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Abstract

Stochastic gradient descent (SGD) provides
a simple and efficient way to solve a broad
range of machine learning problems. Here,
we focus on distribution regression (DR), in-
volving two stages of sampling: Firstly, we
regress from probability measures to real-
valued responses. Secondly, we sample bags
from these distributions for utilizing them
to solve the overall regression problem. Re-
cently, DR has been tackled by applying ker-
nel ridge regression and the learning prop-
erties of this approach are well understood.
However, nothing is known about the learn-
ing properties of SGD for two stage sam-
pling problems. We fill this gap and provide
theoretical guarantees for the performance of
SGD for DR. Our bounds are optimal in a
mini-max sense under standard assumptions.

1 Introduction

In a standard non-parametric least squares regression
model, the aim is to predict a response Y ∈ Y from a
covariate X on some domain X̃ . Popular approaches
are kernel methods (Hofmann et al., 2008), where one
defines on X̃ a reproducing kernel K associated to a
reproducing kernel Hilbert space HK (RKHS) (Aron-
szajn, 1950; Steinwart and Christmann, 2008). The
overall aim is to minimize the least squares error over
HK by applying a suitable regularization method, in-
volving the kernel and based on an i.i.d. sample, drawn
according to some unknown distribution on X̃ ×Y. We
will later refer to such data as a ”first-stage” sample.

In this paper, we study distribution regression (DR)

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

(Póczos et al., 2013), where the covariate is a proba-
bility distribution. Typically, we do not observe this
distribution directly, but rather, we observe a ”second-
stage sample” drawn from that, amounting to a regres-
sion model with measurement error.

Distribution regression has been analyzed in various
settings, e.g. multiple instance learning (Dooly et al.,
2002; Maron and Lozano-Pérez, 1998; Dietterich et al.,
1997; Chevaleyre and Zucker, 2001; Wagstaff et al.,
2008), in an online setting (Zhi-Gang et al., 2013),
in semi-supervised-learning (Zhou and Xu, 2007) or
active learning (Settles et al., 2008).

A popular approach for regression on the domain
of distributions is to embed the distributions into a
Hilbert space. This can be achieved by e.g. kernel
mean embeddings (Smola et al., 2007; Muandet et al.,
2017), utilizing another appropriate reproducing ker-
nel mapping these distributions into an RKHS. The
idea is then to introduce the kernel K as a similarity
measure between the embedded distributions and to
use a traditional kernel machine to solve the overall
learning problem.

The learning properties of kernel regularized least
squares algorithms based on mean embeddings and
with two stages of sampling are rarely analyzed. The
first work establishing the learning properties of kernel
ridge regression (KRR) is Szabó et al. (2016), where
optimal bounds are derived under suitable assump-
tions on the learning problem and the second-stage
sample size. Recently, Fang et al. (2020) also consid-
ered KRR, with a slight improvement of results. How-
ever, to the best of our knowledge, an analysis of other
kernel based regularization methods is missing.

While KRR performs an explicit regularization to
avoid overfitting, stochastic gradient descent (SGD)
performs an implicit regularization as an iterative algo-
rithm. Many variants of SGD are known for one-stage
least squares regression, ranging from considering one
pass over the data (Smale and Yao, 2006; Tarres and
Yao, 2014; Ying and Pontil, 2008) to multiple passes
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(Bertsekas, 1997; Rosasco and Villa, 2015; Hardt et al.,
2016; Lin et al., 2016; Pillaud-Vivien et al., 2018),
with mini-batching (Lin and Rosasco, 2017) or (tail-
)averaging (Dieuleveut and Bach, 2016; Mücke et al.,
2019; Mücke and Reiss, 2020).

While SGD is a workhorse in machine learning, the
learning properties of this algorithm in a two stage-
sampling setting based on mean embeddings are not
yet analyzed. We aim at providing an algorithm with
reduced computational complexity for two-stage sam-
pling problems, compared to KRR, which is known to
scale poorly with large sample sizes.

Contributions. We analyze the distribution regres-
sion problem in the RKHS framework and extend
the previous approaches in Szabó et al. (2016) and
Fang et al. (2020) from two-stage kernel ridge re-
gression to two-stage tail-averaging stochastic gradi-
ent descent with mini-batching. Our main result is a
computational-statistical efficiency trade-off analysis,
resulting in finite sample bounds on the excess risk. In
particular, we overcome the saturation effect of KRR.

