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Abstract

We consider the maximum mean discrepancy
(MMD) GAN problem and propose a para-
metric kernelized gradient flow that mimics
the min-max game in gradient regularized
MMD GAN. We show that this flow provides
a descent direction minimizing the MMD on
a statistical manifold of probability distribu-
tions. We then derive an explicit condition
which ensures that gradient descent on the
parameter space of the generator in gradient
regularized MMD GAN is globally convergent
to the target distribution. Under this con-
dition, we give non asymptotic convergence
results of gradient descent in MMD GAN. An-
other contribution of this paper is the intro-
duction of a dynamic formulation of a regular-
ization of MMD and demonstrating that the
parametric kernelized descent for MMD is the
gradient flow of this functional with respect
to the new Riemannian structure. Our ob-
tained theoretical result allows ones to treat
gradient flows for quite general functionals
and thus has potential applications to other
types of variational inferences on a statistical
manifold beyond GANs. Finally, numerical
experiments suggest that our parametric ker-
nelized gradient flow stabilizes GAN training
and guarantees convergence.

1 Introduction

Generative Adversarial Networks (GANs) were intro-
duced in [1] and have attracted growing attention in
the machine learning community. Implicit Genera-
tive models such as GANs can be seen as learning a
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distribution via optimizing a functional defined on a
statistical manifold. The statistical manifold refers to
the parametrization of the Generator. There are a
plethora of works on functionals that are optimized in
GANs for example the Jensen-Shanon divergence in
the original work [1]; general � divergences in [2]; the
neural net distance in [3]; integral probability metrics
such as the Wasserstein order 1 distance considered
in [4]; the maximum mean discrepancy [5] considered
in [6–10]. Despite their striking empirical success, the
rigorous understanding of the convergence in distri-

butional sense of gradient descent in GANs remains
less understood. Much of the theoretical analysis has
been dedicated to the stability of the min-max game
via the introduction of gradient regularizers [11–17].
Min-max convergence rates for a large class of GANs
was studied in [18,19], however these bounds are not
specific to gradient descent in GANs. In this work we
aim at understanding the distributional convergence
properties of gradient descent in the context of MMD
GANs. The work closest to ours is [20] that establishes
global convergence of the generator using the Wasser-
stein 1 distance. Nevertheless, gradient descent is not
explicitly considered in [20].

We summarize our main contributions in this work as
follows:

• We introduce in Section 3 a new gradient regularizer
for the MMD. This regularizer has the form of a para-
metric energy, where the gradient is taken with respect
to the generator parameters, instead of the input space
as usually considered in previous works. We call the
new proposed discrepancy MMD↵,� .

• We consider the MMD GAN problem in Section 4 and
propose a new descent direction in terms of the witness
function of the parametric regularized MMD↵,� . We
give in this section detailed descriptions and properties
of the corresponding continuous flow.

• We analyze in Section 5 the non-asymptotic distri-
butional convergence properties of gradient descent in
MMD GAN when using the MMD↵,� witness functions
to drive the generator updates.
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• We derive in Section 6 a dynamic formulation of the
MMD on the statistical manifold of probability distri-
butions and use it to propose a novel regularization
of the MMD, which we call d↵,� . We show that d↵,�

admits a Riemannian metric tensor and investigate gra-
dient flows for general functionals w.r.t. this structure.
Intriguingly, we show that gradient descent in MMD
GANs driven by the witness function of MMD↵,� co-
incides with the gradient flow of the MMD w.r.t. this
new geometric structure.

• Finally, we discuss related works in Section 7, and
validate experimentally our theoretical findings in Sec-
tion 8.

2 Preliminaries

Let ⌦ be an open region in Rd and let H be a reproduc-
ing kernel Hilbert space (RKHS) generated by a kernel
k(x, y) on ⌦ ⇥ ⌦. Let Z ⇢ Rm be an open region on
a lower dimensional space endowed with a probability
distribution ⌫ on Z. Let ⇥ be a parameter space in
Rp, and (✓, z) ! G✓(z) =

�
G

1
✓(z), ..., G

d
✓(z)

�
2 ⌦ be a

generator function defined on ⇥. We assume that k is
bounded, G✓ is differentiable in ✓, and

kk(x, .)� k(y, .)k
H

 L kx� yk ,

kG✓(z)�G✓0(z)k  M(z) k✓ � ✓
0
k (1)

for some constant L > 0 and function M : Z ! [0,1)
with E⌫ [M(z)2] < 1. In (1) and throughout the paper,
h·, ·i and k · k denote the standard Euclidean inner
product and norm, while h·, ·iH and k · kH denote the
inner product and norm on H. We use r and rw

to respectively denote the standard gradient and the
standard gradient with respect to the variable w. For
two vectors a and b, by a ⌦ b we mean the matrix
whose (i, j) entry is aibj . For a probability distribution
⇢ on ⌦, let µ⇢(x) :=

R
k(x, y)⇢(dy) denote its kernel

mean embedding. As k is bounded, we have µ⇢ 2 H

and
R
f(x)⇢(dx) = hf,µ⇢iH for every f 2 H (see [21]).

