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A Additional details about related research

In Hsu et al.’s paper on private linear programming (Hsu et al., 2014), the authors study two different categories
of linear program (LPs) when the constraint vector b(D) depends on private data:

1. High-sensitivity LPs: For any two neighboring databases D and D′, there is exactly one component i ∈ [m]
where b(D)i 6= b(D′)i, and for every other component j 6= i, b(D)j = b(D′)j .

2. Low-sensitivity LPs: For any two neighboring databases D and D′ of size N , ‖b(D)− b(D′)‖∞ ≤
1
N .

They prove that in general, high-sensitivity LPs cannot be solved privately. Specifically, for any database
D ∈ {0, 1}n of size n, they define the following high-sensitivity LP:

find x
such that xi = Di for all i ∈ [n].

They prove that for any (ε, δ)-differentially private mechanism with output x(D), there will be at least one
component i ∈ [n] such that |x(D)i −Di| ≥ 1

2 (otherwise, the mechanism would be able to reconstruct D
exactly). This fact does not contradict our upper bound from Theorem 3.4 since this worst-case problem does
not satisfy Assumption 3.1.

For low-sensitivity LPs, they show that a private version of the multiplicative weights algorithm returns a
solution that is close to the LP’s optimal solution. Their solution is allowed to violate the LP’s constraints, so
their algorithm does not apply in our setting.
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B Omitted proofs from Section 3 about multi-dimensional optimization

Theorem 3.2. The mapping D 7→ b(D)− s+ η preserves (ε, δ)-differential privacy.

Proof. Let D and D′ be two neighboring databases. We write the density function of b(D)− s+ η as fD(u) ∝∏m
i=1 exp

(
− ε|ui+s−b(D)i|

∆

)
when u ∈ [b(D) − 2s, b(D)] and fD(u) = 0 when u 6∈ [b(D) − 2s, b(D)]. This proof

relies on the following two claims. The first claim shows that in the intersection of the supports [b(D)−2s, b(D)]∩
[b(D′)− 2s, b(D′)], the density functions fD and fD′ are close.

Claim B.1. Let u be a vector in the intersection of the supports [b(D)− 2s, b(D)] ∩ [b(D′)− 2s, b(D′)]. Then
fD(u) ≤ eεfD′(u).

Proof of Claim B.1. Since u is a vector in the intersection of the support [b(D)− 2s, b(D)]∩ [b(D′)− 2s, b(D′)],

fD(u)

fD′(u)
=

m∏
i=1

exp (−ε|ui + s− b(D)i|/∆)

exp (−ε|ui + s− b(D′)i|/∆)

=

m∏
i=1

exp

(
ε (|ui + s− b(D′)i| − |ui + s− b(D)i|)

∆

)

≤
m∏
i=1

exp

(
ε|b(D)i − b(D′)i|

∆

)
= exp

(
ε
∑m
i=1 |b(D)i − b(D′)i|

∆

)
≤ exp

(
ε∆

∆

)
= eε,

as claimed.

The second claim shows that the total density of b(D) − s + η on vectors not contained in the support of
b(D′)− s+ η is at most δ.

Claim B.2. Let V = [b(D)− 2s, b(D)] \ [b(D′)− 2s, b(D′)] be the set of vectors in the support of b(D)− s+ η
but not in the support of b(D′)− s+ η. Then P[b(D)− s+ η ∈ V ] ≤ δ.

Proof of Claim B.2. Suppose b(D) − s + η ∈ V . Then for some i ∈ [m], either b(D)i − s + ηi < b(D′)i − 2s
or b(D)i − s + ηi > b(D′)i. This implies that either ηi < −s + ∆ or ηi > s − ∆. The density function of the
truncated Laplace distribution with support [−s, s] and scale ∆

ε is

f(η) =

{
1
Z exp

(
− |η|ε∆

)
if η ∈ [−s, s]

0 otherwise,

where Z =
2∆(1−e−εs/∆)

