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1 First Results

We introduce some auxiliary operators, being useful in our proofs. These operators have been introduced in a
variety of previous works, see e.g. Caponnetto and De Vito (2006); Dieuleveut and Bach (2016); Blanchard and
Miicke (2018). Recall that Sk : Hx — L*(u(MT (X)), p,) denotes the canonical injection map. The adjoint
Sy o L2(u(MT(X)), pp) — Hi is given by

Sko= [ o@Kz puldi) .
(M*(X))
where we remind at the notation K; = K(fi,-). The covariance operator is Tk := S} Sk : Hx — Hx, with
Tk f = / <Ku7f> Mpu(du)
p(MT (X))
and the kernel integral operator Ly : L2(u(M™T (X)), p,) = L2(n(MT(X)), p,) is

Leg= [ oK) pudn).
n(MF (X))
We further introduce the empirical counterparts:

1
T = *Z< Hej "> Ko, ﬁz< > B,
1 o N
== ZyjKumj . e > Uik,
j=1 =t

where Ty, T% : Hx — Hk, 92,9z € Hik.

We collect some preliminary results.

Lemma 1.1. Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied. Then
CaY*LM
VAN 2

for some ¢ < 00. Moreover, for any 6 € (0,1], with probability at least 1 — § w.r.t. the data D, one has

LM
Ty (Te + Ad) "] < 61log(2/6 ot 1.
EpplllTk (Tx + Md) ™[] < 6log(2/ )Af+ e

_ 1
Epp [Tk (Tx + Ald) il < XHTK -l + +1,

Proof of 1.1. Let us bound for any A > 0
Ep pllITw (Tx + Md)7H|] < || Tk (Tx +Md) | - Epyp[l|(Tk + A d)(Tx + Ad) "]
< Epplll(Tie + Ad)(Tx + Md) ] .
We proceed by writing
(Tx + Nd)(Tx + Md)™' = (Ti + Md)(Ts + Md) ™' — (T + Md)™") + (T, + Md)(Tx + Md)™*

= (T — Ty) + (Tx — T3))(Tx + Md) "' 4+ Id .

Since ||(Tx + AId)~1|| < 1/, this leads to
_ 1 1
Eppll| Tk (Tx + Md) 7] < XHTK — Ikl + XEﬁ\D[||Tx - T +1

The first result follows then from Lemma 1.3 and Jensen’s inequality. The second result follows from the first
one by applying Proposition 5.5. in Blanchard and Miicke (2018). O



Lemma 1.2. (Fang et al., 2020, Eq. (37)) Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied. Then

2
Epyplllgs — gallBu,) < cal?M2 1

for some ¢, < 0.

Lemma 1.3. (Fang et al., 2020, Eq. (38)) Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied. Then
1T~ Tl < can®L2 2
D\D Cak Na

for some ¢, < 0.

Lemma 1.4. (Fang et al., 2020, Lemma 8) Suppose Assumptions 2.1, 2.2 and 3.1 are satisfied and let A > 0.

Define A
x 1 1
Cx(A) = ( 3 + NG +/\) , (1)
where
AN 1= |[(Ti + M)~ (Tie — T
Then
D\D[IIT (Tx + M) Y| < CF L, £.aCx(N)?

for some Cy 1,0 < 00.

2 Solving Distribution Regression with Tail-Averaged Gradient Descent
In this section we derive the learning properties of tail-averaged two-stage Gradient Descent. This is a necessary
step for deriving our learning bounds for SGD on distribution regression problems and is of independent interest.

Let us begin with introducing the gradient updates using the second-stage data D = {(uij,yj)}?zl C
p(MT(X)) x Y as fo =0 and for t > 1

1
ft+1 - Z ,ua:J
TL Jj=1
Here, n > 0 is the constant step-size. We furthermore set
o2 )
t=|T/2]+1

Similarly, we introduce the Gradient Descent updates using the first-stage data D = {(ijayﬂ}?:l C
u(M™T (X)) x Y with initialization fo = 0 as

feer = fe — 77% Z(ft(/izj) - yj)Kuzj
j=1

and

9 T
fr = f Z ft .
t=|T/2]+1
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We analyze the learning properties of (2) based on the decomposition

fT_fp: (fr — fr) + (fr —fp)

GD Variance 2. stage Error GD first stage

The bound for the second stage GD variance is derived in Section 2.3. The error estimate for first stage Gradient
Descent is known from previous results. For completeness sake we review the main results in our setting in
Section 2.2

2.1 A General Result

In this section we state a general result for spectral regularization algorithms. Those bounds are known for some
time in learning theory, see e.g. Bauer et al. (2007). We collect some results from Caponnetto and De Vito
(2006); Fischer and Steinwart (2017); Blanchard and Miicke (2018); Lin et al. (2020); Miicke et al. (2019).

We let {gx : [0,||Tk]||]] = [0,00) : X € (0,||Tk||]} be a family of filter functions (for the definition we refer to
one of the above mentioned papers). We define

Uy = gr(Tx)Sxy ,  ux:=gx(Tx)Sk fo -

Our aim is to provide a bound of the estimation error in different norms ||T% (itx — ux)||2, for a € [0,1/2]. To
this end, we require a condition for the observation noise.

Assumption 2.1 (Bernstein Observation Noise). For some o > 0, B > 0 and for all m > 2 we have almost
surely

1 _
[ o= 5@ pldyle) < gmto?5m2
y

Finally, we need

Assumption 2.2. Let A > 0. Suppose that
322 log(4/8 A
n > Wlog(e/\/'()\) (1 + )) .
A 1Tk ||

Proposition 2.3 (Estimation Error). Let a € [0,1/2]. Let further § € (0,1] and suppose Assumptions 2.1, 2.2
are satisfied. Denote
B)\ = max{B, ||SK’U,)\ - fp”oo} .