Note that µ⇢1�⇢2 = µ⇢1 � µ⇢2 by linearity.

We consider the following statistical manifold of proba-
bility distributions:

P⇥ := {q✓ = (G✓)#⌫, ✓ 2 ⇥}.

The main objective functions considered in this paper
are parametric energy regularizations of MMD(p, q✓) :=
kµp � µq✓kH. The introduction of the following oper-
ators plays an important role in understanding these
objective functions and associated gradient flows.
Definition 2.1 (Matrix Mass). Let J✓G✓(z) =
�@Gj

✓(z)
@✓i

�
ij
2 Rp⇥d

denote the Jacobian of G✓ with re-

spect to ✓. Then for ✓ 2 ⇥, we define a matrix valued

kernel �✓ on Z ⇥ Z as follows, for (z, z0) 2 Z ⇥ Z:

�✓(z, z
0) := J✓G✓(z)

>
J✓G✓(z

0) 2 Rd⇥d
.

Definition 2.2 (Parametric Grammian - Mass Cor-
rected Grammian of Derivatives). For ✓ 2 ⇥, let

L✓ : H ! Rp
be the operator given by

L✓(f) :=

Z
J✓G✓(z)rf(G✓(z))⌫(dz)

and L
>

✓ : Rp
! H be the operator given by

L
>

✓ (v) :=

Z
hr✓[k(G✓(z)], .), vi ⌫(dz)

=

Z
hrxk(G✓(z), .), J✓G✓(z)

>
vi ⌫(dz).

Then the parametric Grammian D✓ : H ! H is defined

by D✓ := L
>

✓ L✓.

The main properties of these operators are summarized
as follows. Proofs are given in the Appendix.
Proposition 2.3. For each ✓ 2 ⇥, we have

i) L
>

✓ is the adjoint operator of L✓, i.e., hL✓f, vi =
hf, L

>

✓ viH for f 2 H and v 2 Rp
.

ii) D✓ is symmetric, i.e., hD✓f, giH = hf,D✓giH for

f, g 2 H.

iii) hf,D✓fiH =
��r✓

R
f(x)q✓(dx)

��2 =
kr✓[hf,µq✓ iH]k2 � 0. In particular, D✓ is

a positive operator and hence its spectrum is

contained in [0,1).

iv) For f 2 H, we have (D✓f)(x) =
hD(x, ·), fiH with D(y, y0) :=RR

h@✓k(G✓(z), y), @✓k(G✓(z0), y0)i⌫(dz)⌫(dz0),
where: @✓k(G✓(z), y) = J✓G✓(z)rxk(G✓(z), y).
Equivalently D(y, y0) =

RR
Trace(rxk(G✓(z), y)⌦

�✓(z, z0)rxk(G✓(z0), y0))⌫(dz)⌫(dz0).

3 A Novel Parametric Energy

Regularization of MMD

Let us introduce a parametric energy regularization
of MMD and this notion of discrepancy will play a
central role in this paper. For parameters ↵, � � 0,
the regularized discrepancy between a given probability
distribution p on ⌦ and a parametric distribution q✓ 2

P⇥ is defined by

MMD↵,�(p, q✓) :=

sup
f2E↵,�

⇢Z

⌦
f(x) p(dx)�

Z

⌦
f(x) q✓(dx)

�
(2)
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with E↵,� :=
n
f 2 H : ↵

��r✓

R
f(x)q✓(dx)

��2
Rp +

� kfk
2
H


1
2

o
. The case ↵ = 0 and � = 1/2 corre-

sponds to the MMD [5], while the case ↵ = 1/2 and
� = 0 shares some similarity with the usual kernel-
ized Sobolev discrepancy [22]. The main difference in
this definition with the Sobolev discrepancy is that the
parametric energy kr✓[hf,µq✓ iH]k2Rp = hf,D✓fiH is
used in place of the standard energy krfk

2
L2

q✓

.

Remark 3.1. Note that our regularization for MMD
while it shares similarities with WGAN-GP [11], it is

different since our gradient penalty is with respect to

the generator parameter whereas it is with respect to

the input in WGAN-GP.