ε is a normalizing constant. Therefore, the probability that for some i ∈ [m], either
ηi < −s+ ∆ or ηi > s−∆ is

m

(∫ −s+∆

−s
f(η) dη +

∫ s

s−∆

f(η) dη

)
=
m

Z

(∫ −s+∆

−s
exp

(
−|η|ε

∆

)
dη +

∫ s

s−∆

exp

(
−|η|ε

∆

)
dη

)

=
2m∆(eε − 1)e−sε/∆

Zε

=
m (eε − 1) e−sε/∆

1− e−εs/∆

=
m (eε − 1)

esε/∆ − 1

= δ,
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where the final equality follows from the fact that s = ∆
ε ln

(
m(eε−1)

δ + 1
)
. In turn, this implies that P[b(D) −

s+ η ∈ V ] ≤ δ.

These two claims imply that the mapping D 7→ b(D)− s+ η preserves (ε, δ)-differential privacy. To see why, let
W ⊆ [b(D)−2s, b(D)] be an arbitrary set of vectors in the support of b(D)−s+η. LetW0 = W∩[b(D′)−2s, b(D′)]
be the set of vectors in W that are also in the support of b(D′)− s+ η and let W1 = W \ [b(D′)− 2s, b(D′)] be
the remaining set of vectors in W . As in Claim B.2, let V = [b(D)− 2s, b(D)] \ [b(D′)− 2s, b(D′)] be the set of
vectors in the support of b(D)− s+ η but not in the support of b(D′)− s+ η. Clearly, W1 ⊆ V . Therefore,

P[b(D)− s+ η ∈W ] = P[b(D)− s+ η ∈W0] + P[b(D)− s+ η ∈W1]

≤ P[b(D)− s+ η ∈W0] + P[b(D)− s+ η ∈ V ]

=

∫
W0

fD(u) du+

∫
V

fD(u) du

≤
∫
W0

eεfD′(u) du+

∫
V

fD(u) du (Claim B.1)

≤
∫
W0

eεfD′(u) du+ δ (Claim B.2)

≤ eε P[b(D′)− s+ η ∈W ] + δ,

so differential privacy is preserved.

Lemma B.3. Suppose D and D′ are two neighboring databases with disjoint feasible regions: {x : Ax ≤ b(D)}∩
{x : Ax ≤ b(D′)} = ∅. There is no (ε, δ)-DP mechanism with δ < 1 that satisfies the constraints with probability
1.

Proof. For the sake of a contradiction, suppose µ : 2X → Rn is an (ε, δ)-DP mechanism with δ < 1 that satisfies
the constraints with probability 1. Let V = {x : Ax ≤ b(D)}. Since V ∩ {x : Ax ≤ b(D′)} = ∅, it must be that

P[µ(D′) ∈ V ] = 0. This means that 1 = P[µ(D) ∈ V ] ≤ eε P[µ(D′) ∈ V ] + δ = δ, which is a contradiction.
Therefore, the lemma statement holds.

Lemma B.4. With probability 1, the optimization problem in Equation (3) is feasible.

Proof. By definition, the constraint vector b̄ is component-wise greater than the vector b∗ = (b∗1, . . . , b
∗
m),

where b∗i = infD⊆X b(D)i. Therefore,
{
x : Ax ≤ b̄(D)

}
⊇ {x : Ax ≤ b∗}. By Lemma B.5, we know that

{x : Ax ≤ b∗} =
⋂
D⊆X {x : Ax ≤ b(D)} and by Assumption 3.1, we know that

⋂
D⊆X {x : Ax ≤ b(D)} is

nonempty. Therefore, the feasible set of the linear program in Equation (3),
{
x : Ax ≤ b̄(D)

}
, is nonempty.

We now prove Lemma B.5, which we used in the proof of Lemma B.4. Lemma B.5 guarantees that the (nonempty)
intersection of the feasible regions across all databases is equal to the set of all x such that Ax ≤ b∗.
Lemma B.5. The set

⋂
D⊆X {x : Ax ≤ b(D)} is equal to the set {x : Ax ≤ b∗}.