We give a minimum number of the second-stage sam-
ple size which is required to obtain the same best pos-
sible learning rates as for the classical one-stage SGD
algorithm. For well-specified models, i.e. the regres-
sion function belongs to the RKHS where SGD is per-
formed, we achieve minimax optimal rates with a sin-
gle pass over the data. These bounds match those for
classical kernel regularization methods. In the mis-
specified case, i.e. the regression function does not be-
long to the RKHS, our bounds also match those for the
one-stage sample methods with multiple passes over
the data.

Moreover, we investigate the interplay of all parame-
ters determining the SGD algorithm, i.e. mini-batch
size, step size and stopping time and show that the
same error bounds can be achieved under various
choices of these parameters.

On our way we additionally establish the learning
properties of tail-averaging two-stage gradient descent
which is necessary for deriving our error bounds for
SGD. Due to space restrictions, this is fully worked
out in the Appendix, Section 2.

Our results are the first for distribution regression us-
ing SGD and a two-stage sampling strategy.

Outline. In Section 2 we introduce the distribution
regression problem in detail. We introduce our main
tool, kernel mean embeddings, and explain the clas-
sical non-parametric regression setting in reproduc-
ing kernel Hilbert spaces. In addition, we define our
second-stage SGD estimator. Section 3 collects our

main results for different settings, followed by a de-
tailed discussion in Section 4. All proofs are deferred
to the Appendix.

2 The Distribution Regression
Problem

In this section we introduce the distribution regression
problem in detail. Let us begin with with some nota-
tion. We let (X , τ) be a compact topological space
and denote by B(X ) the Borel σ-algebra induced by
the topology τ . The set M+(X ) denotes the set of
Borel probability measures on the measurable space
(X ,B(X )), endowed with the weak topology. We fur-
thermore assume that there exists a constant M > 0
such that Y ⊆ [−M,M ].

Our approach is based on two stages of sampling:

1. We are given data {(xj , yj)}nj=1 ⊂ M+(X ) × Y,
i.e., each input xj is a probability distribution
with corresponding label yj . Each pair (xj , yj)
is i.i.d. sampled from a meta distribution M on
M+(X ) × Y. However, we do not observe xj di-
rectly.

2. Instead, for each distribution xj we obtain sam-
ples {xj,i}Ni=1 ⊂ X , drawn i.i.d. according to xj .
The observed data are ẑ = {({xj,i}Ni=1, yj)}nj=1.

2.1 Our Tool: Kernel Mean Embeddings

Following the previous approaches in Szabó et al.
(2016), Fang et al. (2020) we employ kernel mean
embeddings to map the distributions {xj}nj=1 into a
Hilbert space. To be more specific, we let HG be a re-
producing kernel Hilbert space (RKHS) with a Mercer
kernel G : X×X → R, i.e., G is symmetric, continuous
and positive semidefinite (Aronszajn, 1950; Steinwart
and Christmann, 2008). Moreover, we make the fol-
lowing

Assumption 2.1 (Boundedness I). The kernel G is
bounded, i.e.

sup
s∈X

G(s, s) =: γ2 <∞ , a.s. ,

w.r.t. any probability measure on X .

The associated mean embedding is a map µ :
M+(X )→ HG, defined as

µx := µ(x) :=

∫
X
G(s, ·) dx(s) . (1)

Kernel mean embeddings were introduced in e.g.
Smola et al. (2007) as a technique for comparing distri-
butions without the need for density estimation as an
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intermediate step and thus have a broad applicability,
see also Muandet et al. (2017) and references therein.

Of particular interest are characteristic kernels, i.e.
the map µ : x 7→ µx is injective (Fukumizu et al.,
2004). Those type of kernels are essential since ||µx −
µx′ ||HG = 0 is equivalent to x = x′ and there is no
loss of information when mapping a distribution into
a characteristic RKHS1.

