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Abstract

We study the problem of differentially private
optimization with linear constraints when the
right-hand-side of the constraints depends on
private data. This type of problem appears in
many applications, especially resource allo-
cation. Previous research provided solutions
that retained privacy but sometimes violated
the constraints. In many settings, however,
the constraints cannot be violated under any
circumstances. To address this hard require-
ment, we present an algorithm that releases
a nearly-optimal solution satisfying the con-
straints with probability 1. We also prove a
lower bound demonstrating that the differ-
ence between the objective value of our algo-
rithm’s solution and the optimal solution is
tight up to logarithmic factors among all dif-
ferentially private algorithms. We conclude
with experiments demonstrating that our al-
gorithm can achieve nearly optimal perfor-
mance while preserving privacy.

1 Introduction

Differential privacy (Dwork et al., 2006) has emerged
as the standard for reasoning about user privacy and
private computations. A myriad of practical algo-
rithms exist for a broad range of problems. We can
now solve tasks in a private manner ranging from com-
puting simple dataset statistics (Nissim et al., 2007) to
modern machine learning (Abadi et al., 2016). In this
paper we add to this body of research by tackling a
fundamental question of constrained optimization.

Specifically, we study optimization problems with lin-
ear constraints and Lipschitz objective functions. This
family of optimization problems includes linear pro-
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gramming and quadratic programming with linear
constraints, which can be used to formulate diverse
problems in computer science, as well as other fields
such as engineering, manufacturing, and transporta-
tion. Resource allocation is an example of a common
problem in this family: given multiple agents compet-
ing for limited goods, how should the goods be dis-
tributed among the agents? Whether assigning jobs
to machines or partitioning network bandwidth among
different applications, these problems have convex op-
timization formulations with linear constraints. Given
that the input to these problems may come from pri-
vate user data, it is imperative that we find solutions
that do not leak information about any individual.

Formally, the goal in linearly-constrained optimization
is to find a vector x maximizing a function g(x) sub-
ject to the constraint that Ax ≤ b. Due in part to
the breadth of problems covered by these approaches,
the past several decades have seen the development
of a variety of optimization algorithms with provable
guarantees, as well as fast commercial solvers. The pa-
rameters A and b encode data about the specific prob-
lem instance at hand, and it is easy to come up with
instances where simply releasing the optimal solution
would leak information about this sensitive data.

As a concrete example, suppose there is a hospital with
branches located throughout a state, each of which has
a number of patients with a certain disease. A specific
drug is required to treat the infected patients, which
the hospital can obtain from a set of pharmacies. The
goal is to determine which pharmacies should supply
which hospital branches while minimizing the trans-
portation cost. In Figure 1, we present this problem
as a linear program (LP). The LP is defined by sen-
sitive information: the constraint vector reveals the
number of patients with the disease at each branch.

We provide tools with provable guarantees for solv-
ing linearly-constrained optimization problems while
preserving differential privacy (DP) (Dwork et al.,
2006). Our algorithm applies to the setting where
the constraint vector b depends on private data, as
is the case in many resource allocation problems, such
as the transportation problem above. This problem
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minimize
∑
i,j cijxij

such that
∑N
j=1 xij ≤ si ∀i ∈ [M ]∑M
i=1 xij ≥ rj ∀j ∈ [N ]

xij ≥ 0 ∀i ∈ [M ],∀j ∈ [N ].

