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1 First Results

We introduce some auxiliary operators, being useful in our proofs. These operators have been introduced in a
variety of previous works, see e.g. Caponnetto and De Vito (2006); Dieuleveut and Bach (2016); Blanchard and
Mücke (2018). Recall that SK : HK ↪→ L2(µ(M+(X )), ρµ) denotes the canonical injection map. The adjoint
S∗K : L2(µ(M+(X )), ρµ)→ HK is given by

S∗Kg =

∫
µ(M+(X ))

g(µ̃)Kµ̃ ρµ(dµ̃) ,

where we remind at the notation Kµ̃ = K(µ̃, ·). The covariance operator is TK := S∗KSK : HK → HK , with

TKf =

∫
µ(M+(X ))

〈Kµ̃, f〉HKKµ̃ ρµ(dµ̃)

and the kernel integral operator LK : L2(µ(M+(X )), ρµ)→ L2(µ(M+(X )), ρµ) is

LKg =

∫
µ(M+(X ))

g(µ̃)K(µ̃, ·) ρµ(dµ̃) .

We further introduce the empirical counterparts:

Tx :=
1

n

n∑
j=1

〈
Kµxj

, ·
〉
HK

Kµxj
, Tx̂ :=

1

n

n∑
j=1

〈
Kµx̂j

, ·
〉
HK

Kµx̂j

gz :=
1

n

n∑
j=1

yjKµxj
, gẑ :=

1

n

n∑
j=1

yjKµx̂j
,

where Tx, Tx̂ : HK → HK , gz, gẑ ∈ HK .

We collect some preliminary results.

Lemma 1.1. Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied. Then

ED̂|D[||TK(Tx̂ + λId)−1||] ≤ 1

λ
||TK − Tx||+

cαγ
αLM√
λN

α
2

+ 1 ,

for some cα <∞. Moreover, for any δ ∈ (0, 1], with probability at least 1− δ w.r.t. the data D, one has

ED̂|D[||TK(Tx̂ + λId)−1||] ≤ 6 log(2/δ)
1

λ
√
n

+
cαγ

αLM√
λN

α
2

+ 1 .

Proof of 1.1. Let us bound for any λ > 0

ED̂|D[||TK(Tx̂ + λId)−1||] ≤ ||TK(TK + λId)−1|| · ED̂|D[||(TK + λId)(Tx̂ + λId)−1||]

≤ ED̂|D[||(TK + λId)(Tx̂ + λId)−1||] .

We proceed by writing

(TK + λId)(Tx̂ + λId)−1 = (TK + λId)((Tx̂ + λId)−1 − (TK + λId)−1) + (TK + λId)(TK + λId)−1

= ((TK − Tx) + (Tx − Tx̂))(Tx̂ + λId)−1 + Id .

Since ||(Tx̂ + λId)−1|| ≤ 1/λ, this leads to

ED̂|D[||TK(Tx̂ + λId)−1||] ≤ 1

λ
||TK − Tx||+

1

λ
ED̂|D[||Tx − Tx̂||] + 1 .

The first result follows then from Lemma 1.3 and Jensen’s inequality. The second result follows from the first
one by applying Proposition 5.5. in Blanchard and Mücke (2018).



Lemma 1.2. (Fang et al., 2020, Eq. (37)) Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied. Then

ED̂|D[||gẑ − gz||2HK ] ≤ cαL2M2 γ
2α

Nα
,

for some cα <∞.

Lemma 1.3. (Fang et al., 2020, Eq. (38)) Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied. Then

ED̂|D[||Tx̂ − Tx||2] ≤ cακ2L2 γ
2α

Nα
,

for some cα <∞.

Lemma 1.4. (Fang et al., 2020, Lemma 8) Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied and let λ > 0.
Define

Cx(λ) :=

(
Ax(λ)

λ
+

1

λ
3
2N

α
2

+
1√
λ

)
, (1)

where
Ax(λ) := ||(TK + λId)−

1
2 (TK − Tx)|| .

Then
ED̂|D[||T

1
2

K(Tx̂ + λId)−1||2] ≤ C2
κ,γ,L,αCx(λ)2 ,

for some Cκ,γ,L,α <∞.

2 Solving Distribution Regression with Tail-Averaged Gradient Descent

In this section we derive the learning properties of tail-averaged two-stage Gradient Descent. This is a necessary
step for deriving our learning bounds for SGD on distribution regression problems and is of independent interest.

Let us begin with introducing the gradient updates using the second-stage data D = {(µx̂j , yj)}nj=1 ⊂
µ(M+(X ))× Y as f̂0 = 0 and for t ≥ 1

f̂t+1 = f̂t − η
1

n

n∑
j=1

(f̂t(µx̂j )− yj)Kµx̂j
.

Here, η > 0 is the constant step-size. We furthermore set

¯̂
fT :=

2

T

T∑
t=bT/2c+1

f̂t . (2)

Similarly, we introduce the Gradient Descent updates using the first-stage data D = {(µxj , yj)}nj=1 ⊂
µ(M+(X ))× Y with initialization f0 = 0 as

ft+1 = ft − η
1

n

n∑
j=1

(ft(µxj )− yj)Kµxj

and

f̄T :=
2

T

T∑
t=bT/2c+1

ft .
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We analyze the learning properties of (2) based on the decomposition

¯̂
fT − fρ = (

¯̂
fT − f̄T )︸ ︷︷ ︸

GD V ariance 2. stage

+ (f̄T − fρ)︸ ︷︷ ︸
Error GD first stage

.

The bound for the second stage GD variance is derived in Section 2.3. The error estimate for first stage Gradient
Descent is known from previous results. For completeness sake we review the main results in our setting in
Section 2.2

2.1 A General Result

In this section we state a general result for spectral regularization algorithms. Those bounds are known for some
time in learning theory, see e.g. Bauer et al. (2007). We collect some results from Caponnetto and De Vito
(2006); Fischer and Steinwart (2017); Blanchard and Mücke (2018); Lin et al. (2020); Mücke et al. (2019).

We let {gλ : [0, ||TK ||] → [0,∞) : λ ∈ (0, ||TK ||]} be a family of filter functions (for the definition we refer to
one of the above mentioned papers). We define

ûλ := gλ(Tx)S∗xy , uλ := gλ(TK)S∗Kfρ .

Our aim is to provide a bound of the estimation error in different norms ||T aK(ûλ − uλ)||HK , for a ∈ [0, 1/2]. To
this end, we require a condition for the observation noise.

Assumption 2.1 (Bernstein Observation Noise). For some σ > 0, B > 0 and for all m ≥ 2 we have almost
surely ∫

Y
|y − fρ(x)|m ρ(dy|x) ≤ 1

2
m!σ2Bm−2 .

Finally, we need

Assumption 2.2. Let λ > 0. Suppose that

n ≥ 32κ2 log(4/δ)

λ
log

(
eN (λ)

(
1 +

λ

||TK ||

))
.

Proposition 2.3 (Estimation Error). Let a ∈ [0, 1/2]. Let further δ ∈ (0, 1] and suppose Assumptions 2.1, 2.2
are satisfied. Denote

Bλ = max{B, ||SKuλ − fρ||∞} .

1. Assume fρ ∈ Range(LζK), for some ζ ∈ (0, 1]. With probability not less than 1− δ,

||T aK(ûλ − uλ)||HK ≤ C1 log(12/δ)
λa−1/2√

n

(
σ
√
N (λ) +

||SKuλ − fρ||L2√
λ

+
Bλ√
nλ

)
+ C2λ

a+1/2 ||T−1/2λ uλ||HK + C3λ
a−1/2||SKuλ − fρ||L2 ,

for some C1 > 0, C2 > 0 and C3 > 0.