Hereafter, I : H ! H denotes the identity operator.
Then it follows from property iii) in Proposition 2.3
that ↵D✓ + �I is invertible whenever ↵ � 0 and � > 0.
Proposition 2.3 also allows us to express the constraint
E↵,� in (2) as

E↵,� =
n
f 2 H : 2 hf, (↵D✓ + �I)fi

H
 1

o
. (3)

This constraint can be interpreted as a regularization
through the following unconstrained formulation.
Proposition 3.2. Let �✓(f) :=

R
f(x) p(dx) �R

f(x) q✓(dx). For ↵ � 0 and � > 0, we have

MMD↵,�(p, q✓)
2

= sup
f2H

⇢
�✓(f)�

↵

2
kr✓[hf,µq✓ iH]k2Rp �

�

2
kfk

2
H

�

=
1

2

⌦
µp�q✓ , (↵D✓ + �I)�1µp�q✓

↵
H
.

Moreover, the witness function f
⇤

realizing the above

supremum is given by:

(↵D✓ + �I)f⇤ = µp�q✓ . (4)

The next result shows that the regularized MMD↵,� is
upper bounded by the MMD, and gives a characteriza-
tion on distributions for which the two discrepancies
are the same.
Corollary 3.3. For ↵ � 0 and � > 0, we have

p
2�MMD↵,�(p, q✓)  MMD(p, q✓).

In case ↵ > 0, the equality happens if and only if

D✓µp�q✓ = 0.

4 Generative Adversarial Networks

via Parametric Regularized Flows

Let p be the target distribution which is a probabil-
ity measure on ⌦. Consider the functional F(q✓) =

1
2MMD2(p, q✓) = 1

2 kµp�q✓k
2
H
. We now focus on the

MMD GAN problem:

min
q2P⇥

F(q) = min
✓2⇥

F(q✓)

= min
✓2⇥

1

2
kEpk(x, .)� Ez⇠⌫k(G✓(z), .)k

2
H
.

This problem has been investigated in several works
[6–8,22,23]. In this section we propose a new descent
direction in the parameter space of the generator.

Continuous Descent. We consider the following dy-
namic for any sequence of functions ft 2 H, t � 0:

d✓t

dt
= L✓t(ft) =

Z
J✓tG✓t(z

0)rxft(G✓t(z
0))⌫(dz0).

(5)

For a given z 2 Z, the dynamic of the generator is as
follows

dG✓t(z)

dt
= J✓tG✓t(z)

>
d✓t

dt
(6)

=

Z
J✓tG✓t(z)

>
JG✓t(z

0)rxft(G✓t(z
0))⌫(dz0)

=

Z
�✓t(z, z

0)rxft(G✓t(z
0))⌫(dz0). (7)

While the dynamic of particles is usually given by veloc-
ities defined at each particle, the generator’s dynamic
at a given z is the average of the mass corrected veloci-
ties of all other samples from the generator. The mass
correction is driven by the matrix valued kernel �✓t

that defines a similarity in the hidden space Z. For ex-
ample in particles descent such as Sobolev Descent [22]
the dynamic of particles Xt is given by:

dXt

dt
= rxft(Xt),

and this simple advection dynamic is to be contrasted
with the generator dynamic (7).

Using the dynamic of the generator in (7) and item iv)
in Proposition 2.3, we also have the following dynamic
of the mean embedding:

d

dt
µq✓t

=
d

dt

Z
k(G✓t(z), .)⌫(dz)

=

Z ⌧
rxk(G✓t(z), .),

dG✓t(z)

dt

�
⌫(dz)

= D✓tft. (8)

Thanks to (8), it is easy to derive the dynamic of the
MMD distance:

dF(q✓t)

dt
=

⌧
µp�q✓t

,�
d

dt
µq✓t

�

H

= �
⌦
µp�q✓t

, D✓tft

↵
H
. (9)
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Let us consider the following choices for the sequence
ft:

• Witness functions of MMD. In that case, we set
ft = µp�q✓t

. Using the generator updates given in (5),
we have therefore:

dF(q✓t)

dt
= �

⌦
µp�q✓t

, D✓tµp�q✓t

↵
H

 0.

This is a valid descent direction, and is similar in spirit
to the MMD flows of [24]. Nevertheless as shown for the
particles case in [24], it does not lead to convergence.
In the discrete case, [24] introduced a noising scheme
that has convergence guarantees.

• Witness functions of MMD1,0. In that case, let
us assume that solutions ft of D✓tft = µp�q✓t

exist.
Then by using d✓t = L✓t(ft)dt we obtain:

dF(q✓t)

dt
= �

⌦
µp�q✓t

,µp�q✓t

↵
= �2F(q✓t).