Figure 1: The classic transportation problem formu-
lated as a linear program. There are N hospital
branches and M pharmacies. Each branch j requires
rj units of a specific drug. These values are sensi-
tive because they reveal the number of people at each
branch with a specific disease. Each pharmacy i has
a supply of si units. It costs cij dollars to transport
a unit of the drug from pharmacy i to hospital j. We
use the notation xij to denote the units of the drug
transported from pharmacy i to hospital j.

falls in the category of private optimization, for which
there are multiple algorithms in the unconstrained
case (Bassily et al., 2014; Chaudhuri et al., 2011; Kifer
et al., 2012). To the best of our knowledge, only Hsu
et al. (2014) and Cummings et al. (2015) study dif-
ferentially private linear programming—a special case
of linearly-constrained optimization. Their algorithms
are allowed to violate the constraints, which can be un-
acceptable in many applications. In our transportation
example from Figure 1, if the constraints are violated,
a hospital will not receive the drugs they require or
a pharmacy will be asked to supply more drugs than
they have in inventory. The importance of satisfying
constraints motivates this paper’s central question:

How can we privately solve optimization problems
while ensuring that no constraint is violated?

1.1 Results overview

Our goal is to privately solve optimization problems
of the form maxx∈Rn {g(x) : Ax ≤ b(D)} , where g is
L-Lipschitz and b(D) ∈ Rm depends on a private
database D. The database is a set of individuals’
records, each of which is an element of a domain X .

To solve this problem, our (ε, δ)-differentially private
algorithm maps b(D) to a nearby vector b̄(D) and re-
leases the vector maximizing g(x) such that Ax ≤
b̄(D). (We assume that g can be optimized efficiently
under linear constraints, which is the case, for exam-
ple, when g is convex.) We ensure that b̄(D) ≤ b(D)
coordinate-wise, and therefore our algorithm’s output
satisfies the constraints. This requirement precludes
our use of traditional DP mechanisms: perturbing each
component of b(D) using the Laplace, Gaussian, or
exponential mechanisms would not result in a vector
that is component-wise smaller than b(D). Instead, we

extend the truncated Laplace mechanism to a multi-
dimensional setting to compute b̄(D).

As our main contribution, we prove that this approach
is nearly optimal: we provide upper and lower bounds
showing that the difference between the objective value
of our algorithm’s solution and the optimal solution
is tight up to a factor of O(lnm) among all differen-
tially private algorithms. First, we present an upper
bound on the utility of our algorithm. We prove that
if x(D) ∈ Rn is our algorithm’s output and x∗ is the
optimal solution to the original optimization problem,
then g(x(D)) is close to g (x∗). Our bound depends on
the sensitivity ∆ of the vector b(D), which equals the
maximum `1-norm between any two vectors b(D) and
b(D′) when D and D′ are neighboring, in the sense
that D and D′ differ on at most one individual’s data.
Our bound also depends on the “niceness” of the ma-
trix A, which we quantify using the condition number
α(A) of the linear system1 (Li, 1993; Mangasarian,
1981). We summarize our upper bound below (see
Theorem 3.4 for the complete statement).

Theorem 1.1 (Simplified upper bound). With prob-
ability 1,

g (x∗)− g(x(D))

≤ 2 ·∆ · L · α(A)

ε
ln

(
m (eε − 1)

δ
+ 1

)
. (1)

We provide a lower bound that shows that Equa-
tion (1) is tight up to a logarithmic factor.

Theorem 1.2 (Simplified lower bound). There is an
infinite family of matrices A ∈ Rm×m, a 1-Lipschitz
function g : Rm → R, and a mapping from databases
D ⊆ X to vectors b(D) ∈ Rm for any ∆ > 0 such that:

1. The sensitivity of b(D) equals ∆, and

2. For any ε > 0 and δ ∈ (0, 1/2], if µ is an
(ε, δ)-differentially private mechanism such that
Aµ(D) ≤ b(D) with probability 1, then

g(x∗)− E[g(µ(D))] ≥ ∆ · α(A)

4ε
ln

(
eε − 1

2δ
+ 1

)
.

This lower bound matches the upper bound from
Equation (1) up to a multiplicative factor of O(lnm).
See Theorem 3.7 for the complete statement.