2. Assume fρ ∈ Range(LζK), for some ζ > 1. With probability not less than 1− δ,

||T aK(ûλ − uλ)||HK ≤ C ′1 log(12/δ)
λa−1/2√

n

(
σ
√
N (λ) +

||SKuλ − fρ||L2√
λ

+
Bλ√
nλ

)
+ C ′2λ

a ||T−ζK uλ||HK
(

log(4/δ)√
n

+ λζ
)

+ C ′3λ
a−1/2||SKuλ − fρ||L2 ,

for some C ′1 > 0, C ′2 > 0 and C ′3 > 0.



Proof of Proposition 2.3. Let a ∈ [0, 1/2]. We write

T aK(ûλ − uλ)

= T aKgλ(Tx)((S∗xy − S∗Kfρ)− (Txuλ − TKuλ))︸ ︷︷ ︸
T1

+T aK(gλ(Tx)Tx − Id)uλ︸ ︷︷ ︸
T2

+T aKgλ(Tx)(S∗Kfρ − TKuλ)︸ ︷︷ ︸
T3

.

We further set Tx,λ := Tx + λ and Tλ := TK + λ.

Bounding T1. We further decompose

||T1||HK ≤ ||T aKT
−1/2
λ || · ||T 1/2

λ T
−1/2
x,λ || · ||T

1/2
x,λ gλ(Tx)T

1/2
x,λ || · ||T

−1/2
x,λ (S∗xy − S∗Kfρ)− (Txuλ − TKuλ))||HK .

A short calculation shows that
||T aKT

−1/2
λ || ≤ λa−1/2 .

By Caponnetto and De Vito (2006), Proof of Theorem 4, with probability at least 1− δ/6

||T 1/2
λ T

−1/2
x,λ || ≤

√
2 ,

provided Assumption 2.2 is satisfied. Moreover, according to Bauer et al. (2007), Definition 1 we have almost
surely

||T 1/2
x,λ gλ(Tx)T

1/2
x,λ || ≤ E ,

for some E > 0. Finally, Lemma 6.10 in Fischer and Steinwart (2017) shows that with probability at least 1−δ/6

||T−1/2x,λ ((S∗xy − S∗Kfρ)− (Txuλ − TKuλ))||2HK ≤ Cκ log2(12/δ)
1

n

(
σ2N (TK) +

||SKuλ − fρ||2L2

λ
+
B2
λ

nλ

)
,

for some Cκ > 0. Thus, combining the above gives us with probability at least 1− δ/3

||T1||HK ≤ C ′κ log(12/δ)
λa−1/2√

n

(
σ
√
N (TK) +

||SKuλ − fρ||L2√
λ

+
Bλ√
nλ

)
, (3)

for some C ′κ > 0.

Bounding T2. Setting rλ(Tx) = gλ(Tx)Tx − Id, we split once more and obtain with probability at least 1− δ

||T2||HK ≤ ||T aKT
−1/2
λ || · ||T 1/2

λ T
−1/2
x,λ || · ||T

1/2
x,λ rλ(Tx)uλ||

≤
√

2λa−1/2||T 1/2
x,λ rλ(Tx)uλ||HK .

Now we follow the proof of Mücke et al. (2019), Proposition 2, slightly adapted to our purposes, and consider
two different cases:

(a) Assume fρ ∈ Range(LζK), for some ζ ∈ (0, 1]. Here, we write with probability at least 1− δ/3

||T 1/2
x,λ rλ(Tx)uλ||HK ≤ ||Tx,λrλ(Tx)|| · ||T−1/2x,λ T

1/2
λ || · ||T−1/2λ uλ||HK

≤ C1λ ||T−1/2λ uλ||HK ,

for some C1 > 0. Thus,

||T2||HK ≤ C1λ
a+1/2 ||T−1/2λ uλ||HK .

(b) Assume fρ ∈ Range(LζK), for some ζ > 1. In this case we let ζ ≥ 1 and have for some C2 > 0

||T 1/2
x,λ rλ(Tx)uλ||HK ≤ ||T

1/2
x,λ rλ(Tx)|| ||T ζK − T

ζ
x || ||T

−ζ
K uλ||HK + ||T 1/2

x,λ rλ(Tx)T ζx || ||T
−ζ
K uλ||HK

≤
√
λ ||T−ζK uλ||HK

(
C2

log(4/δ)√
n

+ λζ
)
,
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holding with probability at least 1− δ/3. Thus, for some C̃2 > 0.

||T2||HK ≤ C̃2λ
a ||T−ζK uλ||HK

(
log(4/δ)√

n
+ λζ

)
.

Bounding T3. Applying standard arguments gives with probability at least 1− δ/3

||T3||HK ≤ ||T aKgλ(Tx)(S∗Kfρ − TKuλ)||HK
≤ C3λ

a−1/2||SKuλ − fρ||L2 .

Combining all of our findings leads to result.

We summarize some results under refined assumptions on fρ, see e.g. Fischer and Steinwart (2017), Lemma 6.6.
and Corollary 6.7 .

Lemma 2.4. Suppose Assumptions 2.2 and 3.2 are satisfied. Then

1. ||uλ||HK ≤ Rλr−
1
2 ,

2. ||SKuλ − fρ||L2 ≤ Rλr,

3. ||SKuλ||∞ ≤ κ2Rλ−|1/2−r|+ ,

4. ||(TK + λ)−1/2uλ||HK ≤ CRλr−1,

5. Assume ||fρ||∞ <∞. Then ||SKuλ − fρ||∞ ≤ (||fρ||∞ + κ2R)λ−|1/2−r|+ .

2.2 Bounding First Stage Tail-Averaged Gradient Descent Error

Our aim is now to state an error bound for the first-stage tail-average GD algorithm, defined in (2). According
to the results in Mücke et al. (2019), (2) can be rewritten as

f̄T = GT (Tx)S∗xy ,

where GT is defined in (2), Appendix B and constitutes a family of filter functions {Gλ}λ, where we set λ =
1/(ηT ). We then get

||SK f̄T − fρ||L2 ≤ ||SK(f̄T − ūT )||L2 + ||SK ūT − fρ||L2 ,

where we set ūT = GT (TK)S∗Kfρ. Thus, the first term corresponds the an estimation error which we bound
by means of Proposition 2.3 with a = 1/2. Note that Assumption 2.1 is satisfied with σ = B = 2M , since
Y ⊆ [−M,M ] by assumption.

Proposition 2.5 (Excess Risk Tail-Ave GD First Stage). Suppose Assumptions 2.2, 2.2 are satisfied. Let T ∈ N
and denote

BT = max{2M, ||SK ūT − fρ||∞} .

Let further δ ∈ (0, 1], λ = (ηT )−1.

1. Assume fρ ∈ Range(LζK), for some ζ ∈ (0, 1]. With probability not less than 1− δ,

||SK f̄T − fρ||L2 ≤ C1 log(12/δ)
1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C2λ ||(TK + λ)−1/2ūT ||HK + C3||SK ūT − fρ||L2 ,

for some C1 > 0, C2 > 0 and C3 > 0.



2. Assume fρ ∈ Range(LζK), for some ζ > 1. With probability not less than 1− δ,

||SK f̄T − fρ||L2 ≤ C ′1 log(12/δ)
1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C ′2λ

1/2 ||T−ζK ūT ||HK
(

log(4/δ)√
n

+ λζ
)

+ C ′3||SK ūT − fρ||L2 ,

for some C ′1 > 0, C ′2 > 0 and C ′3 > 0.