1. Assume f, € Range(L%), for some ¢ € (0,1]. With probability not less than 1 — 0,

a—1/2 _ R
ITi(0s = )l < Crtog(120)>— (/W + (2 folee )

+ CoX V2T Py e + CsA* YIS un — follze
for some C1 >0, C3 > 0 and C3 > 0.

2. Assume f, € Range(Lg{), for some ¢ > 1. With probability not less than 1 — 4,

a=1/2 [[Sxux — follz | Ba
NG (0\/./\/'(/\) + 7 + m)
log(4/9)

+ O Tl (B 06 4 e 2 S =

[T (dn = un)llae,e < Cplog(12/0)

for some C1 >0, C% >0 and C§ > 0.



Proof of Proposition 2.3. Let a € [0,1/2]. We write
T (i — un)
= T g (Tx)((Sxy — Sk fp) = (Txun = Treun)) + Tig (92 (Tx) Tx — Id)ux + T ga(Tx) (Sk fp = Treun) -
T T2 Ts

We further set Tx ) :=Tx + X and T := Tk + A.

Bounding 7;. We further decompose
am—1/2 1/247—1/2 1/2 1/2 —1/2 *
Tl < NTETY 21 T T 321 TR an (T T - 1T\ Sy — Sk ) — (Txcun — Trcun)) e -

A short calculation shows that
T3y 2] < A2

By Caponnetto and De Vito (2006), Proof of Theorem 4, with probability at least 1 — §/6
||T1/2T_1/2|| <3,

provided Assumption 2.2 is satisfied. Moreover, according to Bauer et al. (2007), Definition 1 we have almost
surely
1/2 /2
IR AT < E,

for some E > 0. Finally, Lemma 6.10 in Fischer and Stelnwart (2017) shows that with probability at least 1—0/6

. 1 Skux — fol|2.  B?
T3Sty = Sicfy) = (T = Treun)lBey < Culog 127007 (2N ) + 12 Tellie (B0

for some C,, > 0. Thus, combining the above gives us with probability at least 1 — /3

Tl < Colog(12/8) ( N + 5w ollee ) (3)
1 HK — \/» m 7

for some C/. > 0.
Bounding Ts. Setting r)(Tx) = gx(Tx)Tx — Id, we split once more and obtain with probability at least 1 — ¢
1 Talle < NTRTS 21 T8 P T2 - I T (Tl
< VAT R A (T ual e -

Now we follow the proof of Miicke et al. (2019), Proposition 2, slightly adapted to our purposes, and consider
two different cases:

(a) Assume f, € Range(L%), for some ¢ € (0,1]. Here, we write with probability at least 1 — §/3
1/2 —1/2:1/2 ~1/2
T s (Tual e < 1 Tears (Bl Ty > T2 15 us e
< O TPl

for some C; > 0. Thus,
1 Tallree < CLATY2 |IT Y 2y -

(b) Assume f, € Range(L%), for some ¢ > 1. In this case we let ¢ > 1 and have for some Cy > 0
1/2 1/2 - 1/2 _
TR AT ual e < NTRrA BN T = TENTx ualloce + 1T AT TEN 1T sl

<VA ||TKCUA||7{K( 10g\(/4[6) + )\<>
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holding with probability at least 1 — §/3. Thus, for some Cy > 0.

A - log(4/6
172l < CoX® || T un I, (g\%) + A<) :

Bounding 73. Applying standard arguments gives with probability at least 1 — /3

Tsll2s < [ITRgNT) (Sk fo — Trun) |l
S Cg/\a_l/QHSKU)\ — prLz .

Combining all of our findings leads to result. O

We summarize some results under refined assumptions on f,, see e.g. Fischer and Steinwart (2017), Lemma 6.6.
and Corollary 6.7 .

Lemma 2.4. Suppose Assumptions 2.2 and 3.2 are satisfied. Then
1. ||uallpee < RN,
2. ||Skux — fpllpe < RAT,
3. ||Skux|loe < KZRATIV/ 27Tl
4o |[(Tk + X)7"Y?uy ||, < CRATE,

5. Assume |[fylloo < o0, Then |[Sictun = fylloo < (1f,lloc + R2RIN1/271s.

2.2 Bounding First Stage Tail-Averaged Gradient Descent Error

Our aim is now to state an error bound for the first-stage tail-average GD algorithm, defined in (2). According
to the results in Miicke et al. (2019), (2) can be rewritten as

fT = GT(TX)S:;y )

where G is defined in (2), Appendix B and constitutes a family of filter functions {G,}, where we set A =
1/(nT). We then get

1Sk fr = follee < NSk (fr — ar)llze + ||Sxtar — follze
where we set ur = Gr(Tk)S} fp- Thus, the first term corresponds the an estimation error which we bound

by means of Proposition 2.3 with a = 1/2. Note that Assumption 2.1 is satisfied with ¢ = B = 2M, since
Y C [-M, M] by assumption.

Proposition 2.5 (Excess Risk Tail-Ave GD First Stage). Suppose Assumptions 2.2, 2.2 are satisfied. Let T € N
and denote

Br = max{2M, ||SK1_LT — proo} .
Let further 6 € (0,1], A= (nT)~*

1. Assume f, € Range(L%), for some ¢ € (0,1]. With probability not less than 1 — 0,

Sk fr — follr2 < C1log(12/6) T (M\/ )+ ||SKUT\ffp|L2 \]/97%)

+ CoX |[(Tk + N) "2y |3, + Csl|Sxtir — follr2

for some C; >0, C3 >0 and C3 > 0.



2. Assume f, € Range(L%), for some ( > 1. With probability not less than 1 — 4§,

Sk fr — follL2 < C, log(12/5)% (M\/N(A) + 'SK“Tf;f"”” + %)
log(4/4)

+ O TSl (L 40 4 ChllSicnr = fylua

for some C1 >0, C5 >0 and C§ > 0.