Pure differential privacy. A natural question is
whether we can achieve pure (ε, 0)-DP. In Appendix C,
we prove that if S∗ :=

⋂
D⊆X {x : Ax ≤ b(D)}—the

1Here, we use the simplified notation α(A) =
infp≥1 {αp,q(A) p

√
m}, where αp,q(A) is defined in Section 3

and ‖·‖q is the `q-norm under which g is L-Lipschitz.
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intersection of the feasible regions across all databases
D—is nonempty, then the optimal (ε, 0)-differentially
private mechanism disregards the database D and out-
puts argmaxx∈S∗g(x) with probability 1. If S∗ = ∅,
then no (ε, 0)-differentially private mechanism exists.
Therefore, any non-trivial private mechanism must al-
low for a failure probability δ > 0.

Experiments. We empirically evaluate our algo-
rithm in the contexts of financial portfolio optimiza-
tion and internet advertising. Our experiments show
that our algorithm can achieve nearly optimal per-
formance while preserving privacy. We also compare
our algorithm to a baseline (ε, 0)-differentially private
mechanism that is allowed to violate the problem’s
constraints. Our experiments demonstrate that for
small values of the privacy parameter ε, using the
baseline algorithm yields a large number of violated
constraints, while using our algorithm violates no con-
straints and incurs virtually no loss in revenue.

1.2 Additional related research

Truncated Laplace mechanism. Many papers
have employed the truncated Laplace mechanism for
various problems (e.g., Zhang et al., 2012; Rinott et al.,
2018; Bater et al., 2018; Croft et al., 2019; Holohan
et al., 2020; Geng et al., 2020). Our main contribution
is not the use of this tool, but rather our proof that
the truncated Laplace mechanism is the “right” tool
to use for our optimization problem, with upper and
lower bounds that match up to logarithmic factors.

Out of all papers employing the truncated Laplace
mechanism, the one that is the most closely related
to ours is by Geng et al. (2020), who study this mech-
anism in a one-dimensional setting. Given a query q
mapping from databases D to R, they study query-
output independent noise-adding (QIN) algorithms.
Each such algorithm µ is defined by a distribution P
over R. It releases the query output q(D) perturbed by
additive random noise X ∼ P , i.e., µ(D) = q(D) +X.
They provide upper and lower bounds on the expected
noise magnitude |X| of any QIN algorithm, the upper
bound equaling the expected noise magnitude of the
truncated Laplace mechanism. They show that in the
limit as the privacy parameters ε and δ converge to
zero, these upper and lower bounds converge.

The Laplace mechanism is known to be a nearly op-
timal, general purpose (ε, 0)-DP mechanism. While
other task-specific mechanisms can surpass the utility
of the Laplace mechanism (Geng et al., 2015), they all
induce distributions with exponentially decaying tails.
The optimality of these mechanisms comes from the
fact that the ratio between the mechanism’s output
distributions for any two neighboring databases is ex-

actly exp(ε). Adding less noise would fail to main-
tain that ratio everywhere, while adding more noise
would distort the query output more than necessary.
Geng et al. (2020) observe that in the case of (ε, δ)-DP
mechanisms, adding large magnitude, low probability
noise is wasteful, since the DP criteria can instead be
satisfied using the δ “budget” rather than maintain-
ing the exp(ε) ratio everywhere. To solve our private
optimization problem, we shift and add noise to the
constraints, and in our case adding large magnitude,
low probability noise is not only wasteful but will cause
the constraints to be violated.

Given their similar characterizations, it is not surpris-
ing that our mechanism is closely related to that of
Geng et al. (2020)—the mechanisms both draw noise
from a truncated Laplace distribution. The proof of
our mechanism’s optimality, however, is stronger than
that of Geng et al.’s in several ways. First, it holds for
any differentially private algorithm, not just for the
limited class of QIN algorithms. Second, in the one-
dimensional setting (m = 1)—which is the setting that
Geng et al. (2020) analyze—our lower bound matches
our algorithm’s upper bound up to a constant factor
of 8 for any ε > 0 and δ ∈ (0, 1/2], not only in the
limit as ε and δ converge to zero.