It is well known that universal kernels2 are character-
istic, see e.g. Theorem 1 in Smola et al. (2007). Ex-
amples include the exponential kernel, binomial kernel
or the Gaussian RBF kernel. Thus, a kernel mean
embedding serves as a suitable tool for measuring the
similarity between two distributions.

For controlling the two stage sampling process we shall
employ this property and compare each distribution xj
from the first stage sample with its empirical distribu-
tion x̂j := 1

N

∑N
i=1 δxj,i obtained from the second stage

of sampling by mapping them into the RKHS HG by
means of the kernel mean embedding (1).

Thus, the first stage data for DR are

D := {(µxj , yj)}nj=1 ⊂ µ(M+(X ))× Y ,

while the second stage data are

D̂ := {(µx̂j , yj)}nj=1 ⊂ µ(M+(X ))× Y ,

with the associated mean embeddings

µxj =

∫
X
G(s, ·) dxj(s) , µx̂j =

1

N

N∑
i=1

G(xj,i,·) .

Both datasets now belong to the same space, mak-
ing the two stage sampling problem accessible for fur-
ther investigations applying classical kernel methods,
as amplified below.

2.2 One-Stage Least Squares Regression

We let ρ be a probability measure on Z :=
µ(M+(X )) × Y with marginal distribution ρµ on the
image µ(M+(X )) ⊂ HG. In least squares regression
we aim to minimize the risk with respect to the least
squares loss, i.e.

min
H
E(f) , E(f) :=

∫
Z

(f(µx)− y)2 dρ (2)

over a suitable hypotheses space H. Here, we assume
that H = HK is a RKHS associated with a kernel K
on µ(M+(X )), satisfying:

1A RKHS is called characteristic if it’s associated kernel
is characteristic

2A continuous kernel is called universal, if it’s associ-
ated RKHS is dense in the space of continuous bounded
functions on the compact domain X (Steinwart and Christ-
mann, 2008).

Assumption 2.2 (Boundedness II). The kernel K is
bounded, i.e.

sup
µ̃∈µ(M+(X ))

K(µ̃, µ̃) =: κ2 <∞ , ρµ − a.s. .

Note that under this assumption, the RKHS HK
can be continuously embedded into L2(µ(M+(X )), ρµ)
and we henceforth denote this inclusion by SK :
HK ↪→ L2(µ(M+(X )), ρµ).

The minimizer of (2) over L2(µ(M+(X )), ρµ) is known
to be the regression function

fρ(µx) =

∫
Y
y dρ(y|µx) , µx ∈ µ(M+(X )) ,

where ρ(·|µx) denotes the conditional distribution on
Y given µx ∈ µ(M+(X )). Note that our assumption
Y ⊆ [−M,M ] implies that ||fρ||∞ ≤M .

Classical kernel based approaches for least-squares re-
gression to (approximately) solve (2) employ some
kind of explicit or implicit regularization. Among
them, and well understood, are Kernel Ridge Re-
gression (Caponnetto and De Vito, 2006; Fischer
and Steinwart, 2017), Kernel PCA, Gradient Descent
(Blanchard and Mücke, 2018; Lin et al., 2020) or
Stochastic Gradient Descent (Dieuleveut and Bach,
2016; Lin et al., 2016; Lin and Rosasco, 2017; Mücke
et al., 2019; Mücke and Reiss, 2020).

All these methods use the first stage data D =
{(µxj , yj)}nj=1 to build an estimator fD with an appro-
priate amount of regularization and the overall aim is
to achieve a small excess risk

E(fD)− inf
f∈H
E(f) ,

with high probability with respect to the data D.

2.3 Solving DR With Two-Stage Sampling
SGD

Remember we do not directly have access to the first
stage data D but by means of the tool of kernel mean
embeddings we are able to use the second stage data
D̂ for our algorithm. Our aim is to perform a variant
of stochastic gradient descent. To this end, let i· = i(·)
denote a map defining the strategy with which the data
are selected at each iteration t = 0, ..., T . The most
common approach, which we follow here, is sampling
each point uniformly at random with replacement. We
additionally consider mini-batching, where a batch of
size b ∈ {1, ..., n} of data points at each iteration is
selected. Formally, the j1, ..., jbT are iid random vari-
ables, distributed according to the uniform distribu-
tion on {1, ..., n}.
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Starting with ĥ0 ∈ HK , our SGD recursion is given by

ĥt+1 = ĥt − η
1

b

bt∑
i=b(t−1)+1

(ĥt(µx̂ji )− yji)Kµx̂ji
,

where we write Kµ := K(µ, ·) and where η > 0 is the
stepsize. The number of passes after T iterations is
bbT/nc.