Corollary 2.6 (Rate of Convergence First Stage Tail-Averaged Gradient Descent). Suppose all Assumptions
of Proposition 2.5 are satisfied. Let additionally Assumptions 3.2 and 3.3 hold. Then with probability not less
than 1−δ, the excess risk for the first stage tail-averaged Gradient Descent satisfies with probability not less than
1− δ:

1. If 2r + ν > 1: Let ηnTn =
(
R2

M2n
) 1

2r+ν

, then

||SK f̄T − fρ||L2 ≤ C log(12/δ)R

(
M2

R2n

) r
2r+ν

.

for some constant C <∞.

2. If 2r + ν ≤ 1: Let ηnTn = R2n
M2 logK(n)

for some K > 1, then

||SK f̄T − fρ||L2 ≤ C ′ log(12/δ)

(
M2 logK(n)

R2n

)r
.

for some constant C ′ <∞.

Proof of Corollary 2.6. The proof follows from standard calculations by applying Lemma 2.4 and Proposition
2.5 with ζ = r.

2.3 Bounding Second Stage Tail-Averaged Gradient Descent Variance

Based on the notation introduced in Section 1, the GD updates can be rewritten as

f̂t+1 = f̂t − η(Tx̂f̂t − gẑ) (4)

and
ft+1 = ft − η(Txft − gz) .

We thus find for any t ≥ 1
f̂t+1 − ft+1 = (Id− ηTx̂)(f̂t − ft) + ηξ̂t ,

where we define the noise variables as

ξ̂t := ξ̂
(1)
t + ξ̂(2) ξ̂

(1)
t := (Tx − Tx̂)ft , ξ̂(2) := gẑ − gz . (5)

By induction we easily find

f̂t+1 − ft+1 = η

t∑
s=0

(Id− ηTx̂)t−sξ̂s (6)

and

¯̂
fT − f̄T =

2η

T

T∑
t=bT/2c+1

t−1∑
s=0

(Id− ηTx̂)t−1−sξ̂s .
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As a first step we need to bound the norm of the noise variables (5). To this end, let us introduce the GD
updates ut = gt(TK)S∗Kfρ, where {gt}t is a filter function, given in Eq. (23) in Mücke et al. (2019).

Proposition 2.7. Let further δ ∈ (0, 1] and suppose Assumptions 2.1, 2.2 are satisfied. Denote

Bt = max{M, ||SKut − fρ||∞} .

1. Assume fρ ∈ Range(LζK), for some ζ ∈ (0, 1]. With probability not less than 1− δ,

||ft||HK ≤ C1 log(12/δ)

√
ηt

n

(
M
√
N (1/(ηt)) +

√
ηt||SKut − fρ||L2 +Bt

√
ηt

n

)
+ C2(ηt)−1/2 ||(TK + 1/(ηt))−1/2ut||HK + C3

√
ηt||SKut − fρ||L2 + ||ut||HK ,

for some C1 > 0, C2 > 0 and C3 > 0.

2. Assume fρ ∈ Range(LζK), for some ζ ≥ 1. With probability not less than 1− δ,

||ft||HK ≤ C ′1 log(12/δ)

√
ηt

n

(
M
√
N (1/(ηt)) +

√
ηt||SKut − fρ||L2 +Bt

√
ηt

n

)

+ C ′2 ||T
−ζ
K ut||HK

(
log(4/δ)√

n
+ (ηt)−ζ

)
+ C ′3

√
ηt||SKut − fρ||L2 + ||ut||HK ,

for some C ′1 > 0, C ′2 > 0 and C ′3 > 0.

Proof of Proposition 2.7. We decompose as

||ft||HK ≤ ||ft − ut||HK + ||ut||HK .

The proof follows then from Proposition 2.5 with a = 0, σ = B = M .

Corollary 2.8. In addition to all assumptions of Proposition 2.7, suppose Assumptions 2.2, 3.2 and 3.3 are
satisfied.

1. Let 0 < r ≤ 1/2 and assume that

n ≥ 64κ2 log(12/δ)(ηt) log((ηt)ν) . (7)

Then Assumption 2.2 is satisfied and with probability not less than 1− δ

||ft||HK ≤ C ′κ,M,R(ηt)
1
2 max{ν,1−2r} ,

for some C ′κ,M,R > 0.

2. Let 1/2 ≤ r ≤ 1 and assume that
n ≥ 64eκ2 log2(12/δ)(ηt)1+ν . (8)

Then Assumption 2.2 is satisfied and
||ft||HK ≤ Cκ,M,R ,

with probability not less than 1− δ and for some Cκ,M,R > 0.

3. Let 1 < r and assume that (8) is satisfied. Then

||ft||HK ≤ C ′κ,M,R ,

with probability not less than 1− δ and for some C ′κ,M,R > 0.



Proof of Corollary 2.8. Recall that by Lemma 2.4 we have

||SKut − fρ||L2 ≤ R(ηt)−r , ||SKut − fρ||∞ ≤ (M + κ2R)(ηt)|1/2−r|+

and
||ut||HK ≤ R(ηt)

1
2−r , ||(TK + 1/(ηt))−1/2ut|| ≤ CR(ηt)1−r .

1. Now suppose that 0 < r ≤ 1/2. The first part of Proposition 2.7 yields with probability not less than 1− δ

||ft||HK ≤ C1 log(12/δ)

√
ηt

n

(
M(ηt)ν/2 +R(ηt)1/2−r + (ηt)|1/2−r|+

√
ηt

n

)
+ C2 R(ηt)1/2−r . (9)

Then (9) and (7) give with log(12/δ) ≥ 1 the bound

||ft||HK ≤ Cκ,M,R log(12/δ)

√
ηt

n
(ηt)

1
2 max{ν,1−2r} + C ′κ,M,R(ηt)1/2−r

≤ C ′′κ,M,R(ηt)
1
2 max{ν,1−2r} ,

with probability not less than 1− δ.

2. Specifically, if 1/2 ≤ r ≤ 1 and 1/(ηt) ≤ κ2, we have

||ft||HK ≤ C ′κ,r max{M,R} log(12/δ)

(
1√
n

(ηt)1/2+ν/2 + 1 +
ηt

n

)
+ C ′κ,r R

≤ Cκ,M,R ,

for some Cκ,M,R > 0, provided (8) is satisfied.

3. The second part of Proposition 2.7 then gives with ζ = r and ||T−rK ut||HK ≤ CR(ηt)1/2, with probability
not less than 1− δ

||ft||HK ≤ C1 log(12/δ)

(
1√
n

(ηt)1/2+ν/2 + 1 +
ηt

n

)
+ C2(ηt)1/2

(
log(4/δ)√

n
+ (ηt)−r

)
+ C3(ηt)1/2−r

≤ C4 + C2(ηt)1/2
(

log(4/δ)√
n

+ (ηt)−r
)

≤ C5 + C2 log(4/δ)
(ηt)1/2√

n

≤ C6 ,

for some C6 > 0, depending on κ,M,R.

We now come to the main result of this subsection.

Proposition 2.9 (Second Stage GD Variance). Suppose Assumptions 2.2, 3.1 and 2.2 are satisfied. Let η < 1/κ2,
T ≥ 3 and define

B(1/ηT ) :=

(
2ηT

n
+

√
ηTN (1/ηT )

n
+

ηT

N
α
2

+ 1

)
. (10)

1. If fρ ∈ Ran(SK): The GD variance satisfies with probability not less than 1− δ with respect to the data D

ED̂|D[||SK(
¯̂
fT − f̄T )||L2 ] ≤ C log(4/δ) log(T )

√
ηT

N
α
2
B(1/ηT ) ,

for some C <∞, depending on κ, γ, L, α.
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2. If fρ 6∈ Ran(SK): Let us define

ϕ(ηs) = (ηs)
1
2 max{ν,1−2r} . (11)

With probability not less than 1− δ with respect to the data D

ED̂|D[||SK(
¯̂
fT − f̄T )||L2 ] ≤ C log(4/δ) log(T )

√
ηTB(1/ηT )

N
α
2

(1 + ϕ(ηT )) ,

for some C <∞, depending on κ, γ, L, α, r.