Proof. Suppose that x ∈
⋂
D⊆X {x : Ax ≤ b(D)}. We claim that Ax ≤ b∗. To see why, let ai be the ith row of

the matrix A. We know that for all datasets D ⊆ X , ai · x ≤ b(D)i. By definition of the infimum, this means
that ai · x ≤ infD⊆X b(D)i = b∗i . Therefore, Ax ≤ b∗.

Next, suppose Ax ≤ b∗. Then Ax ≤ b(D) for every database D, which means that x ∈
⋂
D⊆X {x : Ax ≤ b(D)}.

We conclude that
⋂
D⊆X {x : Ax ≤ b(D)} = {x : Ax ≤ b∗}.

Theorem 3.7. Let A ∈ Rm×m be an arbitrary diagonal matrix with positive diagonal entries and let g : Rm → R
be the function g(x) = 〈1,x〉. For any ∆ > 0, there exists a mapping from databases D ⊆ X to vectors b(D) ∈ Rm
such that:

1. The sensitivity of b(D) equals ∆, and
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2. For any ε > 0 and δ ∈ (0, 1/2], if µ is an (ε, δ)-differentially private mechanism such that Aµ(D) ≤ b(D)
with probability 1, then

max {g(x) : Ax ≤ b(D)} − E[g(µ(D))]

≥ ∆

4ε
· inf
p≥1

{
αp,1(A) p

√
m
}
· ln
(
eε − 1

2δ
+ 1

)
.

Proof. For ease of notation, let t = 1
ε ln

(
eε−1

2δ + 1
)
. Notice that δ ≤ 1

2 implies t ≥ 1. For each vector d ∈ Zm, let
Dd be a database where for any d,d′ ∈ Zm, if ‖d− d′‖1 ≤ 1, then Dd and Dd′ are neighboring. Let b (Dd) = ∆d
and let a1, . . . , am > 0 be the diagonal entries of A. Since Aµ (Dd) ≤ b (Dd) with probability 1, µ (Dd) must

be coordinate-wise smaller than ∆
(
d1

a1
, . . . , dmam

)
.

We begin by partitioning the support of µ (Dd) so that we can analyze E [g (µ (Dd))] using the law of total
expectation. We organize this partition using axis-aligned rectangles. Specifically, for each index i ∈ [m], let S0

i

be the set of vectors x ∈ Rm whose ith components are smaller than ∆
ai

(di − btc):

S0
i =

{
x ∈ Rm : xi ≤

∆

ai
(di − btc)

}
.

Similarly, let

S1
i =

{
x ∈ Rm :

∆

ai
(di − btc) < xi ≤

∆di
ai

}
.

For any vector I ∈ {0, 1}m, let SI = ∩mi=1S
Ii
i . The sets SI partition the support of µ (Dd) into rectangles.

Therefore, by the law of total expectation,

E [g (µ (Dd))] =
∑

I∈{0,1}m
E [g (µ (Dd)) | µ (Dd) ∈ SI ]P [µ (Dd) ∈ SI ] . (10)

Conditioning the vector µ (Dd) to lie within a rectangle SI makes it much easier to analyze the expected value of
g (µ (Dd)). Suppose that µ (Dd) ∈ SI for some I ∈ {0, 1}m. If Ii = 0, then we know that µ (Dd)i ≤

∆
ai

(di − btc).
Meanwhile, if Ii = 1, then µ (Dd)i ≤

∆di
ai

since Aµ (Dd) ≤ b (Dd) with probability 1. Since g(x) = 〈1,x〉, we
have that for each I ∈ {0, 1}m,

E [g (µ (Dd)) | µ (Dd) ∈ SI ] ≤
m∑
i=1

∆ (di − btc)
ai

1{Ii=0} +
∆di
ai

1{Ii=1} =

m∑
i=1

∆di
ai
− ∆btc

ai
1{Ii=0}.

Combining this inequality with Equation (10) and rearranging terms, we have that

E [g (µ (Dd))] ≤ ∆
m∑
i=1

di
ai
−

∑
I∈{0,1}m

m∑
i=1

∆btc
ai

1{Ii=0} P [µ (Dd) ∈ SI ]

= ∆

m∑
i=1

di
ai
−∆btc

m∑
i=1

1

ai

∑
I∈{0,1}m

1{Ii=0} P [µ (Dd) ∈ SI ] .