Corollary 2.6 (Rate of Convergence First Stage Tail-Averaged Gradient Descent). Suppose all Assumptions
of Proposition 2.5 are satisfied. Let additionally Assumptions 8.2 and 3.8 hold. Then with probability not less
than 1 —49, the excess risk for the first stage tail-averaged Gradient Descent satisfies with probability not less than
1-4:

1
1. If 2r4+v >1: Let n,T,, = (ﬁ—zn) i , then
_ M? b
n
for some constant C < oco.

2. If 2r+v < 1: Let 0, T, = #ﬁ((n) for some K > 1, then

2 K, "
1Sk fr = foll2 < C" log(12/5) (z\%)

for some constant C' < co.

Proof of Corollary 2.6. The proof follows from standard calculations by applying Lemma 2.4 and Proposition
2.5 with ( =r. O

2.3 Bounding Second Stage Tail-Averaged Gradient Descent Variance
Based on the notation introduced in Section 1, the GD updates can be rewritten as
ferr = fe = n(Txfi — 9a) (4)

and
ft+1 = ft - n(Txft - gz) :

We thus find for any ¢t > 1 A R .
fro1 — fror = (Id —nT%) (fr — fi) + 16

where we define the noise variables as
ét = é}gl) + 5(2) égl) = (Tx - ch)ft 5 5(2) ‘=0z — Gz - (5)
By induction we easily find

t
frrr = fron =n)_(Id—nTR)' %, (6)
s=0

and

_ ~ 9 T t—1 )
fr—fr=2 > YUd—nrT T

t=|T/2]+1 5=0
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As a first step we need to bound the norm of the noise variables (5). To this end, let us introduce the GD
updates u; = g¢(Tk)Sk fp, where {g;}; is a filter function, given in Eq. (23) in Miicke et al. (2019).

Proposition 2.7. Let further 6 € (0,1] and suppose Assumptions 2.1, 2.2 are satisfied. Denote

By = max{M, ||Sxu; — fyllsc} -

1. Assume f, € Range(L%), for some ¢ € (0,1]. With probability not less than 1 — 9,

”ftllm«écllogﬂ?/é\f (MJW ) + Virtl|Sxcus — fp|L2+Btﬁ>

+ Co(nt) ™2 [Tk + 1/(nt) ™ P unlaese + Cav/mtl|Scue — folle + el ey
for some C; >0, Cy >0 and C3 > 0.

2. Assume f, € Range(L%), for some ¢ > 1. With probability not less than 1 — 9,

s = s/ (ary TG + VA~ ol + 5%

log(4/9)

o, (nt><> T OIS rcun — Folle + Nl

+ 0 Il
for some C1 >0, C% >0 and C§ > 0.

Proof of Proposition 2.7. We decompose as

fellare < I1fe = wil 2 + [l e -

The proof follows then from Proposition 2.5 with a =0, 0 = B = M. O

Corollary 2.8. In addition to all assumptions of Proposition 2.7, suppose Assumptions 2.2, 8.2 and 3.8 are
satisfied.

1. Let 0 < r <1/2 and assume that
n > 64r%1og(12/8)(nt) log((nt)") - (7)
Then Assumption 2.2 is satisfied and with probability not less than 1 — 9

[ fellae < CHMR(nt) L max{v,1— 2}
for some C! /> 0.

2. Let 1/2 <r <1 and assume that
n > 64ex?log?(12/0)(nt)* " . (8)

Then Assumption 2.2 is satisfied and
fellrxe < Crmr s

with probability not less than 1 — ¢ and for some Cy pr,r > 0.

3. Let 1 <r and assume that (8) is satisfied. Then

[fellnx < Charr s

with probability not less than 1 — & and for some C} yr p > 0.



Proof of Corollary 2.8. Recall that by Lemma 2.4 we have
ISwue = follz < Rpt) ™, |ISxus = folloo < (M + &R)(nt)M/>771

and
el < ROpt)Z™, [[(Tk + 1/ () 2we]| < CR(nt)' ="

1. Now suppose that 0 < r < 1/2. The first part of Proposition 2.7 yields with probability not less than 1 — ¢

HftHHK < 10g(12/5)\/f (M(nt)V/2+R(77t)1/2—r+ (nt)|1/2 T|+\/Z> +Cy R(ﬂt)1/2 T (9)

Then (9) and (7) give with log(12/6) > 1 the bound

t 5 MmaxqV,l—ar -r
1 felloe < CK,M,Rlog<12/6>\/%<nt>% W2 1 O g ()

m'}x{l/ 1-2r}

< Clar(nt)? ,
with probability not less than 1 — 4.
2. Specifically, if 1/2 <r < 1 and 1/(nt) < 2, we have

fillsn < O, max{M, R} log(12/5) (

< CR,M,R )

(nt)Y/#+v/2 41 4 ) +CL,. R

4

for some Cy; pr,r > 0, provided (8) is satisfied.

3. The second part of Proposition 2.7 then gives with ¢ = r and ||T% w||s, < CR(nt)*/?, with probability
not less than 1 — ¢
log(4/6)

il < C1 log(12/6) ( () /22 41 41 )+C< >1/2( L

7
< Cy + Co(nt)? 2( )T)

(1 t)l/?
\/ﬁ

n (ntw) O

< Cs + Cylog(4/6)
S 06 )

for some Cg > 0, depending on k, M, R.

We now come to the main result of this subsection.

Proposition 2.9 (Second Stage GD Variance). Suppose Assumptions 2.2, 3.1 and 2.2 are satisfied. Letn < 1/k?,

T > 3 and define
B(1/nT) = (Mf + M A +1> (10)

Nz

1. If f, € Ran(Sk): The GD variance satisfies with probability not less than 1 — § with respect to the data D

B oIS (Fr — Fr)llix] < Clog(4/6) los(T) YT

B(1/nT) ,

for some C < oo, depending on k,~, L, c.
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2. If f, & Ran(Sk): Let us define

1

p(ns) = (ns)z maxtni=2rt (11)

With probability not less than 1 — § with respect to the data D

VITBAMT) (g 4 )

E pyplllSxc (fr = Fr)l| 2] < Clog(4/8) log(T) =

for some C < oo, depending on k,~y, L, a,r.

