|).
: s(Cs) 1+€— 1+ i|s(Ci 1+6—
Slr\lge\ e = 1+i\7c|%' CIICIHGD 2 e
m >(1+ E)m Therefore,

avg(C”,C) < an(ai,C) (14 1+¢ |Ci| —s(Ci)

€ |Cil
£1C; |
F 14—l
SRRToAFaToR)
< oG 0)- (1 5 [OLE)
1+& |Cy]s(Cy))
e |Cil(ICs] +1C51)
~ 1+¢ |Oi|+|Cj|—S(Ci)
= avg(C;, C)(1 + :)
|Ci] + |C51
~ 14+¢& 1C"] —5(Cy)
= an(CNJC)(l + B : |C//|)

For lower bound,

avg(é//, C) = |Cilavg(Ci, C) + |Cjlavg(Cy, C)

|Ci| + |Gy
> |Cilavg(C;, C)
— |G+ Gy
= 5(C:) |C|
> avg(C;,C) - .
TR oA B To
-~ s(Cy)
=avg(Cy,C) ————
|Ci| + |Gy
"o "
= an(O”vC) : (1 - |O ||C/f|(c))

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

Thus we’ve proved that the Inequality (1) holds after
the new merge. Using the same logic, we can prove
Inequality (2).

For upper bound,
_ |Cilaveg(Ci, C) + |Cjlave(C5, C)
|Ci| + 1C5]

_ |Cilave(Ci.C) + [C[(1 + E)ava(Ci, ©)

B Cil +1C5]

ICi| +1C51(1 +€)
-Gl + 1G]
1+¢ |C]—s(C)
(1 .

e e
Plugging Inequality (3) into the RHS gives us:
R S(C”))

B e

1+¢ |C]—s(C)
e

avg(C”,C)

1+¢ |G — S(Ci))
|Cil

1+

Javg(Cy, C)

avg(C”,C) < (1+

(1 Javg(Ci, C)

For lower bound,

_ |Cilavg(Ci, C) + |Cjlavg(Cy, C)

avg(C”,0) = G5 (Cl
T J
> |Ci|an(CiaC)
— G+ 1G]
~ 0~ Cz — S Cz C — S C
> avg(C;,C) - (1 — %) (- %)
1G]
|Ci| + |Gy
A Ay s(C) s(0) |Cil
- G,). .)
R TR ToARaTo
B ~ A s(Cy) s(C)
=2e(C O a6 0]
A " —s(Cc” C|—s(C
— ave(0".6) - (1— | ||C“|())(e |C|())

The first property directly implies avg(C;, C;) = (1 £
€)?avg(C;, C;) for all pairs C;, C; € C.

For the second property, assume there is one (C/, C]’)
where avg(C;, C?) < ﬁ. SoAavg(aé, 5;) < 4. This
implies that the deviations o(C}),o(C}) < 2(1 + €)d,
so the two centers qb(a{), gﬁ(CA’J’) cannot be deleted until
the query returns empty set. Since avg(é’{ , 6]’) <9,
A(6(CL), H(C1)) < avg(Cl, C2) +0(Bl) + () < 5(1+
€)d. Since r = 5(1 + ¢€)d, a valid r,7-NN query can’t
return empty set for ¢(C}) and ¢(C%), contradiction.

For the third property, since after the merge (@' , CA']’) is
returned by a valid (r,v)-NN query where r = 5(1+4¢€)4,
avg(é{, 6]’) < (1+e€)(5y+4)d. Using the first property
gives us avg(Cy, C%) < (14 €)%(5y + 4)4.

E Omitted Experiment Results

This section contains the experiment results omitted
in the main body. We show the performance table
and running time plots for Proxy-Hash-SL And Proxy-
Hash-AL on the three road map datasets and seizure.
These results lead to the same conclusions as in the
main body: both Proxy-Hash-SI. and Proxy-Hash-AL
are more accurate and efficient than directly using the
proxy metric.

E.1 Performance And Running Time for
Proxy-Hash-SL And Proxy-Hash-AL

We defer the performance data for Proxy-Hash-SL on
road map dataset in Bay Area and Great Lakes until
the next subsection, where we will show the complete
data table containing performance data for a range
of € values in the LSH algorithm, gathered from the
road map datasets in all three cities. Here we show the
performance for Proxy-Hash-AL on road maps in Bay
Area and Great Lakes in Table 6 and 7.