For any i ∈ [m],
∑

I∈{0,1}m 1{Ii=0} P [µ (Dd) ∈ SI ] = P
[
µ (Dd) ∈ S0

i

]
. Therefore,

E [g (µ (Dd))] ≤ ∆

m∑
i=1

di
ai
−∆btc

m∑
i=1

1

ai
P
[
µ (Dd) ∈ S0

i

]
. (11)

We now prove that for every index i ∈ [m], P
[
µ (Dd) ∈ S0

i

]
> 1

2 . This proof relies on the following claim.

Claim B.6. For any index i ∈ [m], vector d̄ ∈ Zm, and integer j ≥ 1, let Sd̄,i,j be the set of all vectors x ∈ Rm

whose ith component is in the interval
(

∆(d̄i−j)
ai

, ∆d̄i
ai

]
:

Sd̄,i,j =

{
x ∈ Rm :

∆(d̄i − j)
ai

< xi ≤
∆d̄i
ai

}
.

Then P
[
µ (Dd̄) ∈ Sd̄,i,j

]
≤ δ

∑j−1
`=0 e

ε`.
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Notice that Sd,i,btc = S1
i , a fact that will allow us to prove that P

[
µ (Dd) ∈ S0

i

]
> 1

2 .

Proof of Claim B.6. We prove this claim by induction on j.

Base case (j = 1). Fix an arbitrary index i ∈ [m] and vector d̄ ∈ Zm. Let ei ∈ {0, 1}m be the standard basis
vector with a 1 in the ith component and 0 in every other component. Since b

(
Dd̄−ei

)
= ∆

(
d̄− ei

)
, we know

the probability that µ
(
Dd̄−ei

)
i
>

∆(d̄i−1)
ai

is zero. In other words,

P
[
µ
(
Dd̄−ei

)
∈ Sd̄,i,1

]
= 0. (12)

Since Dd̄ and Dd̄−ei are neighboring, this means that

P
[
µ (Dd̄) ∈ Sd̄,i,1

]
≤ eε P

[
µ
(
Dd̄−ei

)
∈ Sd̄,i,1

]
+ δ = δ.

Inductive step. Fix an arbitrary j ≥ 1 and suppose that for all indices i ∈ [m] and vectors d̄ ∈ Zm,

P
[
µ (Dd̄) ∈ Sd̄,i,j

]
≤ δ

∑j−1
`=0 e

ε`. We want to prove that for all indices i ∈ [m] and vectors d̄ ∈ Zm,

P
[
µ (Dd̄) ∈ Sd̄,i,j+1

]
≤ δ

∑j
`=0 e

ε`. To this end, fix an arbitrary index i ∈ [m] and vector d̄ ∈ Zm. By the
inductive hypothesis, we know that

P
[
µ
(
Dd̄−ei

)
∈ Sd̄−ei,i,j

]
≤ δ

j−1∑
`=0

eε`. (13)

Note that

Sd̄,i,j+1 =

{
x :

∆
(
d̄i − j − 1

)
ai

< xi ≤
∆d̄i
ai

}

=

{
x :

∆
(
d̄i − j − 1

)
ai

< xi ≤
∆(d̄i − 1)

ai

}
∪

{
x :

∆
(
d̄i − 1

)
ai

< xi ≤
∆d̄i
ai

}
= Sd̄−ei,i,j ∪ Sd̄,i,1.

We can now use this fact, the definition of differential privacy, and Equation (13), to prove the inductive
hypothesis holds. By the definition of differential privacy,

P
[
µ (Dd̄) ∈ Sd̄,i,j+1

]
≤ eε P

[
µ
(
Dd̄−ei

)
∈ Sd̄,i,j+1

]
+ δ.