Proof of Proposition 2.9. By (2.3) we may write

T
1
2

K(
¯̂
fT − f̄T ) =

2η

T

T∑
t=bT/2c+1

t−1∑
s=0

T
1
2

K(Id− ηTx̂)t−1−sξ̂s

=
2η

T

T∑
t=bT/2c+1

t−1∑
s=0

A ·Bt,s ξ̂s ,

where for λ > 0 we introduce

A := T
1
2

K(Tx̂ + λId)−1

Bt,s := (Tx̂ + λId)(Id− ηTx̂)t−1−s .

(1) Bounding the operator A: This follows directly from Lemma 1.4. Indeed,

ED̂|D[||T
1
2

K(Tx̂ + λId)−1||] ≤ Cκ,γ,L,α
(
Ax(λ)

λ
+

1

λ
3
2N

α
2

+
1√
λ

)
,

where by Blanchard and Mücke (2018, Proposition 5.3) the term Ax(λ) satisfies with probability at least 1− δ
with respect to the data D

Ax(λ) = ||(TK + λId)−
1
2 (TK − Tx)|| (12)

≤ 2 log(2/δ)

(
2

n
√
λ

+

√
N (λ)

n

)
. (13)

Hence, since 1 ≤ 2 log(2/δ) for any δ ∈ (0, 1] we obtain with probability at least 1− δ

ED̂|D[||T
1
2

K(Tx̂ + λId)−1||] ≤ Cκ,γ,L,α log(2/δ)
B(λ)√
λ
. (14)

(2) Bounding the operators Bt,s: We write

||Bt,s|| ≤ ||Tx̂(Id− ηTx̂)t−1−s||+ λ||(Id− ηTx̂)t−1−s|| .

Denoting σ1 ≥ σ2 ≥ ... the sequence of eigenvalues of Tx̂, we have for any s = 0, ..., t−1, t = bT2 c, ..., T the upper
bound

||(Id− ηTx̂)t−1−s|| ≤ sup
j
|(1− ησj)t−1−s| ≤ 1 ,

since η < 1/κ2.



For bounding the first term note that for s = t− 1 we have

||Tx̂(Id− ηTx̂)t−1−s|| = ||Tx̂|| ≤ κ2 .

If 0 ≤ s < t− 1 we use the inequality 1 + σ ≤ eσ for any σ ≥ −1. Then a short calculation gives1

||Tx̂(Id− ηTx̂)t−1−s|| ≤ sup
j
|σj(1− ησj)t−1−s|

≤ sup
j
σje
−η(t−1−s)σj

≤ 1

eη(t− 1− s)
.

Thus, combining the above findings yields

||Bt,t−1|| ≤ κ2 + λ , (15)

and for 0 ≤ s < t− 1

||Bt,s|| ≤
1

eη(t− 1− s)
+ λ . (16)

(3) Bounding the noise variables ξ̂s: Recall that ξ̂s := ξ̂
(1)
s + ξ̂(2) with

ξ̂(1)s := (Tx − Tx̂)fs , ξ̂(2) := gẑ − gz .

Applying Lemma 1.2 gives for some cα <∞ the bound

ED̂|D[||ξ(2)||HK ] = ED̂|D[||gẑ − gz||HK ] ≤ cαLM
γα

N
α
2
.

� fρ ∈ Ran(SK): Lemma 1.3 and Proposition 2.9 gives with probability at least 1− δ

ED̂|D[||ξ(1)s ||HK ] = ED̂|D[||(Tx̂ − Tx)fs||HK ] ≤ C

N
α
2
,

with C = c′αγ
ακL(2||wρ||HK + 1), for some c′α <∞. Combining both bounds finally leads to

ED̂|D[||ξ̂s||HK ] ≤ c′′α
N

α
2
, (17)

where c′′α = 2 max{C, cαγαLM} and holding with probability at least 1− δ.

� fρ 6∈ Ran(SK): In this case we apply Lemma 1.3 and Corollary 2.8 to get with probability at least 1 − δ
with respect to the data D

ED̂|D[||ξ(1)s ||HK ] ≤ κc′αγαL log(6/δ)
ϕ(ηs)

N
α
2

,

for some c′α <∞ and where ϕ is defined in (11). Hence, with probability at least 1− δ with respect to the
data D one has

ED̂|D[||ξ̂s||HK ] ≤ c̃′′α
N

α
2

(1 + ϕ(ηs)) , (18)

for some c′′α <∞.

We complete the proof now by collecting the above findings. Let us write

||T
1
2

K(
¯̂
fT − f̄T )||HK ≤

2η

T

T∑
t=bT/2c+1

t−2∑
s=0

||A|| · ||Bt,s|| · ||ξ̂s||HK︸ ︷︷ ︸
I1

+
2η

T

T∑
t=bT/2c+1

||A|| · ||Bt,t−1|| · ||ξ̂t−1||HK︸ ︷︷ ︸
I2

.

We again distinguish between the two cases:

1The function h(σ) = σe−cσ, c > 0, achieves it’s maximum at σ = 1/c.
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� fρ ∈ Ran(SK): From (14), (15) and (17) we obtain with λ ≤ κ2

ED̂|D[I2] ≤ ηC̃κ,γ,L,α log(2/δ)
B(λ)

λ
1
2N

α
2

, (19)

for some C̃κ,γ,L,α <∞. Additionally, by (14), (16), (17) and Lemma 2.14 we find with λ = (ηT )−1

ED̂|D[I1] ≤ C̃ ′κ,γ,L,α log(2/δ)
B(λ)

λ
1
2N

α
2

2η

T

T∑
t=bT/2c+1

t−2∑
s=0

(
1

eη(t− 1− s)
+ λ

)

≤ 4C̃ ′κ,γ,L,α log(2/δ) log(T )

√
ηTB(1/ηT )

N
α
2

, (20)

for some C̃ ′κ,γ,L,α <∞.

Combining (19) and (20) gives with λ = (ηT )−1

ED̂|D[||SK(
¯̂
fT − f̄T )||L2 ] ≤ C ′′κ,γ,L,α log(2/δ) log(T )

√
ηTB((ηT )−1)

N
α
2

,

with probability at least 1− δ, for some C ′′κ,γ,L,α <∞.

� fρ 6∈ Ran(SK): From (14), (15), (18) we find

ED̂|D[I2] ≤ C̃κ,γ,L,α log(2/δ)
B(λ)√
λN

α
2

2η

T

T∑
t=bT/2c+1

(1 + ϕ(ηt))

≤ 2C̃κ,γ,L,α log(2/δ)
B(λ)√
λN

α
2

η(1 + ϕ̄(ηT )) .

for some C̃κ,γ,L,α <∞ and where by Lemma 2.14 for some Cr <∞

ϕ̄(ηT ) :=
2

T

T∑
t=bT/2c+1

ϕ(ηt) ≤ Crϕ(ηT ) . (21)

By (14), (16), (18) and Lemma 2.14 we get with λ = (ηT )−1 and η < 1/κ2

ED̂|D[I1] ≤ C̃κ,γ,L,α log(2/δ)

√
ηTB(1/ηT )

N
α
2

2η

T

T∑
t=bT/2c+1

t−2∑
s=0

(
1

eη(t− 1− s)
+ λ

)
(1 + ϕ(ηs))

≤ 2C̃κ,γ,L,α log(2/δ)

√
ηTB(1/ηT )

N
α
2

(4 log(T ) + C ′r log(T )ϕ(ηT )) ,

for some C ′r <∞.