We are particularly interested in tail-averaging the it-
erates, that is

¯̂
hT :=

2

T

T∑
t=bT/2c+1

ĥt . (3)

The idea of averaging the iterates goes back to Rob-
bins and Monro (1951), Polyak and Juditsky (1992),
see also Shamir and Zhang (2013). More recently, in
Dieuleveut and Bach (2016) full averaging, i.e. sum-
ming up the iterates from t = 1 to t = T , was shown
to lead to the possibility of choosing larger/ constant
stepsizes. However, it is also known to lead to satu-
ration, i.e. the rates of convergence do not improve
anymore in certain well-specified cases and thus leads
to suboptimal bounds in the high smoothness regime.
This has been alleviated in Mücke et al. (2019) by
considering tail-averaging, see also Mücke and Reiss
(2020).

Note that our SGD algorithm only has access to the
observed input samples {xj,i}Ni=1, j = 1, ..., n through
their mean embeddings {µx̂j}nj=1.

Main goals: We analyze the excess risk3

ED̂|D[E(
¯̂
hT )− E(fρ)] = ED̂|D[||SK ¯̂

hT − fρ||2L2 ]

and study the interplay of all parameter b, η, T deter-
mining the SGD algorithm. We derive finite-sample
high probability bounds, presenting computational-
statistical efficiency trade-offs in our main Theorem
3.4. In addition, we give fast rates of convergence as
the sample sizes n grows large and give an answer to
the question

How many second-stage samples N do we need to
obtain best possible learning rates, comparable to

one-stage learning ?

Our bounds depend on the difficulty of the problem.
More precisely, we shall investigate the learning prop-
erties of (3) in two different basic settings:

1. Well-specified Model: Here, we assume
that the regression function fρ belongs to the RKHS

3ED̂|D denotes the conditional expectation with respect

to the sample D̂ given D.

HK . We analyze this setting in Section 3.1 and give
high probability bounds, matching the known optimal
bounds for one stage regularization methods and two
stage kernel ridge regression.

2. Mis-specified Model: In this case the regression
function is assumed to not to belong to the RKHSHK .
These bounds are presented in Section 3.2 and still
match the known optimal bounds in the so called easy
learning regime, to be refined below. For so called
hard learning problems, our bounds still match the
best known ones for classical one-stage kernel methods.

3 Main Results

This section is devoted to presenting our main results.
Before we go into more detail, we formulate our as-
sumptions on the learning setting. The first one con-
siders the reproducing kernel that we define on the set
µ(M+(X )).

Assumption 3.1 (Hölder Property). Let α ∈ (0, 1]
and L > 0. We assume that the mapping K(·) :
µ(M+(X )) → HK defined as µ̃ 7→ K(µ̃, ·) is (α,L)-
Hölder continuous, i.e.

||Kµ1
−Kµ2

||HK ≤ L||µ1 − µ2||αHG ,

for all µ1, µ2 ∈ µ(M+(X )).

The next assumption refers to the regularity of the
regression function fρ. It is a well established fact
in learning theory that the regularity of fρ describes
the hardness of the learning problem and has an in-
fluence of the rate of convergence of any algorithm.
To smoothly measure the regularity of fρ we intro-
duce the kernel integral operator LK = SKS

∗
K :

L2(µ(M+(X )), ρµ)→ L2(µ(M+(X )), ρµ), defined by

LKf(µ̃) :=

∫
µ(M+(X ))

K(µ′, µ̃)f(µ′) dρµ(µ′) .

Note that under Assumption 2.2, LK is positive, self-
adjoint, trace-class and hence compact, with ||LK || ≤
trace(LK) ≤ κ2, see e.g. Steinwart and Scovel (2012).

Assumption 3.2 (Regularity Condition). We assume
that for some r > 0 the regression function fρ satisfies

fρ = LrKhρ , hρ ∈ L2(µ(M+(X )), ρµ) ,

with ||hρ||L2 ≤ R, for some R <∞.