Proof of Proposition 2.9. By (2.3) we may write

T t—1
1 = _ 277 1 C1_sp
I S Sl S I R
t=|T/2|+1s=0
T t—1

=2y Y aBLE.

t=|T/2)+1 s=0
where for A > 0 we introduce

A= TE(Tx + Md) ™
By = (T + Md)(Id — nTx) 17 .

(1) Bounding the operator A: This follows directly from Lemma 1.4. Indeed,

1 .Ax()\) 1 1
Ep pllITE(Tx + Md) M) < Cryna | =5 - >
o lITE T+ MO < Copa (5 4 1z + =)
where by Blanchard and Miicke (2018, Proposition 5.3) the term A (\) satisfies with probability at least 1 — ¢
with respect to the data D

Au(N) = 1T + AId) (T = T | (12)
2 N(N)
<2log(2/6)| —= + . 13
< 210g(2/ >(n 5 ) (13
Hence, since 1 < 2log(2/6) for any ¢ € (0, 1] we obtain with probability at least 1 — ¢
1 _ B(A
B pyolIIT3 (T + M) 1 < Cry o 08(2/) ) (14)

(2) Bounding the operators B, ;: We write
1Besll < [|Tx(Id = nTx) ™ =[] + Al|(Id — nT)" ™ =] .

Denoting o1 > 09 > ... the sequence of eigenvalues of Ty, we have for any s =0,...,t—1,t = L%J , ..., ' the upper
bound

Id — nT3) 78| <sup |(1 —noj)t 178 < 1,
11( n 1p noj
J

since n < 1/k2.



For bounding the first term note that for s = ¢ — 1 we have
1 Tx(Id —nTx) ™% = || Tx| < &° .
If 0 < s < t — 1 we use the inequality 1 4+ o < e for any ¢ > —1. Then a short calculation gives'

| Tx(Id — nT3)" 1% < sup o (1 — noj)te
j

< sup aje_"(t_l_s)”f
J
1

< —
Tent—1-—y3)
Thus, combining the above findings yields
[|Bt,e—1]| < K2+ A,

and for 0 <s<t—1

1
Bigl| < ———m+ X
H t, ||_€’I](t—1—8)+

(3) Bounding the noise variables &,: Recall that &, := éﬁ” + €@ with

égl) = (Tx - ch)fs ) 5(2) =0z — 9z -

Applying Lemma 1.2 gives for some ¢, < oo the bound
E pyp[1EP ] = Epyplllgs — gallae] < calM 2
D|D Hr DIp92z — Gzl "k | = Ca N

e f, € Ran(Sk): Lemma 1.3 and Proposition 2.9 gives with probability at least 1 — ¢

<
N3’
with C' = ¢, y*kL(2||w,||x, + 1), for some ¢/, < co. Combining both bounds finally leads to

E 1€ 130) = Epy o1 (Tx = To) fol o] <

CI/

Epipllés ] < <5

where ¢ = 2max{C, c,y*LM} and holding with probability at least 1 — .

(17)

o f, & Ran(Sk): In this case we apply Lemma 1.3 and Corollary 2.8 to get with probability at least 1 —§

with respect to the data D

a pns
Epyplll€ ] < ey Llog(6/0) 22

for some ¢/, < oo and where ¢ is defined in (11). Hence, with probability at least 1 — ¢ with respect to the

data D one has

S

'é/

N

Q

Epplllésllae] < ~5 (1 +@(s)) ,

N)s)

for some ¢}l < co.

We complete the proof now by collecting the above findings. Let us write

T t—2 T
1= _ 2n ~ 2n S
1T (fr = fr)lle < =5 > ZIIAH'HBt,sII~|ISSIIHK+7 > AN Beeall - 11l -
t=|T/2|+1 s=0 t=|T/2]+1
Il ZZ

We again distinguish between the two cases:

!The function h(c) = ge™, ¢ > 0, achieves it’s maximum at o = 1/c.

(18)
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e f, € Ran(Sk): From (14), (15) and (17) we obtain with A < x?

~ B(A
B pITa] < 1.0 108(2/6) ok (19

for some Cy - 1. < 00. Additionally, by (14), (16), (17) and Lemma 2.14 we find with A\ = (7T~

B(A) 2
]Eﬁ\D[Il]S n’yLalOg(z/é))\%N%? Z Z )+/\
t=|T/2]+1 s=0
- vnTB(1/nT
< 4G, 1.0 o (2/0) log(r) VIR (20)
for some CK,YL o < 00.
Combining (19) and (20) gives with A = (nT")~!
F oz VTB((nT)~?
Bl (Fr — )] < O, 1. Tos(2/8)log(r) VIEEUI )
with probability at least 1 — 4, for some C}/ ; , < o0.
fo & Ran(Sk): From (14), (15), (18) we find
. B\ 27—
Eﬁ‘D[Zé] < Cn,'y,L,a IOg(Q/(S) \/XNQ ? Z (1 + <P(77t))
2T =T 2 41
~ B(\) _
<20, 1 o log(2/8 —n(1+ @(nT)) .
< 20,10 l0g(2/ )ANE n(1+o(0T))
for some C’HW)LQ < 0o and where by Lemma 2.14 for some C, < 0o
9 T
pOIT) =7 Y @) < Crp(T) . (21)
t=|T/2]+1

By (14), (16), (18) and Lemma 2.14 we get with A = (nT)~! and n < 1/k?