While this seems to be the ideal choice as it gives us
an exponential convergence, it comes with the caveat
that D✓t may be singular and hence we have either
no solution or infinitely many solutions for ft. These
derivations and the singularity issue of operator D✓ mo-
tivated the introduction of MMD↵,� , and we consider
hereafter its flows.

• Witness functions of MMD↵,�. Let ft be the
unique witness function of MMD↵,� between p and
q✓t = (G✓t)#⌫ given by

(↵D✓t + �I)ft = µp�q✓t
. (10)

Theorem 4.1 below gives the dynamic of the MMD
when the generator parameters are updated according
to Equation (5) with ft being the MMD↵,� witness
functions given in Equation (10).

Theorem 4.1 (Parametric Regularized Flows Decrease
the MMD Distance). Assume that ↵, � > 0. Then the

dynamic (5)–(10) defined by the witness function of the

parametric regularized MMD decreases the functional

F(q✓):

dF(q✓t)

dt
= �

2

↵

h
F(q✓t)� �MMD↵,�(p, q✓t)

2
i
 0.

(11)
Moreover, we have

dF(q✓t )
dt < 0 if and only if

D✓tµp�q✓t
6= 0.

We see from Theorem 4.1 that MMD↵,� witness func-
tions alleviate the singularity issue of D✓t , but slows
down the convergence by introducing a damping term
that is proportional to MMD2

↵,� .

5 Non-Asymptotic Convergence Of

Gradient Descent In MMD GAN

In Section 4, we showed that MMD↵,� witness functions
provide descent directions for continuous MMD GAN.
In this section we turn to (discrete) gradient descent
in the parameter space of the generator, and give non
asymptotic convergence results for gradient descent in
regularized MMD GANs.

Discrete Descent Directions. We would like to
identify directions of ✓ along which the functional F(q✓)
decreases its value. For this, let us compute the rate
d
d"

��
"=0

F(q✓+"v) for each vector v 2 Rp.
Lemma 5.1. Let ✓ 2 ⇥. Then for any vector v 2 Rp

,

we have

d

d"
F(q✓+"v) = �hµp�q✓+"v , L

>

✓+"vviH for every " � 0.

Lemma 5.1 implies that v is a descent direction of F(q✓)
if and only if hµp�q✓ , L

>

✓ viH > 0. The next result gives
one such direction.
Proposition 5.2. Let ✓ 2 ⇥, and assume that

D✓µp�q✓ 6= 0. Let v
⇤ = L✓f with f 2 H being the

solution of (↵D✓ +�I)f = µp�q✓ . Then v
⇤

is a descent

direction of F(q✓). Precisely, we have

d

d"

���
"=0

F(q✓+"v⇤) = �

h
↵kD✓fk

2
H
+ �hf,D✓fiH

i
< 0.

In particular, F(q✓+"v⇤) < F(q✓) if " > 0 is small

enough.

Discrete Time Descent for MMD GAN. Here-
after, we denote khkH :=

⇣Pd
i=1 khik

2
H

⌘ 1
2

for h =

(h1, ..., hd) 2 H
d and kAk := (

P
i,j a

2
ij)

1
2 for a matrix

A = (aij). The next result holds under the following
extra conditions for k and G:

krxk(z1, .)�rxk(z2, .)kH  L̃ kz1 � z2k, (12)

kJ✓G✓(z)� J✓0G✓0(z)k  M̃(z) k✓ � ✓
0
k (13)

with L̃ > 0 being a constant and E⌫ [M̃(z)] < 1.

In Theorem 5.3 below we find conditions under which
we can achieve global convergence in MMD of gradient
descent in MMD GAN. When the kernel is characteris-
tic, this is equivalent to the global weak convergence of
gradient descent in MMD GAN to the target distribu-
tion. Gradient descent for MMD GAN is given by the
following updates: for all ` � 1, the witness functions
between p and q✓` = (G✓`)#⌫ update:

f` := (↵`D✓` + �`I)
�1µp�q✓`

, (14)

and the generator update:

✓`+1 := ✓` + "`L✓`(f`), (15)
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where ↵`,�` are sequences of regularization parameters,
and "` is a sequence of learning rates.
Theorem 5.3. Assume that k and G satisfy (1) and

(12)–(13). Let �i(✓) > 0 be the smallest non-zero eigen-

value of D✓, and define a(✓, f) := 1�
||PNull(D✓)f ||

2
H

||f ||2
H

with

PNull(D✓) being the projection to the null space of D✓.