This assumption is also known as a source condition.
We recall here that powers of LK are defined by spec-
tral calculus, see for instance Reed (2012). The larger
the parameter r, the smoother is fρ. We have the

range inclusions Range(LrK) ⊆ Range(Lr′K) if r ≥ r′

with Range(LrK) ⊆ HK for any r ≥ 1
2 . Thus, if
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r ≥ 1
2 , then fρ belongs to HK under Assumption 3.2

and we are in the well-specified case. For more general
smoothness assumptions we refer to Mücke and Reiss
(2020).

Our last condition refers to the capacity of the RKHS
HK . Given λ > 0, we define the effective dimension

N (λ) := trace
(
LK(LK + λ)−1

)
.

This key quantity can be used to describe the com-
plexity of HK .

Assumption 3.3 (Effective Dimension). We assume
that for some ν ∈ (0, 1], cν < ∞, the effective dimen-
sion obeys

N (λ) ≤ cνλ−ν . (4)

This assumption is common in the nonparametric re-
gression setting, see e.g. Zhang (2003) or Caponnetto
and De Vito (2006); Lin et al. (2020). Roughly speak-
ing, it quantifies how far LK is from being finite rank.
This assumption is satisfied if the eigenvalues (σj)j∈N
of LK have a polynomial decay σj ≤ c′j−

1
ν , c′ ∈ R+.

Since LK is trace class, the above assumption is always
satisfied with ν = 1 and cν = κ2. Smaller values of ν
lead to faster rates of convergence.

Being now well prepared, we state our main result.

Theorem 3.4. Suppose Assumptions 2.1, 2.2, 3.1,
3.2 and 3.3 are satisfied. Let further δ ∈ (0, 1], η <
1

4κ2 , λ = (ηT )−1 and assume

n ≥ 32κ2 log(4/δ)

λ
log

(
eN (λ)

(
1 +

λ

||LK ||

))
.

Then with probability not less than 1 − δ, the excess
risk for the second stage tail-averaging SGD algorithm
(3) satisfies

ED̂|D[||SK ¯̂
hT − fρ||L2 ] ≤ C log(6/δ)

(
(ηT )−r+

+

√
N (λ)

n
+

(ηT )
1
2−r

√
n

+

+ log(T )
ηT

N
α
2

(
1 + 1(0, 12 ](r)(ηT )max{ν,1−2r}

)
+

+

√
η

b
(ηT )ν−1

(
ηT√
n

+

√
ηT

N
α
2

)1/2
)
,

for some constant C < ∞, depending on the parame-
ters γ, κ, α, L,M , but not on n or N .

Note that for the sake of clarity and due to space re-
strictions we only report the leading error terms. A
full statement of this Theorem including all lower or-
der terms with it’s proof is given in the Appendix,
Section 3.

From Theorem 3.4 we can now draw some conclusions.
Below, we will give rates of convergence, depending on
different a priori assumptions on the hardness of the
learning problem.

3.1 Well-specified Case

Here, we give rates of convergence for the most easiest
learning problem where our model is well-specified and
the regression function lies in the same space as our
second-stage SGD iterates, namely in HK .

Corollary 3.5 (Learning Rates Well-Specified
Model). Suppose all assumptions of Theorem 3.4 are
satisfied. Let r ≥ 1

2 , η0 <
1

4κ2 and choose

Nn ≥ log2/α(n)

(
R2n

M2

) 2r+1
α(2r+ν)

.

Then, for any n sufficiently large, the excess risk sat-
isfies with probability at least 1− δ w.r.t. the data D

ED̂|D[||SK ¯̂
hTn − fρ||L2 ] ≤ C log(6/δ)R

(
M2

R2n

) r
2r+ν

,

for each of the following choices:

1. One-pass SGD: bn = 1, ηn = η0
R2

M2

(
M2

R2n

) 2r+ν−1
2r+ν

and Tn = R2

M2n,

2. Early stopping and one-pass SGD: bn = n
2r+ν−1
2r+ν ,

ηn = η0 and Tn =
(
R2n
M2

) 1
2r+ν

,

3. Batch-GD: bn = n, ηn = η0 and Tn =
(
R2n
M2

) 1
2r+ν

.