By pl1] < Cir . log(2/8) VLU 20 S >\>(1+<ﬁ(n5))

(i

N= t=|T/2)+1 5=0
~ TB(1/nT
<20, 1. 1ox(2/0) VBT (410g(7) 1 ) low(T) o))

for some C. < oo.

Combining the bounds for Z; and Z, finally gives with n < 1/x2, 1 < log(T)

VinTB(1/nT)
NS

EpipllISx (fr — Fr)llz2] < Clog(4/s) (1og(T) + log(T)p(nT)) -

for some C < oo, depending on x,7, L, a, r and holding with probability at least 1 — 4.



2.4 Main Result Second Stage Tail-Averaged Gradient Descent

We now derive the final error for the excess risk of the second-stage tail-ave GD estimator for tackling distribution
regression. Recall that we have the decomposition

fr—1,= (fr — fr) + (fr — 1)
—— ——
GD Variance 2. stage Error GD first stage
Our main results follows then immediately from Proposition 2.5 and Proposition 2.9.
Theorem 2.10 (Excess Risk Second-Stage tail-ave GD; Part I). Suppose Assumptions 2.2, 2.2 are satisfied. Let
additionally Assumptions 3.2 and 3.8 hold. Let T € N and denote
Br = max{2M, ||Sktr — follo} -

Let further § € (0,1], A = (nT)~%, assume 0 < r < 1 and recall the definition of B(1/nT) in (10) and of ¢ in
(11). With probability not less than 1 — §, the excess risk for the second-stage tail-averaged Gradient Descent
satisfies:

1. If1/2<r <1:

1 Skur — 2 B
EpnlISiclr — Jyllie) < Crlog(24/5) 7 (M,ﬁ+ ISk Tff,,nL W%)
+ CoA |[(Tk + X) 2 g g, + Csl|Skctir — follz2
T
+ Calog(8/8) log(T) *Ts-B(/nT) .

for some constants Cy >0, Cy >0, C3 >0, Cy > 0.
2. If0<r<1/2:

D|DH|SKfT_fp||L2] < Cl 10g(24/(5 (M / + |SKUZZ/>fp||L2 X BT )

+ O [|[(Tk + )™ 1/2uT||HK + Cs||Skur — follL2
nTB(1/nT
%(1 +onT)) ,

+ C4log(8/6) log(T)

for some constants Cy > 0, Co >0, C3 >0, Cy > 0.

Theorem 2.11 (Excess Risk Second-Stage tail-ave GD; Part II). Suppose Assumptions 2.2, 2.2 are satisfied.
Let additionally Assumptions 3.2 and 3.3 hold. Let T € N and denote

Br = max{2M, |[Sktr — fyllc} -

Let further § € (0,1], A = (nT)~!, assume that r > 1 and recall the definition of B(1/nT) in (10). Then with
probability not less than 1 — §, the excess risk for the second-stage tail-averaged Gradient Descent satisfies

EopollISicr ~ fyllia] < Chtog(24/8) = (VAT + 120 Jelez o )
log(4/96)

o +A<) T CYISkctr — £l

B(1/nT) ,

O || T i e (

VT
+ Clog(8/5) log(T) Y

for some constants C1 >0, C5 >0, C5 >0, C} > 0.
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Corollary 2.12 (Rate of Convergence Second-Stage Tail-Ave GD; mis-specified Case). Suppose all Assumptions
of Proposition 2.5 are satisfied. Assume additionally that r < 1/2 and

n > 64erlog?(24/6)(nt) log((nT)") .

The excess risk for second stage tail-averaged Gradient Descent satisfies in the mis-specified case with probability
not less than 1 —§:

24v

J S _2+4v
124> 1 T = (Ean) ™ and Ny > 10g () (52 ) 777 then

x M2 ﬁ
Ep plllSk fr, = follr2] < C 1Og(24/5)R(R2n) 7
for some C' < oo, provided n is sufficiently large.

24v

2. If2r+v<1,n,T, = #’}((n) for some K > 1 and N,, > log2/°‘(n)($’}<(n)) ® | then
5 M?1og®(n '
EppolliSwcfr, — fyllzz] < O log<6/6>R(R2n” ,

for some C' < 0o, provided n is sufficiently large.

Proof of Corollary 2.12. Assume 0 < r < 1/2.

1
1. Let 2r +v > 1 and 0,7, = (ﬁ—zn) ™ The first part of Corollary 2.6 gives a rate for the first-stage GD
of order

_ M2 ﬁ
ISk fr = foll> <C log(12/5)R(R2n> ’

provided n is sufficiently large. It remains to bound the term

ViTB(1/nT)

log(T) NE

(1+¢((nT))
from the second part of Theorem 2.10 for an appropriate choice on N. Note that in this case we have
Lp(?’]T) _ (nT)%max{u,l—Zr} _ (nT)u/Q )

Moreover, by the definition (10), the choice of 7,,T,, shows that for sufficiently large n

20,y + (nnTn)wFl ML
n n Na/2

1—27r 1
R2 @) R2 s
—a/2
142r

Thus, letting N,, > (ﬁ—in) ar) gives for sufficiently large n

B(l/nnTn) S1+

RZ 2(12:-2;-7;;)
B0/mT) <2+ (750

R? %
< < n) .