Combining the bounds for I1 and I2 finally gives with η < 1/κ2, 1 ≤ log(T )

ED̂|D[||SK(
¯̂
fT − f̄T )||L2 ] ≤ C̃ log(4/δ)

√
ηTB(1/ηT )

N
α
2

(log(T ) + log(T )ϕ(ηT )) .

for some C̃ <∞, depending on κ, γ, L, α, r and holding with probability at least 1− δ.



2.4 Main Result Second Stage Tail-Averaged Gradient Descent

We now derive the final error for the excess risk of the second-stage tail-ave GD estimator for tackling distribution
regression. Recall that we have the decomposition

¯̂
fT − fρ = (

¯̂
fT − f̄T )︸ ︷︷ ︸

GD V ariance 2. stage

+ (f̄T − fρ)︸ ︷︷ ︸
Error GD first stage

.

Our main results follows then immediately from Proposition 2.5 and Proposition 2.9.

Theorem 2.10 (Excess Risk Second-Stage tail-ave GD; Part I). Suppose Assumptions 2.2, 2.2 are satisfied. Let
additionally Assumptions 3.2 and 3.3 hold. Let T ∈ N and denote

BT = max{2M, ||SK ūT − fρ||∞} .

Let further δ ∈ (0, 1], λ = (ηT )−1, assume 0 < r ≤ 1 and recall the definition of B(1/ηT ) in (10) and of ϕ in
(11). With probability not less than 1 − δ, the excess risk for the second-stage tail-averaged Gradient Descent
satisfies:

1. If 1/2 ≤ r ≤ 1:

ED̂|D[||SK ¯̂
fT − fρ||L2 ] ≤ C1 log(24/δ)

1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C2λ ||(TK + λ)−1/2ūT ||HK + C3||SK ūT − fρ||L2

+ C4 log(8/δ) log(T )

√
ηT

N
α
2
B(1/ηT ) ,

for some constants C1 > 0, C2 > 0, C3 > 0, C4 > 0.

2. If 0 < r ≤ 1/2:

ED̂|D[||SK ¯̂
fT − fρ||L2 ] ≤ C1 log(24/δ)

1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C2λ ||(TK + λ)−1/2ūT ||HK + C3||SK ūT − fρ||L2

+ C4 log(8/δ) log(T )

√
ηTB(1/ηT )

N
α
2

(1 + ϕ(ηT )) ,

for some constants C1 > 0, C2 > 0, C3 > 0, C4 > 0.

Theorem 2.11 (Excess Risk Second-Stage tail-ave GD; Part II). Suppose Assumptions 2.2, 2.2 are satisfied.
Let additionally Assumptions 3.2 and 3.3 hold. Let T ∈ N and denote

BT = max{2M, ||SK ūT − fρ||∞} .

Let further δ ∈ (0, 1], λ = (ηT )−1, assume that r ≥ 1 and recall the definition of B(1/ηT ) in (10). Then with
probability not less than 1− δ, the excess risk for the second-stage tail-averaged Gradient Descent satisfies

ED̂|D[||SK ¯̂
fT − fρ||L2 ] ≤ C ′1 log(24/δ)

1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C ′2λ

1/2 ||T−rK ūT ||HK
(

log(4/δ)√
n

+ λζ
)

+ C ′3||SK ūT − fρ||L2

+ C ′4 log(8/δ) log(T )

√
ηT

N
α
2
B(1/ηT ) ,

for some constants C ′1 > 0, C ′2 > 0, C ′3 > 0, C ′4 > 0.
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Corollary 2.12 (Rate of Convergence Second-Stage Tail-Ave GD; mis-specified Case). Suppose all Assumptions
of Proposition 2.5 are satisfied. Assume additionally that r ≤ 1/2 and

n ≥ 64eκ2 log2(24/δ)(ηt) log((ηT )ν) .

The excess risk for second stage tail-averaged Gradient Descent satisfies in the mis-specified case with probability
not less than 1− δ:

1. If 2r + ν > 1, ηnTn =
(
R2

M2n
) 1

2r+ν

and Nn ≥ log2/α(n)
(
R2n
M2

) 2+ν
α(2r+ν)

, then

ED̂|D[||SK ¯̂
fTn − fρ||L2 ] ≤ C log(24/δ)R

(
M2

R2n

) r
2r+ν

,

for some C <∞, provided n is sufficiently large.

2. If 2r + ν ≤ 1, ηnTn = R2n
M2 logK(n)

for some K > 1 and Nn ≥ log2/α(n)
(

R2n
M2 logK(n)

) 2+ν
α

, then

ED̂|D[||SK ¯̂
fTn − fρ||L2 ] ≤ C ′ log(6/δ)R

(
M2 logK(n)

R2n

)r
,

for some C ′ <∞, provided n is sufficiently large.

Proof of Corollary 2.12. Assume 0 < r ≤ 1/2.

1. Let 2r + ν > 1 and ηnTn =
(
R2

M2n
) 1

2r+ν

. The first part of Corollary 2.6 gives a rate for the first-stage GD

of order

||SK f̄T − fρ||L2 ≤ C log(12/δ)R

(
M2

R2n

) r
2r+ν

,

provided n is sufficiently large. It remains to bound the term

log(T )

√
ηTB(1/ηT )

N
α
2

(1 + ϕ(ηT ))

from the second part of Theorem 2.10 for an appropriate choice on N . Note that in this case we have

ϕ(ηT ) = (ηT )
1
2 max{ν,1−2r} = (ηT )ν/2 .

Moreover, by the definition (10), the choice of ηnTn shows that for sufficiently large n

B(1/ηnTn) . 1 +
2ηnTn
n

+

√
(ηnTn)ν+1

n
+
ηnTn
Nα/2

. 2 +

(
R2

M2
n

) 1−2r
2(2r+ν)

+N−α/2
(
R2

M2
n

) 1
2r+ν

.

Thus, letting Nn ≥
(
R2

M2n
) 1+2r
α(2r+ν)

gives for sufficiently large n

B(1/ηnTn) . 2 +

(
R2

M2
n

) 1−2r
2(2r+ν)

.

(
R2

M2
n

) 1−2r
2(2r+ν)

.



Hence, give these choices,

log(Tn)

√
ηnTnB(1/ηnTn)

N
α
2
n

(1 + ϕ(ηnTn)) . log(Tn)N−α/2
√
ηnTn

(
R2

M2
n

) 1−2r
2(2r+ν)

(ηnTn)ν/2

. N−α/2 log(Tn)

(
R2

M2
n

) 2−2r+ν
2(2r+ν)

.

Thus, if Nn ≥ log2/α(n)
(
R2

M2n
) 2+ν
α(2r+ν)

gives

N−α/2 log(Tn)

(
R2

M2
n

) 2−2r+ν
2(2r+ν)

. R

(
M2

R2n

) r
2r+ν

.

Hence, to obtain the given rate of convergence we need to choose

Nn ≥ log2/α(n)

(
R2

M2
n

)β
, β = max

{
1 + 2r

α(2r + ν)
,

2 + ν

α(2r + ν)

}
=

2 + ν

α(2r + ν)
.

2. Let 2r + ν ≤ 1, ηnTn = R2n
M2 logK(n)

for some K > 1. We again have to bound the expression

log(T )

√
ηTB(1/ηT )

N
α
2

(1 + ϕ(ηT ))

for a suitable choice of N . Note that we have in this case

ϕ(ηT ) = (ηT )
1
2 max{ν,1−2r} = (ηT )

1
2−r .

Moreover, for sufficiently large n

B(1/ηnTn) . 1 +
2ηnTn
n

+

√
(ηnTn)ν+1

n
+
ηnTn
Nα/2

. 2 +

(
R2n

M2 logK(n)

)ν/2
+N−α/2

R2n

M2 logK(n)
.