We comment on these results in Section 4.

3.2 Mis-specified Case

In this subsection we investigate the mis-specified case
and further distinguish between two cases:

1. r ≤ 1
2 but 2r + ν > 1: This setting is sometimes

called easy problems.

2. r ≤ 1
2 but 2r+ ν ≤ 1: This setting is dubbed hard

problem, see Pillaud-Vivien et al. (2018).

Corollary 3.6 (Learning Rates Mis-Specified Model;
2r + ν > 1). Suppose all assumptions of Theorem 3.4
are satisfied. Let r ≤ 1

2 , 2r + ν > 1, η0 <
1

4κ2 and
choose

Nn ≥ log2/α(n)

(
R2

M2
n

) 2+ν
α(2r+ν)

. (5)
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Then, for any n sufficiently large, the excess risk sat-
isfies with probability at least 1− δ w.r.t. the data D

ED̂|D[||SK ¯̂
hTn − fρ||L2 ] ≤ C log(6/δ)R

(
M2

R2n

) r
2r+ν

,

for each of the following choices:

1. Multi-pass SGD: bn =
√
n, ηn = η0 and Tn =(

R2n
M2

) 1
2r+ν

,

2. Batch GD: bn = n, ηn = η0 and Tn =
(
R2n
M2

) 1
2r+ν

.

Corollary 3.7 (Learning Rates Mis-Specified Model;
2r + ν ≤ 1). Suppose all assumptions of Theorem 3.4
are satisfied. Let K > 1, r ≤ 1

2 , 2r + ν ≤ 1, η0 <
1

4κ2

and choose

Nn ≥
(

R2n

M2 logK(n)

) 3−2r
α

.

Then, for any n sufficiently large, the excess risk sat-
isfies with probability at least 1− δ w.r.t. the data D

ED̂|D[||SK ¯̂
hTn−fρ||L2 ] ≤ C log(6/δ)R

(
M2 logK(n)

R2n

)r
,

for each of the following choices:

1. bn = 1, ηn =
(
M2 logK(n)

R2n

)2r+ν
and Tn =(

R2n
M2 logK(n)

)2r+ν+1

,

2. bn =
(

R2n
M2 logK(n)

)2r+ν
, ηn = η0 and Tn =

R2n
M2 logK(n)

,

3. bn = R2n
M2 logK(n)

, ηn = η0 and Tn = R2n
M2 logK(n)

.

Again, we comment on these results in Section 4 in
detail.

4 Discussion of Results

We now comment on our results in more detail and
also compare, in possible cases, to previous results.

High level comments. Let us briefly describe the
nature of our results. In all our bounds above, we are
able to establish optimal/ best known rates of conver-
gence if the sample size of the second-stage sample is
sufficiently large. In Corollary 3.5, we need

Nn ≥ log(n)n
2r+1

α(2r+ν) .

While choosing a smaller size comes with computa-
tional savings, it would reduce the statistical efficiency.
In addition, increasing this number beyond this value
would not lead to any gain in statistical accuracy, but
would worsen computational requirements. The same
phenomenon is observed in Corollary 3.6 and Corollary
3.7.

We also observe an influence of the degree of smooth-
ness of the kernel applied. Choosing a smoother kernel,
i.e. a large Hölder index α ∈ (0, 1] reduces the number
of samples required, the lowest is achieved for α = 1.

Finally, smoother regression functions (corresponding
to large r) are easier to reconstruct, i.e. Nn gets
smaller for increasing r.

Comparison to one-stage kernel methods. Op-
timal learning bounds for traditional one-stage reg-
ularization (kernel) methods are known under vari-
ous assumptions. For ”easy learning” problems, i.e.
if 2r + ν > 1, the optimal learning rate is of order
O(n−

r
2r+ν ) if the amount of regularization is chosen

appropriately, see Caponnetto and De Vito (2006), Lin
et al. (2020), Blanchard and Mücke (2018). Our results
in Corollary 3.5 and Corollary 3.6 match these opti-
mal bounds, provided the number Nn of second-stage
samples is chosen sufficiently large, depending on the
number of first-stage samples.