2. Let 2r+v <1, n, T,

Hence, give these choices,

1—2
’I]nTnB 1/n.T, o R2 2(2rtv) ,
g (1) LS (1 4 i, ) £ bor(TON 2T (3gm) (T
n
2 R\ B
S N2 log(Ty,) <M2n>
2 24v
Thus, if N,, > log?*(n) (%n) T oives
s R2 % M2 m

Hence, to obtain the given rate of convergence we need to choose

R2 \” 1+2r 2+v 2+v
N, > log?/*(n) | — = = '
> log™ % (n) <M2 ") , P max{ a2r+v) a2r + V)} a(2r+v)

= #’L(n) for some K > 1. We again have to bound the expression

log(T)%(l +o(T))
for a suitable choice of N. Note that we have in this case
P = () ™20 = ()
Moreover, for sufficiently large n

20, Ty, + (nnTn)y—H MTn
n n No/2

2 v/2 2
§2+(R?{) +N*Q/QR7Z.
M?1log" (n) M?log" (n)

B(1/nnTn) S 1+

2—v

Thus, if N, > (ﬂ) “ we have

M2 logX (n)
v/2
N-a/? R?n < ( R?n ) /
" M2log®(n) ~ \ M21ogh (n)

and therefore

RQTL l//2
B /nT) < (—21 )
(1 T) (MQIOgK(m)

We thus obtain for sufficiently large n

VT B(1/1,Ty)

log(T},) e

R2Tl 14+v/2—r
L+ o(naT})) < log(T, Nna/2<> :
( (M Tn)) g(Ty) M2 lOgK(n)

24v

Hence, with N,, > log?“(n) (#’}((n)) ® we find

VT, B(1/n,T)
N

log(T)

2 o K n '
(14 pT) S (W)
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Corollary 2.13 (Rate of Convergence Second-Stage Tail-Ave GD; well-specified Case). Suppose all Assumptions
of Proposition 2.5 are satisfied. Assume additionally that r > 1/2 and

n > 64er®log?(24/8)(nT) " .

D _
Let 0, T, = (ﬁz n) T and N, > logQ/a(n) (RM—QQ) ) The excess risk for second stage tail-averaged Gradi-

ent Descent satisfies in the well-specified case with probability not less than 1 — §

~ M2 ﬁ
Ep plllSxfr, = follre] <C log(24/6)R<R2n> ;

for some C < oo, provided n is sufficiently large.

Proof of Corollary 2.13. The proof follows the same lines as the proof of Corollary 2.12 and can be obtained
from standard calculations. O

2.5 Additional Material

Lemma 2.14. Let ¢ be defined by (11).

1. Let ¢(nT) be defined by (21). For some C, € Ry we have the bound
p(T) < Crp(nT’) .

2. For some C]. € Ry we have the bound

3. With A\ = (nT)~! we have

2?’7 Z Z( )+)\>§4log(T).

t=|T/2)+1 s=0
4. With X\ = (nT)~! we have for some C!. < 0o

2?77 Z Z( G-i-s " A) (1+¢(ns)) < 4log(T) + C;log(T)p(nT) -

t=|T/2]+1 s=0

Proof of Lemma 2.14. 1. Here we use the fact that for any a > 0,1 < S <T

T T+1 ga+1
> ot / tdt < ot
= a+1

Hence,
T
2 2a+2
T Z t* < 1Ta
t=|T/2]+1 o+
2. Observe that for a > 0
t—1



Thus, by the first part of the Lemma we find

T t—2

2 —  ©(ns 8C,
T Zt (1 ) < T Z log(t)p(nt)
—1-s5
t=|T/2|+1 s=0 t=|T/2]+1
< 4C, log(T)@(nT)
< Crlog(T)p(nT) -
3. Note that for any t > 3
t—2
Zt—l— <4 log(t)
s=0
T t—2 T t—2
2n 2An 2
D S 3 R It P D ESSD SR P
t=[T/2)+1 s=0 t=|T/2]+1 s=0 t=|T/2|+1 s= ot
<A T+i ZT: log(t)
= A el 9
t=|T/2]+1

< AT +2log(T) .
The result follows by setting A = (nT)~! and with 1 < 21og(T).

4. This follows immediately from the other parts of the Lemma.

3 Results for Tail-Averaged SGD

This section is devoted to providing our final error bound for the second-stage SGD algorithm. Here, we write

EpplllShr = follee] < EpplllSkfr — follre] +E3\D[SK(1€T — follee] - (22)

2. stage GD 2. stage SGD wariance

3.1 Bounding Second Stage SGD Variance

A short calculation shows that the second stage SGD variance can be rewritten as

flt+1 - ft+1 = (ld— 77Tt+1)(ilt - ft) + U§t+1
where we set Jy := {b(t — 1) + 1,..., bt} and define
. 1 . 1
Tt - g Z K 5, ® K Zj; 7 gt = g Z y‘hK'uih
i€Jy i€ Jy

and A o
Gt = (Tx — Ti) fe + (Gt — 95) -
This gives o
EJt[Ct‘DﬂD] =0

and by Lemma 6 in Miicke et al. (2019) we find

" P 1 A
E4lG G0, D)< 3 (W supl il + 242 T 2

As a preliminary step we need to bound the norm of the second stage GD updates.
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Proposition 3.1. Suppose Assumptions 2.1, 2.2, 3.1, 3.2 and 3.3 are satisfied and let n < 1/K>.
1. If f, € Ran(Sk): Assume that
n > 64er*log?®(12/8)(nt) '+ (24)

Then

2 2
f n(t+1)
Eﬁ‘D[HftJrlH%{K] S Ca7H,M,R<]\[a + 1 ,

with probability at least 1 — § w.r.t. the data D, for some Cy xp,r < 00.

2. If f, & Ran(Sk): Assume
n > 64r%1og(12/68)(nt) log((nt)") -

With probability at least 1 — 0 w.r.t. the data D we have

2 2
P n?(t+1)
EpplllferllF] < C&,K,M,RiNQ (1+@*(nt))

for some C, .\ p < o0 and where
plint) = () et =2 (25)

Proof of Proposition 3.1. We split
1Fellfe < 201fe = fellBaeie + 2017l 13y - (26)
According to (6) we have

¢
feo1 = frer =1 Z(Id —nT%)
s=0

where & is defined in (5). We proceed by using convexity to obtain

t

1 L
mZ(M—ﬁTﬁ)t &s
s=0

v = ferall? = n2(t +1)?