Running-time wise, Figure 4 and 5 show the growth in
number of distance computations in Proxy-Hash-AL
for road map in Bay Area and the Great Lakes, versus
growth in sample size. The sample sizes are plotted on
log scale. Both curves are strictly sub-quadratic as it
is dominated by y = cx'3 where c is a constant.

In the main body, we have also omitted the running
time plots for Proxy-Hash-SL for all data sets. See
Figure 6 for them. Clearly, all running time curves
are strictly subquadratic, and even only slightly super-
linear on all road map datasets.

E.2 Robustness of Performance Against
Sample Sizes And Parameter Tuning

There are a lot of parameters in the implementation of
both Proxy-Hash-SL and Proxy-Hash-AL, which might
affect the accuracy and efficiency of our algorithms.
One of the most important parameters is € - in every
round of LSH the threshold merging value grows by a
factor of 1 4 €. In this section we show that the per-
formance of our algorithms are robust against different
e values and the growth of sample sizes. We focus on
Proxy-Hash-SL for now.

See Table 3, 9, 10 for partial statistics of Proxy-Hash-
SL performance for Bay Area and the Great Lakes.
The sample sizes are picked to grow by approximately
a factor of 2. Here

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

Table 6: Comparing the performance of different average linkage methods, Bay Area

Sample Size | 299 440 481

830 909 1065 1280 1363

Aprx Ratio, mean, Proxy-AL | 3.608 2.491 3.423 2.830 2.431 3.017 2.787 2.175
Aprx Ratio, mean, Proxy-Hash-AL | 1.484 1.647 1.493 1.725 1.629 1.709 1.821 1.730

Aprx Ratio, 90%, Proxy-AL | 6.554 4.327 5.324 3.759 3.816 5.156 4.711 3.418
Aprx Ratio, 90%, Proxy-Hash-AL | 2.024 2.300 1.987 2.402 2.214 2.313 2.550 2.353

Aprx Ratio, max, Proxy-AL | 85.784 126.459 89.782 116.732 44.144 96.401 215.839 64.011
Aprx Ratio, max, Proxy-Hash-AL | 2.553 3.223 3.184 3.759 3.816 3.646 4.507 3.418

Global Obj, Proxy-AL | 0.994 0.990 0.990 0.998 0.999 0.994 0.963 1.001
Global Obj, Proxy-Hash-AL | 1.004 0.970 0.985 0.975 0.999 0.987 0.966 0.971

Table 7: Comparing the performance of different average linkage methods, the Great Lakes

Sample Size | 86 211 363

496 632 713 1064 1885

Aprx Ratio, mean, Proxy-AL | 1.539 1.457 1.935
Aprx Ratio, mean, Proxy-Hash-AL | 1.362 1.545 1.562

1.971 1.975 1.742 1.828 1.837
1.592 1.603 1.675 1.766 1.797

Aprx Ratio, 90%, Proxy-AL | 2.158 1.732 2.476
Aprx Ratio, 90%, Proxy-Hash-AL | 1.890 2,311 2.112

2.516 3.280 2.839 2.466 2.658
2.172 2.158 2.268 2.523 2.412

Aprx Ratio, max, Proxy-AL | 14.361 8.603 55.200 45.255 28.929 17.767 65.448 51.816

Aprx Ratio, max, Proxy-Hash-AL | 2.428 3.367 3.043

2.971 3.079 3.137 5.073 3.943

Global Obj, Proxy-AL | 0.992 0.996 0.990
Global Obj, Proxy-Hash-AL | 0.983 0.998 0.996