Private convex optimization. There are multiple
algorithmic approaches to differentially private con-
vex optimization. Among others, these approaches
include output and objective perturbation (Chaud-
huri et al., 2011), the exponential mechanism (Bass-
ily et al., 2014), and private stochastic gradient de-
scent (Bassily et al., 2019). The optimization problems
tackled by these papers are either unconstrained, or
the constraints are public information (Bassily et al.,
2014). By contrast, the problems we show how to solve
have private constraints. While Lagrange multipliers
can transform a constrained problem into an uncon-
strained problem, we are not aware of a principled
method for selecting Lagrange multipliers that would
ensure constraint satisfaction. In fact, to privately find
the correct multiplier seems to be an equivalent prob-
lem to the one we are proposing.

To the best of our knowledge, only Hsu et al. (2014)
and Cummings et al. (2015) have studied optimiza-
tion problems with private constraints. They focus on
linear programs where the constraint matrix A, con-
straint vector b, and linear objective function may de-
pend on private data. These papers provide algorithms
that are allowed to violate the constraints, but they
guarantee that each constraint will not be violated by
more than some amount, denoted α, with high prob-
ability. Knowing this, an analyst could decrease each
constraint by a factor of α, and then be guaranteed
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that with high probability, the constraints will not be
violated. Compared to that approach, our algorithm
has several notable advantages. First, it is not a pri-
ori clear what the loss in the objective value will be
using their techniques, whereas we provide a simple
approach with upper and lower bounds on the objec-
tive value loss that match up to logarithmic factors.
Second, that approach only applies to linear program-
ming, whereas we study the more general problem of
linearly-constrained optimization. Finally, we guar-
antee that the constraints will not be violated with
probability 1, whereas that approach would only pro-
vide a high probability guarantee. In Appendix A, we
provide additional comparisons with Hsu et al.’s anal-
ysis (namely, the dichotomy between high- and low-
sensitivity linear programs).

Differentially private combinatorial optimiza-
tion. Several papers have studied differentially pri-
vate combinatorial optimization (Gupta et al., 2010;
Hsu et al., 2016), which is a distinct problem from ours,
since most combinatorial optimization problems can-
not be formulated only using linear constraints. Hsu
et al. (2016) study a private variant of a classic allo-
cation problem: there are n agents and k goods, and
the agents’ values for all 2k bundles of the goods are
private. The goal is to allocate the goods among the
agents in order to maximize social welfare, while main-
taining differential privacy. This is similar but distinct
from the transportation problem from Figure 1: if we
were to follow the formulation from Hsu et al. (2016),
the transportation costs would be private, whereas in
our setting, the transportation costs are public but the
total demand of each hospital is private.

2 Differential privacy definition

To define differential privacy (DP), we first formally
introduce the notion of a neighboring database: two
databases D,D′ ⊆ X are neighboring, denoted D ∼
D′, if they differ on any one record (|D ∆ D′| = 1). In
the hospital and pharmacy example from Figure 1, a
dataset is the set of individuals at the hospitals with
the particular disease.

We use the notation x(D) ∈ Rn to denote the ran-
dom variable corresponding to the vector that our al-
gorithm releases (non-trivial DP algorithms are, by ne-
cessity, randomized). Given privacy parameters ε ≥ 0
and δ ∈ [0, 1], the algorithm satisfies (ε, δ)-differential
privacy ((ε, δ)-DP) if for any neighboring databases
D,D′ and any subset V ⊆ Rn,

P[x(D) ∈ V ] ≤ eε P[x(D′) ∈ V ] + δ.

Typically, ε is chosen to be a moderately small con-
stant and δ is chosen to be o(1/|D|), so it is negligible

in the size of the dataset (Dwork et al., 2014).