For ”hard learning” problems, i.e. if 2r + ν ≤ 1, the
best known learning rates for one-stage regularization

methods are of order O
((

logK(n)
n

)r)
, K > 1, see Fis-

cher and Steinwart (2017), Lin et al. (2020), Pillaud-
Vivien et al. (2018). Our bounds from Corollary 3.7
also match this bound if Nn is sufficiently large.

Comparison to two-stage KRR. The first paper
establishing learning theory for distribution regression
using a two stage sampling strategy is Szabó et al.
(2016). In this paper, the authors consider a two-stage
kernel ridge regression estimator (KRR) and derive op-
timal rates in the well-specified case 1

2 ≤ r ≤ 1 if the
number of second-stage samples is sufficiently large.
More precisely, if

Nn ≥ log(n)n
2r+1

α(2r+ν) ,

the rate O(n−
r

2r+ν ) given in that paper matches our
optimal rate from Corollary 3.5, under the same num-
ber Nn. However, for mis-specified models, the results
in this paper take not the capacity condition (4) into
account4 and differ from our bounds. If 0 < r ≤ 1

2 ,

the rate obtained is O(n−
r
r+2 ) if

Nn ≥ log(n)n
2(r+1)
α(r+2) .

4This amounts to considering the worst case with ν = 1.
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Compared to our result in Corollary 3.6 with ν = 1,
this number is smaller that ours in (5), but it only
gives suboptimal bounds. Our result shows that in-
creasing the number of second-stage samples Nn leads
to optimal rates also this setting. We also emphasize
that KRR suffers from saturation. Using tail-ave SGD
instead, we can overcome this issue and establish op-
timality also for r ≥ 1.

We also refer to Fang et al. (2020) where for KRR
in the well specified case 1

2 ≤ r ≤ 1, the logarithmic
pre-factor for Nn could be removed.

However, for the ”hard learning” regime, to the best
of our knowledge, no learning rates taking Assumption
(4) into account are known for two-stage sampling,
except our Corollary 3.7. Thus, we cannot compare
our results in this case.

Some additional remarks specific for SGD. Fi-
nally, we give some comments specifically related to
the SGD algorithm we are applying and compare our
results with those known for SGD in the one-stage
sampling setting. In all our results we precisely de-
scribe the interplay of all parameters guiding the algo-
rithm: batch-size b, stepsize η > 0 and stopping time
T .

All our results show that different parameter choices
allow to achieve the same error bound. As noted
above, the bound in Corollary 3.5 are mini-max op-
timal, i.e. there exists a corresponding lower bound
(provided the eigenvalues of LK satisfy a polyno-
mial lower bound σj ≥ cj−1/ν). In addition, these
bounds and the parameter choices coincide with those
in Mücke et al. (2019). In particular we achieve statis-
tically optimal bounds with a single pass over the data
also in the two-stage sampling setting if fρ ∈ HK , see
Corollary 3.5, 1. and 2. . We also recover the known
bound for a stochastic version of gradient descent in
Corollary 3.5, 3, see Blanchard and Mücke (2018), Lin
et al. (2020).

Moreover, as pointed out in Mücke et al. (2019), com-
bining mini-batching with tail-averaging brings some
benefits. Indeed, in Lin and Rosasco (2017) it is shown
that a large stepsize of order log(n)−1 can be chosen

if the mini-batch size is of order bn = O(n
2r

2r+ν ) with a

number O(n
1

2r+ν ) of passes. Mücke et al. (2019) show
that with a comparable number of passes it is allowed
to use a larger constant step-size with a much smaller
mini-batch size. We observe the same phenomenons
in the two-stage sampling setting, provided Nn is suf-
ficiently large. Finally, Corollary 3.5 also shows that
increasing the mini-batch size beyond a critical value
does not yield any benefit.

However, if fρ 6∈ HK we do not achieve the best known

bounds with a single pass and multiple passes are nec-
essary. As in the well-specified case, we can achieve
these bounds with a large constant stepsize and in-
creasing the mini-batch size beyond a certain value
does not yield any benefit. Here, we want to stress
once more that our results are the first for distribu-
tion regression using SGD and a two-stage sampling
strategy.
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