1.001 0.988 0.997 0.990 0.996
0.983 0.994 0.995 0.992 0.997

Table 8: Ratio between total road distance of the tree and real MST, New York

Sample Size | 169 330 727 1166 1825 3765 6710 14428 28985

Euclidean | 1.760 1.304 1.554 1.784 1.412 1.805 1.753 1.883 1.511
Proxy-Hash-SL-0.1 | 1.035 1.016 1.021 1.024 1.027 1.030 1.029 1.022 1.024
Proxy-Hash-SL-0.2 | 1.048 1.035 1.055 1.038 1.045 1.040 1.066 1.044 1.055
Proxy-Hash-SL-0.3 | 1.109 1.030 1.055 1.052 1.062 1.060 1.063 1.052 1.059
Proxy-Hash-SL-0.4 | 1.082 1.036 1.075 1.064 1.068 1.064 1.063 1.074 1.078
Proxy-Hash-SL-0.5 | 1.074 1.094 1.081 1.091 1.065 1.068 1.090 1.072 1.077

Table 9: Ratio between total road distance of the tree and real MST, Bay Area

Sample Size | 251 424 909

1804 3732 7135 10106 22861

Fuclidean | 2.241 1.643 1.954
Proxy-Hash-SL-0.1 | 1.027 1.039 1.032
Proxy-Hash-SL-0.2 | 1.058 1.045 1.038
Proxy-Hash-SL-0.3 | 1.050 1.045 1.034
Proxy-Hash-SL-0.4 | 1.098 1.042 1.058
Proxy-Hash-SL-0.5 | 1.105 1.070 1.061

1.407 1.905 2.252 2.198 2.397
1.026 1.035 1.026 1.028 1.027
1.046 1.058 1.038 1.049 1.047
1.051 1.066 1.064 1.054 1.070
1.049 1.073 1.063 1.068 1.069
1.049 1.081 1.082 1.069 1.071

Table 10: Ratio between total road distance of the tree and real MST, the Great Lakes

Sample Size | 616 1289

3063 6564 14056 26004

Euclidean | 1.434 1.586
Proxy-Hash-SL-0.1 | 1.054 1.036
Proxy-Hash-SL-0.2 | 1.053 1.067
Proxy-Hash-SL-0.3 | 1.111 1.081
Proxy-Hash-SL-0.4 | 1.108 1.100
Proxy-Hash-SL-0.5 | 1.081 1.094

Figure 7, 8 and 9 show the performance of our algorithm
versus sample size and different € values. Here Proxy-
Hash-SL-€ refers to spanning tree constructed by Proxy-
Hash-SL using € as parameter.

Figure 11 and 12 show the number of distance compu-
tations that would be needed by our algorithm, versus

1.433 1.623 1.799 1.824
1.029 1.036 1.030 1.031
1.038 1.046 1.057 1.049
1.042 1.079 1.052 1.071
1.043 1.084 1.074 1.082
1.062 1.085 1.118 1.083

sample size and €. As is the case with New York, it
grows only slightly super-linearly with sample size.

Figure 10, 11 and 12 show the number of distance eval-
uations done by the algorithm. The naive implementa-
tion this grows quadratically. We see that Proxy-Hash
grows slightly superlinearly with input size.

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

of distance computations

of distance computations

—— Proxy-Hash-AL

500004 =" Fitted Line, y=cx"1.3

40000

30000

20000 4

of distance computations

10000

6x 102
sample size

3x102 4x102

Figure 4: Growth of distance computation,

Proxy-Hash-AL, Bay Area

10°

800000 A

600000 A

400000 1

200000 -

—— Proxy-Hash-SL
—=—=- Fitted Line, y=cx"~1.1

10%
sample size

(a) New York

104

800000 A

700000 A

600000 -

500000 A

400000 1

300000 -

200000 1

100000 -

0

—— Proxy-Hash-SL
—-=~ Fitted Line, y=cx"~1.2

103 10*
sample size

(c) The Great Lakes

800007 Proxy-Hash-AL

=== Fitted Line, y=cx~1.3
70000

60000 -
50000
40000 4

30000

of distance computations

20000 4

10000 4
o
10? 10%
sample size
Figure 5: Growth of distance computation,

Proxy-Hash-AL, the Great Lakes

1le6

—— Proxy-Hash-SL
1.4{ === Fitted Line, y=cx~1.1

of distance computations
o
0o

~~..