3 Multi-dimensional optimization

Our goal is to privately solve multi-dimensional opti-
mization problems of the form

max
x∈Rn

{g(x) : Ax ≤ b(D)} , (2)

where b(D) = (b(D)1, . . . , b(D)m) is a vector in Rm
and g is an L-Lipschitz function according to an `q-
norm || · ||q for q ≥ 1. Preserving privacy while en-
suring the constraints are always satisfied is impos-
sible if the feasible regions change drastically across
databases. For example, if D and D′ are neighbor-
ing databases with disjoint feasible regions, there is
no (ε, δ)-DP mechanism that always satisfies the con-
straints with δ < 1 (see Lemma B.3 in Appendix B).
To circumvent this impossibility, we assume that the
intersection of the feasible regions across databases is
nonempty. This is satisfied, for example, if the origin is
always feasible. For instance, any private optimization
problem that can be modeled as a max-flow problem
with private edge capacities satisfies this assumption,
since the zero flow is always feasible.

Assumption 3.1. The set S∗ :=⋂
D⊆X {x : Ax ≤ b(D)} is non-empty.

In our approach, we map each vector b(D) to a random
variable b̄(D) ∈ Rm and release

x(D) ∈ argmaxx∈Rn
{
g(x) : Ax ≤ b̄(D)

}
. (3)

To formally describe our approach, we use the no-
tation ∆ = maxD∼D′ ‖b(D)− b(D′)‖1 to denote the
constraint vector’s sensitivity. (In the example in-
troduced in Figure 1, if a hospital requires r units
of the drug to treat one patient, then the sensitivity
of the solution will be r. We define the ith compo-
nent of b̄(D) to be b̄(D)i = max {b(D)i − s+ ηi, b

∗
i } ,

where s = ∆
ε ln

(
m(eε−1)

δ + 1
)

, ηi is drawn from the

truncated Laplace distribution with support [−s, s]
and scale ∆

ε , and b∗i = infD {b(D)i}. In Lem-
mas B.4 and B.5 in Appendix B, we prove that S∗ =
{x : Ax ≤ (b∗1, . . . , b

∗
m)} , which allows us to prove that

Equation (3) is feasible. Algorithm 1 displays the
pseudo-code.

First, we prove that our algorithm satisfies differential
privacy. We use the notation η = (η1, . . . , ηm) to de-
note a random vector where each component is drawn
i.i.d. from the truncated Laplace distribution with
support [−s, s] and scale ∆

ε . We also use the notation
b(D)− s+η = (b(D)1 − s+ η1, . . . , b(D)m − s+ ηm).
The proof of the following theorem is in Appendix B.



Andrés Muñoz Medina, Umar Syed, Sergei Vassilvitskii, Ellen Vitercik

Algorithm 1 Private linear programming algorithm

Input: Objective g : Rn → R, constraint matrix A ∈ Rn×m, constraint vector b(D) = (b(D)1, . . . , b(D)m) ∈ Rm,
privacy parameters ε > 0 and δ ∈ (0, 1], sensitivity ∆ ≥ 0, and b∗i = infD {b(D)i} for all i ∈ [m].

1: Define s = ∆
ε ln

(
m(eε−1)

δ + 1
)

.

2: Let b̄(D) be such that b̄(D)i = max {b(D)i − s+ ηi, b
∗
i } , where ηi is drawn from the truncated Laplace

distribution with support [−s, s] and scale ∆
ε .

Output: x(D) ∈ argmaxx∈Rn
{
g(x) : Ax ≤ b̄(D)

}
.

Theorem 3.2. The mapping D 7→ b(D)− s+ η pre-
serves (ε, δ)-differential privacy.

Since differential privacy is immune to post-
processing (Dwork et al., 2014), Theorem 3.2 implies
our algorithm is differentially private.

Corollary 3.3. The mapping D 7→ x(D) is (ε, δ)-
differentially private.