Since Sd̄,i,j+1 = Sd̄−ei,i,j ∪ Sd̄,i,1, we have that

P
[
µ (Dd̄) ∈ Sd̄,i,j+1

]
≤ eε

(
P
[
µ
(
Dd̄−ei

)
∈ Sd̄−ei,i,j

]
+ P

[
µ
(
Dd̄−ei

)
∈ Sd̄,i,1

])
+ δ.

By Equation (12), we know that P
[
µ
(
Dd̄−ei

)
∈ Sd̄,i,1

]
= 0, so

P
[
µ (Dd̄) ∈ Sd̄,i,j+1

]
≤ eε P

[
µ
(
Dd̄−ei

)
∈ Sd̄−ei,i,j

]
+ δ.

Finally, by the inductive hypothesis (Equation (13)),

P
[
µ (Dd̄) ∈ Sd̄,i,j+1

]
≤ eεδ

j−1∑
`=0

eε` + δ = δ

j∑
`=0

eε`,

so the inductive hypothesis holds.

Since Sd,i,btc = S1
i , our careful choice of the value t allows us to prove that for every index i, P

[
µ (Dd) ∈ S0

i

]
> 1

2
(see Claim B.7 in Appendix B). This inequality, Equation (11), and the fact that t ≥ 1 together imply that

E [g (µ (Dd))] < ∆

m∑
i=1

di
ai
− ∆btc

2

m∑
i=1

1

ai
≤ ∆

m∑
i=1

di
ai
− ∆t

4

m∑
i=1

1

ai
.
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Since max {g(x) : Ax ≤ b (Dd)} = max
{
〈1,x〉 : x ≤ ∆

(
d1

a1
, . . . , dmam

)}
= ∆

∑m
i=1

di
ai
, we have that

max {g(x) : Ax ≤ b (Dd)} − E [g (µ (Dd))] ≥ ∆

4ε

(
m∑
i=1

1

ai

)
ln

(
eε − 1

2δ
+ 1

)
.

We now prove that infp≥1 αp,1(A) p
√
m ≤ α∞,1(A) =

∑m
i=1

1
ai

, which proves the theorem statement. Since A

is diagonal, α∞,1(A) = supu≥0 {‖u‖1 : uiai ≤ 1,∀i ∈ [m]} =
∑m
i=1

1
ai
. Moreover, since ∞

√
m = 1, α∞,1(A) ∈

{αp,1(A) p
√
m : p ≥ 1}, which implies that infp≥1 αp,1(A) p

√
m ≤ α∞,1(A). Therefore,

max {g(x) : Ax ≤ b(Di)} − E[g(µ(D))] ≥ ∆

4ε
· inf
p≥1

{
αp,1(A) p

√
m
}
· ln
(
eε − 1

2δ
+ 1

)
,

as claimed.

Claim B.7. Let Dd and S0
i be defined as in Theorem 3.7. Then P

[
µ(Dd) ∈ S0

i

]
> 1

2 .

Proof. Let S1
i and Sd,i,btc be defined as in Theorem 3.7. We prove that P

[
µ(Dd) ∈ Sd,i,btc

]
≤ 1

2 . Since Sd,i,btc =

S1
i , this implies that P

[
µ(Dd) ∈ S0

i

]
> 1

2 . This claim follows from the following chain of inequalities, which

themselves follow from Claim B.6 and the fact that t = 1
ε log

(
eε−1

2δ + 1
)
:

P
[
µ(Dd) ∈ Sd,i,btc

]
≤ δ

btc−1∑
j=0

eεj

=
δ
(
eεbtc − 1

)
eε − 1

≤ δ (exp (εt)− 1)

exp(ε)− 1

=
δ
(
exp

(
ε
(

1
ε log

(
eε−1

2δ + 1
)))
− 1
)

exp(ε)− 1

=
δ
(
exp

(
log
(
eε−1

2δ + 1
))
− 1
)

exp(ε)− 1

=
δ
((
eε−1

2δ + 1
)
− 1
)

exp(ε)− 1

=
δ
(
eε−1

2δ

)
exp(ε)− 1

=
1

2
.