Let F(q✓) =
1
2MMD(p, q✓)2. Consider the gradient de-

scent updates given in (14) and (15). Let 0 < ⌧ < 1
and ✓1 2 ⇥ be the starting point chosen such that:

a(✓1, f1) > ⌧. (16)

The sequence "` is chosen so that the following two

conditions are satisfied for each `:

a(✓`+1, f`+1) > ⌧ (17)

and

2C(2�`)
�1

�
1 +

p
F(q✓1)

�
 "

�1
` (18)

with C > 0 depending only on the constants

C1, C2, C3, C4 given in Lemma B.1.

Under the condition (17) on "` we have ⌧ < a(✓`, f`) 

1. Let �j :=
�i(✓j)a(✓j ,fj)

↵j�i(✓j)a(✓j ,fj)+�j
> 0. Then we have:

F(q✓`+1)  F(q✓1) exp(�
X̀

j=1

"j�j) 8` � 1.

In particular for ↵` 
⌧
2 and �` = ↵`�i(✓`), we obtain

�` � 1 and it follows that:

F(q✓`+1)  F(q✓1) exp(�
X̀

j=1

"j).

Consequently if
P

1

j=1 "j = +1 (meaning that "j de-
cays as 1/

p
j for e.g) and conditions (17) and (18)

hold, then we obtain F(✓`) ! 0 as ` ! 1. As we see
from Theorem 5.3, not all learning rates are admissi-
ble. At a given iteration `, we select a learning rate
"` so that f`+1 /2 Null(D✓`+1) (ensured by condition
(17)) and so that (18) holds as well. To understand
condition (17), recall from Theorem 4.1 that having
f` not in the null space of D✓` means that we have a
strict descent. Notice that f` /2 Null(D✓`) if and only
if µp�q✓`

/2 Null(D✓`).

6 Parametric Kernelized Flows for a

General Functional

The flow of the MMD functional (i.e. 1
2MMD(p, q✓)2)

analyzed in the previous sections is driven by the gra-
dient of the witness function between p and q✓ of the
discrepancy MMD↵,� . In this section we discover a

Riemannian structure on the statistical manifold of
probability distributions and show that the continuous
gradient descent in MMD GANs described in Section 4
coincides with the gradient flow of the functional with
respect to this new geometric structure. We also de-
velop a rigorous theory for treating gradient flows of
general functionals and thus open a way for other types
of variational inferences beyond GANs.

6.1 Dynamic Formulation For MMD on a

Statistical Manifold

The following result gives a dynamic formulation of
MMD and allows us to discover a Riemannian structure
associated to MMD. This is analogous to Benamou–
Brenier dynamic formulation of the Wasserstein of order
2 [25]:

W
2
2 (p, q) = inf

(qt,ft)

Z 1

0

Z
krxft(x)k

2
qt(dx)dt

s.t
@qt(x)

@t
= �div(qtrxft(x)), q0 = q, q1 = p. (19)

The main difference is that their flows are with respect
to the standard L

2
q✓ energy, while ours as explained

in Section 6.2, are driven by the parametric energy
||r✓[hf,µq✓ iH]k2.
Theorem 6.1 (Dynamic MMD on a Statistical Man-
ifold). Assume that for any ✓0, ✓1 2 ⇥, there exists

a path (✓t, ft)t2[0,1] such that ✓t=0 = ✓0, ✓t=1 = ✓1,

ft 2 H, and

@t✓t = L✓tft and D✓tft = 2µq✓1�q✓t
8t 2 [0, 1]. (20)

Let q✓0 and q✓1 be two probability measures in P⇥. Then

we have the following dynamic form of MMD between

distributions defined on the statistical manifold P⇥:

MMD2(q✓0 , q✓1) = min
(✓t,ft)

⇢Z 1

0
kD✓tftk

2
H
dt

�
,

@t✓t = L✓tft, ft 2 H, ✓t=0 = ✓0, ✓t=1 = ✓1.

Theorem 6.1 is proven under Assumption 20 that guar-
antees the existence of a solution. This assumption is
not realistic since D✓t can be singular. Nevertheless,
we state this theorem to motivate the introduction in
the next section of the dynamic form of a regularized
MMD that alleviates this singularity issue.

6.2 Regularized MMD and Gradient Flows on

a Statistical Manifold

Motivated by the result in Theorem 6.1 and to alleviate
the singularity issue in Assumption (20), we define the
following regularized version of MMD:
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Definition 6.2 (Regularized MMD on a Statistical
Manifold). Let ↵, � > 0. Define

d↵,�(q✓0 , q✓1)
2 = min

(✓t,ft)

Z 1

0

⇣
↵ kD✓tftk

2
H
+ � hft, D✓tftiH

⌘
dt,

@t✓t = L✓tft, ft 2 H, ✓t=0 = ✓0, ✓t=1 = ✓1.