We next provide a bound on the quality of our algo-
rithm, which measures the difference between the op-
timal solution maxx∈Rn {g(x) : Ax ≤ b(D)} and the
solution our algorithm returns g(x(D)). Our bound
depends on the “niceness” of the matrix A, as quanti-
fied by the linear system’s condition number (Li, 1993)
αp,q(A). Li (1993) proved that this value sharply char-
acterizes the extent to which a change in the vector
b causes a change in the feasible region, so it makes
sense that it appears in our quality guarantees. Given
a norm || · ||p on Rm where p ≥ 1, we use the notation
|| · ||p∗ to denote the dual norm where 1

p + 1
p∗ = 1. The

linear system’s condition number is defined as

αp,q(A) = sup

‖u‖p∗ :

∥∥ATu
∥∥
q∗

= 1,u ≥ 0,

and the rows of A
corresponding to the
nonzero entries of u are
linearly independent

 .

When A is nonsingular and p = q = 2, αp,q(A) is
at most the inverse of the minimum singular value,
σmin(A)−1. This value σmin(A)−1 is closely related
to the matrix A’s condition number (which is distinct
from αp,q(A), the linear system’s condition number),
which roughly measures the rate at which the solution
to Ax = b changes with respect to a change in b.

We now prove our quality guarantee, which bounds the
difference between the optimal solution to the original
optimization problem (Equation (2)) and that of the
privately transformed problem (Equation (3)).

Theorem 3.4. Suppose Assumption 3.1 holds and the
function g : Rn → R is L-Lipschitz with respect to an

`q-norm ‖·‖q on Rn. With probability 1,

max
x∈Rn

{g(x) : Ax ≤ b(D)} − g(x(D))

≤ 2L∆

ε
· inf
p≥1

{
αp,q(A) p

√
m
}
· ln
(
m (eε − 1)

δ
+ 1

)
.

Proof. Let b be an arbitrary vector in the support of
b̄(D) and let S = {x : Ax ≤ b}. Let x∗ be an ar-
bitrary point in argmaxx∈Rn {g(x) : Ax ≤ b(D)} and
let x̄ be an arbitrary vector in S. We know that

max
x∈Rn

{g(x) : Ax ≤ b(D)} − max
x∈Rn

{g(x) : Ax ≤ b}

= g(x∗)− max
x∈Rn

{g(x) : Ax ≤ b}

= g(x∗)− g(x̄) + g(x̄)− max
x∈Rn

{g(x) : Ax ≤ b} .

Since x̄ ∈ S = {x : Ax ≤ b}, we know that g(x̄) ≤
maxx∈Rn {g(x) : Ax ≤ b} . Therefore,

max
x∈Rn

{g(x) : Ax ≤ b(D)} − max
x∈Rn

{g(x) : Ax ≤ b}

≤ g(x∗)− g(x̄) ≤ L · ‖x∗ − x̄‖q . (4)

To simplify notation, let M = g(x∗) − max{g(x) :
Ax ≤ b}. Equation (4) shows that for every x̄ ∈ S,
M
L ≤ ‖x

∗ − x̄‖q. Meanwhile, from work by Li (1993),
we know that for any `p-norm ‖·‖p,

inf
x̄∈S
‖x∗ − x̄‖q ≤ αp,q(A) · ‖b(D)− b‖p . (5)

By definition of the infimum, this means that M ≤
L ·αp,q(A) ·‖b(D)− b‖p . This inequality holds for any

b in the support of b̄(D) and with probability 1,∥∥b(D)− b̄(D)
∥∥
p
≤ 2∆ p

√
m

ε
ln

(
m (eε − 1)

δ
+ 1

)
.

Therefore, the theorem holds.

In the following examples, we instantiate Theorem 3.4
in several specific settings.