Thus, if Nn ≥
(

R2n
M2 logK(n)

) 2−ν
α

we have

N−α/2n

R2n

M2 logK(n)
.

(
R2n

M2 logK(n)

)ν/2
and therefore

B(1/ηnTn) .

(
R2n

M2 logK(n)

)ν/2
.

We thus obtain for sufficiently large n

log(Tn)

√
ηnTnB(1/ηnTn)

N
α
2
n

(1 + ϕ(ηnTn)) . log(Tn)N−α/2n

(
R2n

M2 logK(n)

)1+ν/2−r

.

Hence, with Nn ≥ log2/α(n)
(

R2n
M2 logK(n)

) 2+ν
α

we find

log(Tn)

√
ηnTnB(1/ηnTn)

N
α
2
n

(1 + ϕ(ηnTn)) .

(
M2 logK(n)

R2n

)r
.
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Corollary 2.13 (Rate of Convergence Second-Stage Tail-Ave GD; well-specified Case). Suppose all Assumptions
of Proposition 2.5 are satisfied. Assume additionally that r ≥ 1/2 and

n ≥ 64eκ2 log2(24/δ)(ηT )1+ν .

Let ηnTn =
(
R2

M2n
) 1

2r+ν

and Nn ≥ log2/α(n)
(
R2n
M2

) 2r+1
α(2r+ν)

. The excess risk for second stage tail-averaged Gradi-

ent Descent satisfies in the well-specified case with probability not less than 1− δ

ED̂|D[||SK ¯̂
fTn − fρ||L2 ] ≤ C log(24/δ)R

(
M2

R2n

) r
2r+ν

,

for some C <∞, provided n is sufficiently large.

Proof of Corollary 2.13. The proof follows the same lines as the proof of Corollary 2.12 and can be obtained
from standard calculations.

2.5 Additional Material

Lemma 2.14. Let ϕ be defined by (11).

1. Let ϕ̄(ηT ) be defined by (21). For some Cr ∈ R+ we have the bound

ϕ̄(ηT ) ≤ Crϕ(ηT ) .

2. For some C ′r ∈ R+ we have the bound

2

T

T∑
t=bT/2c+1

t−2∑
s=0

ϕ(ηs)

t− 1− s
≤ C ′r log(T )ϕ(ηT ) .

3. With λ = (ηT )−1 we have

2η

T

T∑
t=bT/2c+1

t−2∑
s=0

(
1

eη(t− 1− s)
+ λ

)
≤ 4 log(T ) .

4. With λ = (ηT )−1 we have for some C ′r <∞

2η

T

T∑
t=bT/2c+1

t−2∑
s=0

(
1

eη(t− 1− s)
+ λ

)
(1 + ϕ(ηs)) ≤ 4 log(T ) + C ′r log(T )ϕ(ηT ) .

Proof of Lemma 2.14. 1. Here we use the fact that for any α > 0, 1 ≤ S ≤ T

T∑
t=S

tα ≤
∫ T+1

S

tα dt ≤ 2α+1

α+ 1
Tα+1 .

Hence,

2

T

T∑
t=bT/2c+1

tα ≤ 2α+2

α+ 1
Tα .

2. Observe that for α ≥ 0
t−1∑
s=0

sα

t− 1− s
≤ 4tα log(t) .



Thus, by the first part of the Lemma we find

2

T

T∑
t=bT/2c+1

t−2∑
s=0

ϕ(ηs)

t− 1− s
≤ 8Cr

T

T∑
t=bT/2c+1

log(t)ϕ(ηt)

≤ 4Cr log(T )ϕ̄(ηT )

≤ C ′r log(T )ϕ(ηT ) .

3. Note that for any t ≥ 3
t−2∑
s=0

1

(t− 1− s)
≤ 4 log(t)

2η

T

T∑
t=bT/2c+1

t−2∑
s=0

(
1

eη(t− 1− s)
+ λ

)
=

2λη

T

T∑
t=bT/2c+1

t−2∑
s=0

1 +
2

eT

T∑
t=bT/2c+1

t−2∑
s=0

1

t− 1− s

≤ ληT +
8

eT

T∑
t=bT/2c+1

log(t)

≤ ληT + 2 log(T ) .

The result follows by setting λ = (ηT )−1 and with 1 ≤ 2 log(T ).

4. This follows immediately from the other parts of the Lemma.

3 Results for Tail-Averaged SGD

This section is devoted to providing our final error bound for the second-stage SGD algorithm. Here, we write

ED̂|D[||SK h̄T − fρ||L2 ] ≤ ED̂|D[||SK f̄T − fρ||L2 ]︸ ︷︷ ︸
2. stage GD

+ED̂|D[SK(
¯̂
hT − ¯̂

fT )||L2 ]︸ ︷︷ ︸
2. stage SGD variance

. (22)

3.1 Bounding Second Stage SGD Variance

A short calculation shows that the second stage SGD variance can be rewritten as

ĥt+1 − f̂t+1 = (Id− ηT̂t+1)(ĥt − f̂t) + ηζ̂t+1

where we set Jt := {b(t− 1) + 1, ..., bt} and define

T̂t :=
1

b

∑
i∈Jt

Kµx̂ji
⊗Kµx̂ji

, ĝt :=
1

b

∑
i∈Jt

yjiKµx̂ji

and
ζ̂t := (Tx̂ − T̂t)f̂t + (ĝt − gx̂) .

This gives
EJt [ζ̂t|D̂,D] = 0

and by Lemma 6 in Mücke et al. (2019) we find

EJt [ζ̂t ⊗ ζ̂t|D̂,D] � 1

b

(
κ4 sup

t
||f̂t||2HK +M2

)
Tx̂ . (23)

As a preliminary step we need to bound the norm of the second stage GD updates.
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Proposition 3.1. Suppose Assumptions 2.1, 2.2, 3.1, 3.2 and 3.3 are satisfied and let η < 1/κ2.

1. If fρ ∈ Ran(SK): Assume that
n ≥ 64eκ2 log2(12/δ)(ηt)1+ν . (24)

Then

ED̂|D[||f̂t+1||2HK ] ≤ Cα,κ,M,R

(
η2(t+ 1)2

Nα
+ 1

)
,

with probability at least 1− δ w.r.t. the data D, for some Cα,κ,M,R <∞.

2. If fρ 6∈ Ran(SK): Assume
n ≥ 64κ2 log(12/δ)(ηt) log((ηt)ν) .

With probability at least 1− δ w.r.t. the data D we have

ED̂|D[||f̂t+1||2HK ] ≤ C ′α,κ,M,R

η2(t+ 1)2

Nα

(
1 + ϕ2(ηt)

)
,

for some C ′α,κ,M,R <∞ and where

ϕ(ηt) = (ηt)
1
2 max{ν,1−2r} . (25)

Proof of Proposition 3.1. We split

||f̂t||2HK ≤ 2||f̂t − ft||2HK + 2||ft||2HK . (26)

According to (6) we have

f̂t+1 − ft+1 = η

t∑
s=0

(Id− ηTx̂)t−sξ̂s ,

where ξs is defined in (5). We proceed by using convexity to obtain

||f̂t+1 − ft+1||2 = η2(t+ 1)2

∣∣∣∣∣
∣∣∣∣∣ 1

t+ 1

t∑
s=0

(Id− ηTx̂)t−sξ̂s

∣∣∣∣∣
∣∣∣∣∣
2

HK

≤ η2(t+ 1)

t∑
s=0

∣∣∣∣∣∣(Id− ηTx̂)t−sξ̂s

∣∣∣∣∣∣2
HK

≤ η2(t+ 1)

t∑
s=0

||ξ̂s||2HK .