Note that the regularization we introduced here
is the parametric energy ||r✓[hft,µq✓ iH]|✓=✓tk

2 =
hft, D✓tftiH, which plays a similar role as the kinetic
energy in Benamou-Brenier’s formula. The evolution
of ✓t in our form is analogous to the continuity equa-
tion in the W2 dynamic form [25]. Conditions on the
kernel and the generator family under which we can
guarantee existence of the solution for this problem
are out of the scope of this work, since our interest in
this heuristic Riemannian structure is solely in order to
define an appropriate tangent space and Riemannian
metric tensor. We leave the analysis of d↵,� to a future
work.

This dynamic formulation gives rise to the following
Riemannian metric tensor on the tangent space of ⇥:
for ✓ 2 ⇥, let

g✓(⇠1, ⇠2) := ↵ hD✓'1, D✓'2iH + � h'1, D✓'2iH

= h(↵D✓ + �I)'1, D✓'2iH

where ⇠i = L✓('i) = r✓[h'i,µq✓ iH] 2 Rp with 'i 2 H

(i = 1, 2). We note that g✓(⇠1, ⇠2) = g✓(⇠2, ⇠1) due to
the symmetry of D✓ (see property ii) of Proposition 2.3).
Then it follows that

d↵,�(q✓0 , q✓1)
2 = min

(✓t,ft)

nZ 1

0
g✓(@t✓t, @t✓t)dt

o
,

@t✓t = L✓tft, ft 2 H, ✓t=0 = ✓0, ✓t=1 = ✓1.

Let us assume that ↵, � > 0 from now on. For a
functional F : P⇥ ! R, let grad

d↵,�

F(q✓) denote the

gradient of F with respect to the metric d↵,� . That is,
grad
d↵,�

F(q✓) is a vector in Rp satisfying

dF(q✓t)

dt

���
t=0

= g✓(grad
d↵,�

F(q✓), ⇠) (21)

for every differentiable curve t 7! ✓t 2 ⇥ with ✓t=0 = ✓

and @t✓t|t=0 = ⇠ = L✓' for some ' 2 H. The next
theorem shows us how to compute such gradient.
Theorem 6.3. Let F(q✓) be a functional depending

only on the kernel mean embedding of q✓. Precisely,

assume that F(q✓) = H(µq✓) for some functional H

with the chain rule property

@✓i [H(µq✓ )] = hh✓, @✓i [µq✓ ]iH (22)

for some function h✓ 2 H and for all ✓ 2 ⇥. Then the

gradient of F w.r.t. the discrepancy d↵,� is given by

grad
d↵,�

F(q✓) = L✓u,

where

(↵D✓ + �I)u = h✓. (23)

Let F(q✓) be the functional as in Theorem 6.3, and
consider the gradient flow of F(q✓) with respect to
d↵,� . We note that this is a gradient regularized flow.
According to Theorem 6.3, the equation of this flow is
given by

@t✓t = �grad
d↵,�

F(q✓t) = �L✓tut, (24)

where
(↵D✓t + �I)ut = h✓t . (25)

The following proposition shows that these gradient
flows are indeed descent directions of the functional
defined on the statistical manifold P⇥:
Proposition 6.4. Along the gradient flow (24)–(25)
of F(q✓), we have

d

dt
F(q✓t) = �

⇥
↵kD✓tutk

2
H
+ �kL✓tutk

2
⇤

= �
1

↵

h
kh✓tk

2
H
� �

⌦
h✓t , (↵D✓t + �I)�1

h✓t

↵
H

i

 0,

where h✓ is defined by (22). Moreover, we have
dF(q✓t )

dt < 0 if and only if D✓th✓t 6= 0.

Intuition on the role of D✓ in the gradient

flow. The operator D✓ plays a central role in our
framework and we give here an intuitive interpre-
tation of its role from the gradient flow lens. Let
{(�j(✓), vj(✓))}1j=1 be the eigenvalues and eigenfunc-
tions of the operator D✓. Then as we have ut =P

1

j=0
1

↵�j(✓t)+� hh✓t , vj(✓t)iH vj(✓t), the flow equation
can be written as follows: @t✓t = �grad

d↵,�

F(q✓t) =

�
P

1

j=0
1

↵�j(✓t)+� hh✓t , vj(✓t)iH L✓t(vj(✓t)). The eigen-
functions of D✓t provide the descent directions
L✓t(vj(✓t)), that are linearly combined according to
the similarity of vj(✓t) and h✓t and weighted by a fac-
tor 1/(↵�j(✓t)+�). Small eigenvalues are noisy directions
and spectral filtering them via ↵ and � favors descent
directions with larger eigenvalues.