sample size

(b) Bay Area

104

—— Proxy-Hash-SL
300000 ==~ Fitted Line, y=cx~1.7

250000 1

200000 -

150000 -

100000 -

of distance computations

50000 A

0

102
sample size

(d) Seizure

Figure 6: Number of distance computation, versus sample size (log), Proxy-Hash-SL

10°

Hierarchical Clustering in General Metric Spaces using Approximate Nearest Neighbors

Ratio

[e]

Rat

10

Rati

1.30

1.251

1.20 1

1.151

1.10 1

1.05 1

1.00

EERE

LSH,
LSH,
LSH

LSH,
LSH,

, eps=0.3

eps=0.1
eps=0.2

eps=0.4
eps=0.5

0

5000

10000

15000
Sample Size

20000

25000

30000

Ratio

1.30

1.254

1.20 4

1.154

1.104

1.054

Fitd

Sample Size=1855
Sample Size=24174
Sample Size=4107
Sample Size=6710
Sample Size=24545

1.00

0.1

0.2

0.3
Eps

0.4 0.5

Figure 7: Approximation ratio versus sample size and e value for New York

1.30

1.251

1.20 1

1.151

1.10 1

1.05 1

1.00

AERN

LSH,
LSH,
LSH

LSH,
LSH,

, eps=0.3

eps=0.1
eps=0.2

eps=0.4
eps=0.5

10000

Sample Size

15000

20000

Ratio

1.30

1.254

1.20 4

1.154

1.10

1.054

SRR

Sample Size=1363
Sample Size=11263
Sample Size=8213
Sample Size=2583
Sample Size=4576

1.00

0.2

0.3
Eps

0.4 0.5

Figure 8: Approximation ratio versus sample size and e value for Bay Area

1.30

1.25 1

1.20 1

1.151

1.10 1

1.05 1

EERR

LSH,
LSH,
LSH

LSH,
LSH,

, eps=0.3

eps=0.1
eps=0.2

eps=0.4
eps=0.5

1.00

5000

10000

15000
Sample Size

20000

25000

Ratio

1.30

1.254

1.20 4

1.154

1.10 1

1.05

bty

Sample Size=18612
Sample Size=1861
Sample Size=23917
Sample Size=3152
Sample Size=3901

e,
T

1.00

0.1

0.2

0.3
Eps

0.4 0.5

Figure 9: Approximation ratio versus sample size and ¢ value for the Great Lakes

Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang

of distance checks

of distance checks

700000

600000

500000

400000

300000

200000

100000

1.0

o o
o ©

N
>

of distance checks

0.2

0.0

700000

600000

500000

400000

300000

200000

100000

—%— LSH, eps=0.1 —— Sample Size=1855
— —»— Sample Size=28807
e 600000 1 —— Sample Size=24174
—— —*— Sample Size=4107
— eps=0.5 500000 —— Sample Size=1118
x
400000 A
]
Q
£
3 300000 A
200000 A
1000001 —nu
—x
_ —
04
0 5000 10000 15000 20000 25000 30000 0.1 0.2 0.3 0.4 0.5
Sample Size Eps
Figure 10: Number of distance computations versus sample size and € for New York.
le6
—%— LSH, eps=0.1 350000 —%— Sample Size=2583
—3— LSH, eps=0.2 —— Sample Size=4621
—— LSH, eps=0.3 —— Sample Size=1065
—— LSH, eps=0.4 300000 —— Sample Size=6966
— eps=0.5 —%— Sample Size=1280
250000 A
2 200000
a .
£
o
2l
150000 A
100000 A
50000 -
0 5000 15000 20000 25000 01 02 03 0.4 05
Sample Size Eps
Figure 11: Number of distance computations versus sample size and € for Bay Area.
—— LSH, eps=0.1 —%— Sample Size=17323
—— LSH, eps=0.2 —— Sample Size=27329
—%— LSH, eps=0.3 600000 —¢ Sample Size=3063
—— LSH, eps=0.4 —%— Sample Size=3152
— eps=0.5 500000 - —¥— Sample Size=27405
400000
o
£
3
300000 A
200000 A
0 §:§2>~<§
0 5000 10000 15000 20000 25000 30000 01 02 03 0.4 05
Sample Size Eps

Figure 12: Number of distance computations versus sample size and € for the Great Lakes