For bounding the noise variables we follow the proof of Proposition 2.9 and distinguish between the two cases:

� Pfρ ∈ Ran(SK): By Lemma 1.3, Lemma 1.4 and Corollary 2.8 we have

ED̂|D[||ξ̂s||2HK ] ≤ cα
Nα

,

for some cα < ∞ and holding with probability at least 1 − δ w.r.t. the data D, provided (24) is satisfied.
Thus,

ED̂|D[||f̂t+1 − ft+1||2HK ] ≤ cα
η2(t+ 1)2

Nα

in this case. Combining with (26) and Corollary 2.8 once more leads to

ED̂|D[||f̂t+1||2HK ] ≤ c̃α
(
η2(t+ 1)2

Nα
+ 1

)
,

with probability at least 1− δ w.r.t. the data D, for some c̃α <∞.



� Pfρ 6∈ Ran(SK): From Corollary 2.8, Lemma 1.2 and Lemma 1.3 we obtain with probability at least 1− δ
with respect to the data D

ED̂|D[||ξ̂s||2HK ] ≤ log2(6/δ)
c̃′α
Nα

(1 + ϕ(ηs))2 ,

for some c′α <∞. Thus,

ED̂|D[||f̂t+1 − ft+1||2HK ] ≤ 2c̃′α
η2(t+ 1)

Nα

t∑
s=0

(1 + ϕ2(ηs))

and by (26), since ϕ is non-decreasing in s

ED̂|D[||f̂t+1||2HK ] ≤ 2c̃′α
η2(t+ 1)

Nα

t∑
s=0

(1 + ϕ2(ηs)) + cκ,M,Rϕ
2(ηt)

≤ c̃′′α,κ,M,R

η2(t+ 1)2

Nα

(
1 +

1

t+ 1

t∑
s=0

ϕ2(ηs)

)

≤ c̃′′α,κ,M,R

η2(t+ 1)2

Nα

(
1 + ϕ2(ηt)

)
,

for some c̃′′α,κ,M,R <∞ and with probability at least 1− δ with respect to the data D.

Proposition 3.2 (Second Stage SGD Variance). Suppose Assumptions 2.2 and 3.1 are satisfied and let ηκ2 <
1/4, ν ∈ (0, 1]. Assume further that Trace[T νx̂ ] ≤ Cν almost surely for some Cν ∈ R+. The second stage SGD
variance satisfies with probability at least 1− δ w.r.t. the data D

ED̂|D[||T 1/2
K (

¯̂
hT − ¯̂

fT )||HK ] ≤ C̃ν,κ,M6 log(4/δ)

√
η

b
(ηT )ν−1

(
1 + ED̂|D

[
||f̂T ||2HK

]1/2)
(
ηT√
n

+ cαγ
αLM

√
ηT

N
α
2

+ 1

)1/2

,

for some C̃ν,κ,M <∞.

Proof of Proposition 3.2. Hölder’s inequality allows us to write for any λ > 0

ED̂|D[||T 1/2
K (

¯̂
hT − ¯̂

fT )||HK ] ≤
[
ED̂|D[||T 1/2

K (Tx̂ + λ)−1/2||2]
] 1

2
[
ED̂|D[||(Tx̂ + λ)1/2(

¯̂
hT − ¯̂

fT )||2HK ]
] 1

2

. (27)

For bounding the first term let us firstly observe that by Lemma 1.1 with probability at least 1− δ

ED̂|D[||T 1/2
K (Tx̂ + λ)−1/2||2] ≤ ||TK(Tx̂ + λ)−1||

≤ 6 log(2/δ)
1

λ
√
n

+
cαγ

αLM√
λN

α
2

+ 1 . (28)

For bounding the second term we write

||(Tx̂ + λ)1/2(
¯̂
hT − ¯̂

fT )||2HK = ||T 1/2
x̂ (

¯̂
hT − ¯̂

fT )||2HK + λ||¯̂hT − ¯̂
fT ||2HK .

Applying Proposition 5 in Mücke et al. (2019) with σ2 = 1
bED̂|D

[
κ4||f̂T ||2 +M2

]
then gives with λ = (ηT )−1

and for any ν ∈ (0, 1]

ED̂|D[||(Tx̂ + λ)1/2(
¯̂
hT − ¯̂

fT )||2HK ] ≤ C η
b

(ηT )ν−1ED̂|D
[(
κ4||f̂T ||2 +M2

)
Trace[T νx̂ ]

]
≤ C̃ν,κ,M

η

b
(ηT )ν−1

(
ED̂|D[||f̂T ||2HK ] + 1

)
,

for some C̃ν,κ,M <∞. Combining this with (28) and (27) finally leads to the result.
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From Proposition 3.1 and Proposition 3.2 we immediately obtain:

Corollary 3.3 (Second Stage SGD Variance). In addition to the Assumptions from Proposition 3.2 suppose that
Assumptions 3.2, 3.3 are satisfied.

1. If Pfρ ∈ Ran(SK): Assume that
n ≥ 64eκ2 log2(12/δ)(ηt)1+ν .

Then

ED̂|D[||T 1/2
K (

¯̂
hT − ¯̂

fT )||HK ] ≤ Cν,κ,γ,M,α,L

(
1 +

ηT√
n

+

√
ηT

N
α
2

)1/2√
η

b
(ηT )ν−1

(
1 +

ηT

N
α
2

)
,

with probability at least 1− δ w.r.t. the data D, for some Cν,κ,γ,M,α,L <∞.

2. If Pfρ 6∈ Ran(SK): Assume that

n ≥ 64eκ2 log2(24/δ)(ηt) log((ηT )ν) .

Then, with probability at least 1− δ w.r.t. the data D we have

ED̂|D[||T 1/2
K (

¯̂
hT − ¯̂

fT )||HK ] ≤ C̃ν,κ,γ,M,α,L log(6/δ)

(
1 +

ηT√
n

+

√
ηT

N
α
2

)1/2√
η

b
(ηT )ν−1

(
1 + ϕ(ηT )

ηT

N
α
2

)
,

for some C̃ν,κ,γ,M,α,L <∞ and where ϕ is defined in (25).

3.2 Main Result Second Stage Tail-Averaged SGD

Combining now (22) with Proposition 3.2, Theorem 3.4 and Theorem 2.11 finally leads to our main results.

Theorem 3.4 (Excess Risk Second-Stage tail-ave GD; Part I). Suppose Assumptions 2.2, 2.2 are satisfied. Let
additionally Assumptions 3.2 and 3.3 hold. Let T ∈ N and denote

BT = max{2M, ||SK ūT − fρ||∞} .

Let further δ ∈ (0, 1], λ = (ηT )−1, ηκ2 < 1/4, assume 0 < r ≤ 1 and recall the definition of B(1/ηT ) in (10) and
of ϕ in (11). With probability not less than 1−δ, the excess risk for the second-stage tail-averaged SGD satisfies:

1. If 1/2 ≤ r ≤ 1:

ED̂|D[||SK ¯̂
hT − fρ||L2 ] ≤ C1 log(24/δ)

1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C2λ ||(TK + λ)−1/2ūT ||HK + C3||SK ūT − fρ||L2

+ C4 log(8/δ) log(T )

√
ηT

N
α
2
B(1/ηT )

+ C5 log(8/δ)

√
η

b
(ηT )ν−1

(
1 + ED̂|D

[
||f̂T ||2HK

]1/2) ( ηT√
n

+

√
ηT

N
α
2

+ 1

)1/2

,

for some constants C1 > 0, C2 > 0, C3 > 0, C4 > 0, C5 > 0.