6.3 Gradient Flows of Particular Functionals:

MMD GAN as Gradient Flow

MMD GAN as a Gradient Flow w.r.t. d↵,�. The
next result shows that the flow (5)–(10) of the paramet-
ric gradient regularized MMD GAN coincides with the
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gradient flow of F(q✓) =
1
2MMD(p, q✓)2 with respect

to d↵,� .
Corollary 6.5. For F(q✓) =

1
2MMD(p, q✓)2, we have

grad
d↵,�

F(q✓) = L✓u with (↵D✓ + �I)u = �µp�q✓ . Con-

sequently, the parametric regularized flow (5)–(10) on

the statistical manifold is the gradient flow of F with

respect to d↵,�

Proof. This follows immediately from Theorem 6.3 not-
ing that @✓i [F(q✓)] = �hµp�q✓ , @✓i [µq✓ ]iH.

Gradient flows of Generic Functionals on the

Statistical Manifold. Our framework is not limited
to the MMD functional. In the corollary below we
exhibit additional examples of functional F(q✓) defined
on the statistical manifold along with their gradient
flows w.r.t. d↵,� .
Corollary 6.6. • For the (potential) energy func-

tional F1(q✓) =
R
V (x)q✓(dx) with V 2 H, we

have grad
d↵,�

F1(q✓) = L✓u, where (↵D✓ + �I)u = V.

• For the (entropy) functional F1(q✓) =R
f(µq✓(x))dx with f : R ! R being contin-

uously differentiable, we have grad
d↵,�

F1(q✓) = L✓u,

where (↵D✓ + �I)u =
R
f
0(µq✓ (x))k(x, .)dx.

• For the (interaction) functional F3(q✓) =R
f(x)g(y)q✓(dx)q✓(dy) with f, g 2 H, we have

grad
d↵,�

F3(q✓) = L✓u, where (↵D✓ + �I)u =

hf,µq✓ iH g + hg,µq✓ iH f.

Continuous Time Descent In this section we ana-
lyze the convergence properties of the kernelized para-
metric gradient flows of functionals defined on the sta-
tistical manifold w.r.t. to d↵,� . The following proposi-
tion studies the convergence behavior of the parametric
flows.
Proposition 6.7 (Convergence up to a barrier). Let

F(q✓) be the functional as in Theorem 6.3. Assume

that there exists a continuous function � : ⇥ ! [0,1)
such that

kh✓k
2
H

� �(✓)F(q✓) 8✓ 2 ⇥. (26)

Consider the dynamic t 2 [0,+1) ! ✓t 2 ⇥ of the

gradient flow (24)–(25). Then we have for every t � 0:

F(q✓t)  F(q✓0)e
�

R t
0

�i(✓s)a(✓s,us)�(✓s)
↵�i(✓s)a(✓s,us)+� ds

, (27)

where �i(✓) and a(✓, u) are defined in Theorem 5.3.

Remark 6.8. Note that condition (26) is satisfied by

the MMD for �(✓) = 2, since h✓ = �µp�q✓ , and hence

kh✓k
2
H

= 2F(q✓) .

7 Related Work

MMD GAN. Since their introduction in [1], many
cost functions have been proposed for training GANs.
Related to our work is MMD GAN introduced in [6, 7]
and later improved in [8].

Gradient Regularized GANs. GAN’s training is
notoriously known to be unstable. Wasserstein GAN [4]
tackled that issue by considering W1 as a loss func-
tion for training. Imposing lipchitizity in practice is
challenging and a gradient penalty in the input space
was introduced in WGAN-GP [11] as means to impose
lipchitizity. Sobolev GAN [12] connected this gradient
penalty to advection and semi-Sobolev norms. The
work [16] considered this input gradient regularizer in
MMD GANs.

Closely related to our study are the gradient penal-
ties on the parameter space of the generator and the
discriminator considered in [13]. It was demonstrated
in [14,15] that these gradient regularizers ensure stabil-
ity and convergence of the min/max game. [17] showed
that GANs with a variant of a gradient penalty on the
parameter space of the discriminator is locally stable.
Even though these works studied the stability of the
min/max game and its convergence to a saddle point,
they did not show the global convergence of the discrete
gradient flow in the distributional sense which is what
we prove in this paper thanks to the newly proposed
Riemannian structure.