Example 3.5 (Nonsingular constraint matrix). When
A is nonsingular, setting ‖·‖p = ‖·‖q = ‖·‖2 implies

max
x∈Rn

{g(x) : Ax ≤ b(D)} − g(x(D))

≤ 2 ·∆ ·
√
m · L

ε · σmin(A)
ln

(
m (eε − 1)

δ
+ 1

)
.
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Example 3.6 (Strongly stable linear inequalities).
We can obtain even stronger guarantees when the sys-
tem of inequalities Ax < 0 has a solution. In that
case, the set {x : Ax ≤ b} is non-empty for any vec-
tor b (Mangasarian and Shiau, 1987), so we need not
make Assumption 3.1. Moreover, when ‖·‖q and ‖·‖p
both equal the `∞-norm and Ax < 0 has a solution,
we can replace αp,q(A) in Theorem 3.4 with the fol-
lowing solution to a linear program:

ᾱ(A) = max
(u,z)∈Rm+n

{
1 · u :

−z ≤ u>A ≤ z,
u ≥ 0, and 1 · z = 1

}
.

This is because in the proof of Theorem 3.4, we can
replace Equation (5) with inf x̄∈S ‖x∗ − x̄‖q ≤ ᾱ(A) ·
‖b(D)− b‖p (Mangasarian and Shiau, 1987).

We now present our main result. We prove that the
quality guarantee from Theorem 3.4 is tight up to a
factor of O(logm).

Theorem 3.7. Let A ∈ Rm×m be an arbitrary di-
agonal matrix with positive diagonal entries and let
g : Rm → R be the function g(x) = 〈1,x〉. For any
∆ > 0, there exists a mapping from databases D ⊆ X
to vectors b(D) ∈ Rm such that:

1. The sensitivity of b(D) equals ∆, and

2. For any ε > 0 and δ ∈ (0, 1/2], if µ is an
(ε, δ)-differentially private mechanism such that
Aµ(D) ≤ b(D) with probability 1, then

max {g(x) : Ax ≤ b(D)} − E[g(µ(D))]

≥ ∆

4ε
· inf
p≥1

{
αp,1(A) p

√
m
}
· ln
(
eε − 1

2δ
+ 1

)
.

Since the objective function g is 1-Lipschitz under the
`1-norm, this lower bound matches the upper bound
from Theorem 3.4 up to a factor of O(logm). The full
proof of Theorem 3.7 is in Appendix B.

Proof sketch of Theorem 3.7. For ease of notation, let
t = 1

ε ln
(
eε−1

2δ + 1
)
. Notice that δ ≤ 1

2 implies t ≥ 1.
For each vector d ∈ Zm, letDd be a database where for
any d,d′ ∈ Zm, if ‖d− d′‖1 ≤ 1, then Dd and Dd′ are
neighboring. Let b (Dd) = ∆d and let a1, . . . , am > 0
be the diagonal entries of A. Since Aµ (Dd) ≤ b (Dd)
with probability 1, µ (Dd) must be coordinate-wise

smaller than ∆
(
d1

a1
, . . . , dmam

)
.

We begin by partitioning the support of µ (Dd) so that
we can analyze E [g (µ (Dd))] using the law of total
expectation. We organize this partition using axis-
aligned rectangles. Specifically, for each index i ∈ [m],

Figure 2: This figure illustrates the partition of R2 into
S0

1 (the left blue shaded region) and S1
1 (the right grey

shaded region). Assuming A is the identity matrix,
the right vertical edge of S1

1 lines up with x1 = d1 and
the left vertical edge of S1

1 lines up with x1 = d1−btc.
The top horizontal edges of both S0

1 and S1
1 line up

with x2 = d2.

let S0
i be the set of vectors x ∈ Rm whose ith compo-

nents are smaller than ∆
ai

(di − btc):

S0
i =

{
x ∈ Rm : xi ≤

∆

ai
(di − btc)

}
.

Similarly, let

S1
i =

{
x ∈ Rm :

∆

ai
(di − btc) < xi ≤

∆di
ai

}
.