Hi

t
~ 112
<P+ 1)) ||(td - T |
s=0 K

t
<P+ 1Y€, -
s=0
For bounding the noise variables we follow the proof of Proposition 2.9 and distinguish between the two cases:

o Pf, € Ran(Sk): By Lemma 1.3, Lemma 1.4 and Corollary 2.8 we have
Ca

Eﬁ|D[||éS||'2HK] S Voo

for some ¢, < oo and holding with probability at least 1 — § w.r.t. the data D, provided (24) is satisfied.

Thus,
2 2
; n?(t+1)
Epplllfe+1 = frrlF, ) < Ca e

in this case. Combining with (26) and Corollary 2.8 once more leads to

2 2
] _ (i (t+1)
E§|D[||ft+1\|3_[K] gca(NaJrl ,

with probability at least 1 — § w.r.t. the data D, for some é, < oc.



o Pf, & Ran(Sk): From Corollary 2.8, Lemma 1.2 and Lemma 1.3 we obtain with probability at least 1 — 4§
with respect to the data D

~/

Epypllléll,] < log” (6/0) 7 (1 +¢(ns))*

for some ¢}, < co. Thus,

2 t
A o e(t+1
Epplllfer = frrallfe ] < 20;7(]\7@ ) E (1+¢*(ns))
s=0

and by (26), since ¢ is non-decreasing in s

t

> A+ (ns)) + crarre” (nt)
s=0

t
_ n?(t+1)2 1
SCD&I{MR Na 1+t+1z<)02(778)

s=0
n?(t+1)2
/O/LHMRiNa (1+<P2(77t)) )

n?(t+1)

Eﬁ\D[HfH»lH%{K] <28, No

\ /\

for some ¢, s p < 00 and with probability at least 1 — ¢ with respect to the data D. O

Proposition 3.2 (Second Stage SGD Variance). Suppose Assumptions 2.2 and 3.1 are satisfied and let nk? <
1/4, v € (0,1]. Assume further that Trace[T¥] < C, almost surely for some C, € Ry. The second stage SGD
variance satisfies with probability at least 1 — § w.r.t. the data D

Epp 175 *(hr = fr)llaee] < Cuear6log(4/6)

(

S

A /
oyt (142, l7r1,] )
Vit -\

7"

S

for some Cy . pr < 00.

Proof of Proposition 3.2. Holder’s inequality allows us to write for any A > 0

N

1/2 ~ ~ 1/2 ~ ~
B ol (e — Fo)lbee) < [Eppo 1T (T + 021 By pllTe+ VY200 — FliB]] - (20
For bounding the first term let us firstly observe that by Lemma 1.1 with probability at least 1 — §

E gy p[l1T% > (T + N)7V2(2] < | Tk (T + X) 71|

CcaY*LM
< 6log(2/6 + +1. 28
o8 (2/8) 3=+ 202 (28)

For bounding the second term we write

1(Tx + N2 (e = fr)ll3ee = T (he = fr)llGen + Mlbr — frll3,. -

Applying Proposition 5 in Miicke et al. (2019) with o2 = %EMD {/~€4||fT||2 + Mz} then gives with A = (nT))~!
and for any v € (0, 1]

Epplll(Tx + N)2(hr = fr)lfe, ] < CoT) " Epyp | (<*]1r ]I + M?) Trace[T¥]]
< Comar 2 (D)~ (Epplll il ]+ 1)

for some C,, . pr < oo. Combining this with (28) and (27) finally leads to the result. O



Supplementary Materials: SGD Meets Distribution Regression

From Proposition 3.1 and Proposition 3.2 we immediately obtain:

Corollary 3.3 (Second Stage SGD Variance). In addition to the Assumptions from Proposition 3.2 suppose that
Assumptions 3.2, 3.3 are satisfied.

1. If Pf, € Ran(Sk): Assume that
n > 64er®log?(12/8)(nt) '+ .
Then

= = T T
ol ir — 7o) = Cumnatins (1475 + ) [l (1 20

with probability at least 1 — 0 w.r.t. the data D, for some C x.~y Ma,L < 00.
2. If Pf, & Ran(Sk): Assume that
n > 64ex? log?(24/6)(nt) log((nT)") .
Then, with probability at least 1 — § w.r.t. the data D we have

ol Ty — Frlbee] < Conrnlost6/6) (1+ 21 fV”T) Lamy1 (14 w6m) 2 ).

for some C . Moot < 00 and where ¢ is defined in (25).
3.2 Main Result Second Stage Tail-Averaged SGD

Combining now (22) with Proposition 3.2, Theorem 3.4 and Theorem 2.11 finally leads to our main results.

Theorem 3.4 (Excess Risk Second-Stage tail-ave GD; Part I). Suppose Assumptions 2.2, 2.2 are satisfied. Let
additionally Assumptions 3.2 and 3.3 hold. Let T € N and denote

Br = max{2M, ||Sxur — fy||e} -

Let further § € (0,1], A= (nT)~1, nk? < 1/4, assume 0 < r < 1 and recall the definition of B(1/nT) in (10) and
of ¢ in (11). With probability not less than 1 — 46, the excess risk for the second-stage tail-averaged SGD satisfies:

1.If1/2<r <1:

S 2 B
EpyplISich — f,lla] < Crtog(24/0) = (ary/Wy + 10 —Jelee )

f \/n)\
+ CoX |[(Tie + X) 2 r gy, + Csl|Sktir — fol| 12
vnT

+ Calog(8/0) log(T) -~ B(1/1T)

n 1 o2 1/2
+ Cslog(8/0), | 7(T) " (1+Epp [Ifrlfu] ) (2= +
for some constants Cy >0, Cy >0, C3 >0, Cy >0, C5 > 0.
2. If0<r<1/2:

z Skur — 2 B
B plllSichr — £,z < Cr log(24/6) (M\/ A + I Tollzz o \/ﬁ)
+ CoX [|[(Tk + N) Y2073, + Csl|Sktir — fol| 12
TB(1/nT
+ Cstos(8/5) oa() R (1 4 o)

+ 05 10g(8/5)

o3

. 1/ T T 1/2
ot (14 By 1 )(?/ﬁ+{£+1) ,

for some constants Cy >0, Cy >0, C3 >0, Cy >0, C5 > 0.