Gradient Flows. Wasserstein W2 flows for minimiz-
ing functionals over probabilities (see the excellent
introduction [26]) are related to our work. These flows
are non parametric and are given by the continuity
equation. Recently Wasserstein flows were extended to
statistical manifold [27], and a kernelized Wasserstein
natural gradient flow was introduced in [24]. Ker-
nelized particle flows such as Stein Descent [28–30],
Sobolev Descent [22] and MMD flows [23] are not de-
fined on a statistical manifold and only act on the
particle level. [29, 30] introduce similar Riemannian
structures to ours for the Stein geometry, neverthe-
less they are not defined on a statistical manifold. It
would be interesting to derive a dynamical form of
the Stein metric on a manifold of parametric explicit
densities. [31] studied minimum stein estimators and
introduced a natural Stein gradient, and it would be
interesting to connect their study to a definition of an
appropriate dynamic Stein structure on a parametric
manifold.

8 Numerical Experiments

We consider a finite dimensional RKHS defined by
a random feature map [32, 33] �(x) : ⌦ ! Rm. �



MMD GAN As a Gradient Flow

MMD GAN  No Grad Reg (it does not work)

(a) Trajectories of Flows for ↵ = 0: Euclidean Gradients Flows (b) MMD Loss

(c) Trajectories of Flows for ↵ = 100: Kernelized Gradients Flows w.r.t. d↵,� (d) MMD Loss

Figure 1: Trajectories of Kernelized Gradient flows of the MMD functional for ↵ = 0 (no gradient regularization)
and ↵ = 100. It is clear that the Riemannian structure induced by d↵,� , ↵ > 0 guarantees the convergence, while
GAN suffer from cycles and mode collapse for ↵ = 0.

in our case is a 4 layers Relu Network with hid-
den dimension m = 512, with weights sampled from
standard Gaussian and then fixed [34]. The space
H = {f(x) = hw,�(x)i , w 2 Rm

}.

MMD GAN as a Kernelized Gradient Flow.

In parametric gradient regularized MMD GANs, we
find the MMD↵,�(p, q✓`) witness function f` between p

and q✓` , and then update the generator according to:
✓`+1 = ✓` + "`L✓`f`. We showed that this coincides
exactly with the gradient flow of the MMD functional
w.r.t. the geometric structure d↵,� introduced in this
paper, and we proved its global convergence under
mild assumptions. We show here an example, where
the target distribution is a two dimensional mixture
of Gaussians with 8 modes. In this example, Z is 256
dimensional space and ⌫ is standard Gaussian on Z.
The generator G✓ is a 2 layer Relu Network (hidden
size 128) and two dimensional output. We fix the mini-
batch size in the training to 512, the learning rate of
the witness function and generator is set to 1e�4. We
train the witness function f` of MMD↵,� with stochas-
tic gradient (RmsProp [35]) for 5 iterations. Note that
in this case only the last linear layer is updated in the
witness function, and � is kept fixed. We then update
the parameter ✓ with gradient descent on �Eq✓`

f`. We
use also RmsProp to ensure that the learning rates are
adaptive. Note that given the witness function f`, the
discrete flow update given in Eq. (15) is exactly the
gradient descent update on �Eq✓`

f`.

We give in Figure 1 the trajectories of the flows for
↵ = 100 and ↵ = 0 for L = 100K iterations. Since in

our implementation (Appendix E) we use stochastic
gradient for learning the witness function f`, the desired
regularization effect of � is ensured by early stopping
and SGD [36, 37]. The case ↵ = 100 corresponds to
the gradient flow w.r.t. Riemannian structure d↵,� ,
the case ↵ = 0 corresponds to unregularized MMD
GAN that uses Euclidean gradients on the objective
MMD(p, q✓) [6–8]. We see from Figure 1 that the
kernelized flows induced by d↵,� for ↵ > 0 ensure
graceful convergence of the generator to the target
distribution as predicted by Theorem 5.3, while GAN
suffers from cycles and mode collapse for ↵ = 0.

In Appendix F, we give trajectories for neural witness
functions (i.e. � is learned as well), and we see similar
behavior to the fixed kernel. We leave for future work
the extension of d↵,� and its gradient flows to neural
function spaces as in [3,38,39]. Analysing the dynamic
of the min-max optimization of parametric gradient
regularized MMD GAN descent in the neural case will
be interesting to conduct in the spirit of [40].

9 Conclusion

We propose an energy regularized gradient descent to
MMD GAN training and derive a condition guarantee-
ing its global convergence. We demonstrate that the
resulting flow coincides with the gradient flow of MMD
with respect to a newly proposed Riemannian structure
on the statistical manifold of probability distributions.
Our investigation deepens the role of gradient regu-
larization in GANs. Future directions include more
understanding about the relationship between the static
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discrepancy and the dynamic discrepancy introduced
in this paper, and investigation of other variational
problems on a statistical manifold using the proposed
Riemannian structure.
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