Therefore, P
[
µ(Dd) ∈ S0

i

]
> 1

2 .

C Characterizing (ε, 0)-differentially private mechanisms

In Section 3 we presented a nearly optimal (ε, δ)-DP mechanism for private optimization. The optimal (ε, 0)-DP
mechanism for this problem is considerably easier to characterize.

Theorem C.1. Let S∗ =
⋂
D⊆X {x : Ax ≤ b(D)} be the intersection of all feasible sets across all databases

D. If S∗ is nonempty, then the optimal (ε, 0)-differentially private mechanism outputs argmaxx∈S∗g(x) with
probability 1. If S∗ is empty, then no (ε, 0)-differentially private mechanism exists.

Proof. Fix a mechanism, and let P (D) be the set of vectors x in the support of the mechanism’s output given as
input the database D. We claim that if the mechanism is (ε, 0)-differentially private, then there exists a set P ∗

such that P (D) = P ∗ for all databases D. Suppose, for the sake of a contradiction, that there exist databases
D and D′ such that P (D) 6= P (D′). Let D1, . . . , Dn be a sequence of databases such that D1 = D, Dn = D′,
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(a) n = 500 and rmin = 1.1 (b) n = 500 and rmin = 1.2 (c) n = 500 and rmin = 1.3

(d) n = 1000 and rmin = 2.2 (e) n = 1000 and rmin = 2.5 (f) n = 1000 and rmin = 2.7

(g) n = 1500 and rmin = 3.3 (h) n = 1500 and rmin = 3.8 (i) n = 1500 and rmin = 4.2

Figure 5: Quality in the portfolio optimization application for various choices of the number n of investors and
the minimum return rmin. These plots show the multiplicative increase in the objective function value of our
algorithm’s solution—for various choices of ε and δ—over the objective function value of the optimal solution to
the original optimization problem (Equation (8)). Darker shading corresponds to lower values of ε and therefore
stronger privacy.

and each pair of databases Di and Di+1 are neighbors. Then there must exist a pair of neighboring databases
Di and Di+1 such that P (Di) 6= P (Di+1), which contradicts the fact that the mechanism is (ε, 0)-differentially
private. Therefore, if the mechanism is (ε, 0)-differentially private, then to satisfy the feasibility requirement, we
must have that P ∗ ⊆ S∗. If S∗ is empty, then no such mechanism exists. If S∗ is nonempty, then the optimal
(ε, 0)-differentially private mechanism outputs argmaxx∈S∗g(x) with probability 1.

D Additional information about experiments

In Figure 5, we analyze the quality of our algorithm for several different parameter settings. First, we select the
number of individuals n to be a value in {500, 1000, 1500} (the number of investors is n = 500 in Figures 5a-5c,
n = 1000 in Figures 5d-5f, and n = 1500 in Figures 5g-5i). Then, we define each element of the database (money
given by individuals to an investor) as a draw from the uniform distribution between 0 and 1, so b(D) equals the
sum of these n random variables. The sensitivity of b(D) is therefore ∆ = 1. We set the minimum return rmin
to be a value in [1, 5]. We calculate the objective value v∗ ∈ R of the optimal solution to Equation (8). Then,
for δ ∈

[
1
n2 , 0.002

]
and ε ∈ [0.5, 2.5], we run our algorithm 50 times and calculate the average objective value

v̂ε,δ ∈ R of the optimal solutions.

We find that there is a sweet spot for the parameter choices n and rmin. If rmin is too small, the budget
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constraint is non-binding with or without privacy, so the variance increase over optimal is always 1. We find this
is true when n = 500 and rmin ≤ 1, when n = 1000 and rmin ≤ 2.1, and when n = 1500 and rmin ≤ 3.2. This
also explains why the variance increase over optimal improves as rmin shrinks, as we can observe from Figure 5.
Meanwhile, if rmin is too large, then the original quadratic program (Equation (8)) is infeasible. We find this is
true when n = 500 and rmin ≥ 1.4, when n = 1000 and rmin ≥ 2.8, and when n = 1500 and rmin ≥ 4.3.