Theorem 3.5 (Excess Risk Second-Stage tail-ave GD; Part IT). Suppose Assumptions 2.2, 2.2 are satisfied. Let
additionally Assumptions 3.2 and 3.3 hold. Let T € N and denote

Br = max{2M, [[Sxtur — fpllsc} -

Let further § € (0,1], A = (nT)~1, nx? < 1/4, assume that v > 1 and recall the definition of B(1/nT) in (10).
Then with probability not less than 1 — §, the excess risk for the second-stage tail-averaged SGD satisfies

EppolISichr — fll] < O log(24/9) = (dy/ATGy + [0 Sollz T )
log(4/9)

o A<) L CyISwcar — f,llue
7 5(1/1)

s 12\ (T AT\
+ Chtogts/o) [Tyt (14 £ 1721, ] ) (T + X +1)

for some constants C{ >0, C4 >0, C% >0, C}y >0, C{ > 0.

Lo |T;uT||HK(

+ C} log(8/8) log(T) \]/\;’T

Corollary 3.6 (Learning Rates Second Stage Ave-SGD Mis-Specified Model). Suppose all assumptions of The-
orem 8.4 and Theorem 3.5 are satisfied. Assume additionally that r <1/2, K > 1, ng < ﬁ and

n > 64er?log(4/0)(nT) log((nT)") -

1. Let 2r +v > 1. Then, for any n sufficiently large, the excess risk satisfies with probability at least 1 —
w.r.t. the data D

i 2 M2\ 7

EpplllSxhr, — follze]? < Clog(24/5)R<R2n> ’

and

240
provided N, > 10g2/a (n) (%n) a2+

1
e Multi-pass SGD: b, = \/n, n, =no and T,, = (RZ") o

o2

_1
e Batch GD: b, =n, n, =19 and T,, = (%) o

2. Let 2r + v < 1. Then, for any n sufficiently large, the excess risk satisfies with probability at least 1 — §
w.r.t. the data D

x M210 K n r
EpyplllSxchr, = fyll=)* < Clog(24/5>R<R2gn()> :

3—2r

provided N,, > log¥“(n) (#’%) * and

)

2 K 2r+v 2 2r+v+1
[ ] bnzl, NMn = (%n(n)) andTn: (ﬁ?}(n))

R%n Irtv R%n
* b= (m) 2 n =10 and Tn = 3oy

— R%n _ _ R?%n
® bn = Fiogk(ys e = Mo and Tn = g iy -
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Proof of Corollary 3.6. Here, we combine the results from Corollary 2.12 and Corollary 3.3. We have to show

that s
nT nT nT n
1+ — = 1 T)—— —(nT)v—1
(1+ =+ %) (1reom g ) |/Ton
T T2 Ts
is of optimal order under appropriate choices of all parameters.
>\ T
1. Let 2r +v > 1 and n,,T;, = (%n "™ Given this choices, one easily verifies that the leading order term

o\ /2
in 77 is given by (""T) , provided

nn
1/« 2 2rav-l
n R a(2r4+v)
N, > ~ (2 :
B <77nTn) (M2n>

Moreover, we have ¢(nT) = (nT)*/? and the second term 73 is of order 1 if

(nTn) T/2N"% <1

hence if

24v
R2 a(2r+v)

for n sufficiently large. Note that we have

{2T—|—V—1 24+ v } 2+v
max

al2r+v) al2r+v) - al2r+v)’

Finally, we have to determine now appropriate values of 7, Ty, b, such that

M2\ 2erT M [ R? v M2\ T
M i (T2 N S p(A) T
R2%n b, \ M? R?n

1
2 2
Mmoo p( M
by ™ (R%) '

This is surely satisfied by all the given choices.

that is, if

2. Let 2r +v < 1 and 1, T}, = #’}((n) for some K > 1. Again, the leading order term in 77 is given by
1/2
(":’/17;”) , provided
Np/? > ~log""?(n) ,
Mndn

or equivalently,
N, > log&/®(n) .

For bounding 73 note that o(nT’) = (yT)2~". Then, T; is of order 1 if

B2 3-2r
N, > (’}( )
MZ2log™ (n)

Finally, we have to determine now appropriate values of 1, T}, b, such that

2r
R%*n nn< R%*n >V_1 <R M?log™ (n)
M2log®(n) bn \ M2log” (n) ~ R2n ’



that is, if
2r+v
oo p M?2log" (n)
by, ™~ R2n '

This is surely satisfied by all the given choices.

Corollary 3.7 (Learning Rates Second Stage Ave-SGD Well-Specified Model). Suppose all assumptions of
Theorem 3.4 and Theorem 3.5 are satisfied. Assume additionally that r > % and

n > 64ex?log(4/8)(nT) T .

2r41
2, a@r+v)

Letny < 1= and choose N,, > log?/®(n) (R;T
with probability at least 1 — § w.r.t. the data D

. Then, for any n sufficiently large, the excess risk satisfies

- 2\ v
Epplischr, - Phllal? < Clogt/or( )

for each of the following choices:

1. One-pass SGD: b=1,n, = no?—j( g ) T and T, = ?—jn,

. 2r4v—1 R%n 2r+v
2. FEarly stopping and one-pass SGD: b=n "2+ |, n, =19 and T, = ( )

o2
1
3. Batch-GD: b = n, N, = No and T. = (%) 27‘+u‘

Proof of Corollary 3.7. The proof follows the same lines as the proof of Corollary 3.6 by standard calculations.
O
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