2. If 0 < r ≤ 1/2:

ED̂|D[||SK ¯̂
hT − fρ||L2 ] ≤ C1 log(24/δ)

1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C2λ ||(TK + λ)−1/2ūT ||HK + C3||SK ūT − fρ||L2

+ C4 log(8/δ) log(T )

√
ηTB(1/ηT )

N
α
2

(1 + ϕ(ηT ))

+ C5 log(8/δ)

√
η

b
(ηT )ν−1

(
1 + ED̂|D

[
||f̂T ||2HK

]1/2) ( ηT√
n

+

√
ηT

N
α
2

+ 1

)1/2

,

for some constants C1 > 0, C2 > 0, C3 > 0, C4 > 0, C5 > 0.



Theorem 3.5 (Excess Risk Second-Stage tail-ave GD; Part II). Suppose Assumptions 2.2, 2.2 are satisfied. Let
additionally Assumptions 3.2 and 3.3 hold. Let T ∈ N and denote

BT = max{2M, ||SK ūT − fρ||∞} .

Let further δ ∈ (0, 1], λ = (ηT )−1, ηκ2 < 1/4, assume that r ≥ 1 and recall the definition of B(1/ηT ) in (10).
Then with probability not less than 1− δ, the excess risk for the second-stage tail-averaged SGD satisfies

ED̂|D[||SK ¯̂
hT − fρ||L2 ] ≤ C ′1 log(24/δ)

1√
n

(
M
√
N (λ) +

||SK ūT − fρ||L2√
λ

+
BT√
nλ

)
+ C ′2λ

1/2 ||T−rK ūT ||HK
(

log(4/δ)√
n

+ λζ
)

+ C ′3||SK ūT − fρ||L2

+ C ′4 log(8/δ) log(T )

√
ηT

N
α
2
B(1/ηT )

+ C ′5 log(8/δ)

√
η

b
(ηT )ν−1

(
1 + ED̂|D

[
||f̂T ||2HK

]1/2) ( ηT√
n

+

√
ηT

N
α
2

+ 1

)1/2

,

for some constants C ′1 > 0, C ′2 > 0, C ′3 > 0, C ′4 > 0, C ′5 > 0.

Corollary 3.6 (Learning Rates Second Stage Ave-SGD Mis-Specified Model). Suppose all assumptions of The-
orem 3.4 and Theorem 3.5 are satisfied. Assume additionally that r ≤ 1/2, K > 1, η0 <

1
4κ2 and

n ≥ 64eκ2 log(4/δ)(ηT ) log((ηT )ν) .

1. Let 2r + ν > 1. Then, for any n sufficiently large, the excess risk satisfies with probability at least 1 − δ
w.r.t. the data D

ED̂|D[||SK ¯̂
hTn − fρ||L2 ]2 ≤ C log(24/δ)R

(
M2

R2n

) r
2r+ν

,

provided Nn ≥ log2/α(n)
(
R2

M2n
) 2+ν
α(2r+ν)

and

� Multi-pass SGD: bn =
√
n, ηn = η0 and Tn =

(
R2n
σ2

) 1
2r+ν

,

� Batch GD: bn = n, ηn = η0 and Tn =
(
R2n
σ2

) 1
2r+ν

.

2. Let 2r + ν ≤ 1. Then, for any n sufficiently large, the excess risk satisfies with probability at least 1 − δ
w.r.t. the data D

ED̂|D[||SK ¯̂
hTn − fρ||L2 ]2 ≤ C log(24/δ)R

(
M2 logK(n)

R2n

)r
,

provided Nn ≥ log2/α(n)
(

R2n
M2 logK(n)

) 3−2r
α

and

� bn = 1, ηn =
(
M2 logK(n)

R2n

)2r+ν
and Tn =

(
R2n

M2 logK(n)

)2r+ν+1

,

� bn =
(

R2n
M2 logK(n)

)2r+ν
, ηn = η0 and Tn = R2n

M2 logK(n)
,

� bn = R2n
M2 logK(n)

, ηn = η0 and Tn = R2n
M2 logK(n)

.
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Proof of Corollary 3.6. Here, we combine the results from Corollary 2.12 and Corollary 3.3. We have to show
that (

1 +
ηT√
n

+

√
ηT

N
α
2

)1/2

︸ ︷︷ ︸
T1

(
1 + ϕ(ηT )

ηT

N
α
2

)
︸ ︷︷ ︸

T2

√
η

b
(ηT )ν−1︸ ︷︷ ︸
T3

is of optimal order under appropriate choices of all parameters.

1. Let 2r + ν > 1 and ηnTn =
(
R2

M2n
) 1

2r+ν

. Given this choices, one easily verifies that the leading order term

in T1 is given by
(
ηnTn√
n

)1/2
, provided

Nn ≥
(

n

ηnTn

)1/α

∼
(
R2

M2
n

) 2r+ν−1
α(2r+ν)

.

Moreover, we have ϕ(ηT ) = (ηT )ν/2 and the second term T2 is of order 1 if

(ηnTn)1+ν/2N−
α
2 . 1

hence if

Nn ≥
(
R2

M2
n

) 2+ν
α(2r+ν)

,

for n sufficiently large. Note that we have

max

{
2r + ν − 1

α(2r + ν)
,

2 + ν

α(2r + ν)

}
=

2 + ν

α(2r + ν)
.

Finally, we have to determine now appropriate values of ηn, Tn, bn such that(
M2

R2n

) 2r+ν−2
2(2r+ν) ηn

bn

(
R2

M2
n

) ν−1
2r+ν

. R

(
M2

R2n

) 2r
2r+ν

,

that is, if

ηn
bn

. R

(
M2

R2n

) 1
2

.

This is surely satisfied by all the given choices.

2. Let 2r + ν ≤ 1 and ηnTn = R2n
M2 logK(n)

for some K > 1. Again, the leading order term in T1 is given by(
ηnTn√
n

)1/2
, provided

Nα/2
n ≥

√
n

ηnTn
∼ logK/2(n) ,

or equivalently,
Nn ≥ logK/α(n) .

For bounding T2 note that ϕ(ηT ) = (ηT )
1
2−r. Then, T2 is of order 1 if

Nn ≥
(

R2n

M2 logK(n)

) 3−2r
α

.

Finally, we have to determine now appropriate values of ηn, Tn, bn such that

R2n

M2 logK(n)

ηn
bn

(
R2n

M2 logK(n)

)ν−1
. R

(
M2 logK(n)

R2n

)2r

,



that is, if

ηn
bn

. R

(
M2 logK(n)

R2n

)2r+ν

.

This is surely satisfied by all the given choices.

Corollary 3.7 (Learning Rates Second Stage Ave-SGD Well-Specified Model). Suppose all assumptions of
Theorem 3.4 and Theorem 3.5 are satisfied. Assume additionally that r ≥ 1

2 and

n ≥ 64eκ2 log(4/δ)(ηT )1+ν .

Let η0 <
1

4κ2 and choose Nn ≥ log2/α(n)
(
R2n
σ2

) 2r+1
α(2r+ν)

. Then, for any n sufficiently large, the excess risk satisfies

with probability at least 1− δ w.r.t. the data D

ED̂|D[||SK ¯̂
hTn − Pfρ||L2 ]2 ≤ C log(24/δ)R

(
σ2

R2n

) r
2r+ν

,

for each of the following choices:

1. One-pass SGD: b = 1, ηn = η0
R2

σ2

(
σ2

R2n

) 2r+ν−1
2r+ν

and Tn = R2

σ2 n,

2. Early stopping and one-pass SGD: b = n
2r+ν−1
2r+ν , ηn = η0 and Tn =

(
R2n
σ2

) 1
2r+ν

,

3. Batch-GD: b = n, ηn = η0 and Tn =
(
R2n
σ2

) 1
2r+ν

.

Proof of Corollary 3.7. The proof follows the same lines as the proof of Corollary 3.6 by standard calculations.
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