See Figure 2 for an illustration of these regions. For
any vector I ∈ {0, 1}m, let SI = ∩mi=1S

Ii
i . The sets SI

partition the support of µ (Dd) into rectangles. There-
fore, by the law of total expectation,

E [g (µ (Dd))] = (6)∑
I∈{0,1}m

E [g (µ (Dd)) | µ (Dd) ∈ SI ]P [µ (Dd) ∈ SI ] .

When we condition on the vector µ (Dd) being con-
tained in a rectangle SI , our analysis of the ex-
pected value of g (µ (Dd)) is simplified. Suppose that
µ (Dd) ∈ SI for some I ∈ {0, 1}m. If Ii = 0, then
we know that µ (Dd)i ≤

∆
ai

(di − btc). Meanwhile, if

Ii = 1, then µ (Dd)i ≤
∆di
ai

since Aµ (Dd) ≤ b (Dd)
with probability 1. Since g(x) = 〈1,x〉, we have that
for each I ∈ {0, 1}m,

E [g (µ (Dd)) | µ (Dd) ∈ SI ]

≤
m∑
i=1

∆ (di − btc)
ai

1{Ii=0} +
∆di
ai

1{Ii=1}

=

m∑
i=1

∆di
ai
− ∆btc

ai
1{Ii=0}.

Combining this inequality with Equation (6) and re-
arranging terms, we are able to prove that

E [g (µ (Dd))]

≤ ∆

m∑
i=1

di
ai
−∆btc

m∑
i=1

1

ai
P
[
µ (Dd) ∈ S0

i

]
(7)
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(see the full proof in Appendix B for details).

We use the definition of differential privacy to show
that for all i ∈ [m], P

[
µ (Dd) ∈ S0

i

]
> 1

2 , which
allows us to simplify Equation (7). Intuitively this
holds since µ (Dd) cannot have too much probabil-
ity mass in each set S1

i , as there are neighboring
databases that have zero probability mass in sub-
sets of this region. More precisely, we show that

P
[
µ (Dd) ∈ S0

i

]
> δ

∑btc−1
j=0 eεj . Our choice of t then

implies that P
[
µ (Dd) ∈ S0

i

]
> 1

2 .

This inequality, Equation (7), and the fact that t ≥ 1
together imply that

E [g (µ (Dd))] < ∆

m∑
i=1

di
ai
− ∆t

4

m∑
i=1

1

ai
.

Since max {g(x) : Ax ≤ b (Dd)} = ∆
∑m
i=1

di
ai
, we

have that

max {g(x) : Ax ≤ b (Dd)} − E [g (µ (Dd))]

≥ ∆

4ε

(
m∑
i=1

1

ai

)
ln

(
eε − 1

2δ
+ 1

)
.

Finally, we prove that infp≥1 αp,1(A) p
√
m ≤

α∞,1(A) =
∑m
i=1

1
ai

, which implies that the the-
orem statement holds. Since A is diagonal,

α∞,1(A) = sup
u≥0
{‖u‖1 : uiai ≤ 1,∀i ∈ [m]} =

m∑
i=1

1

ai
.

Moreover, since α∞,1(A) ∈ {αp,1(A) p
√
m : p ≥ 1}, we

have that infp≥1 αp,1(A) p
√
m ≤ α∞,1(A). Therefore,

the theorem statement holds.

This theorem demonstrates that our algorithm’s loss
(Theorem 3.4) is tight up to a factor of O(logm)
among all differentially private mechanisms.

4 Experiments

In this section, we present empirical evaluations of our
algorithm in several settings: financial portfolio opti-
mization and internet advertising.

4.1 Portfolio optimization

Suppose a set of individuals pool their money to invest
in a set of n assets over a period of time. The amount
contributed by each individual is private, except to
the trusted investment manager. Let b(D) be the to-
tal amount of money the investors (represented by a
database D) contribute. We let xi denote the amount

Figure 3: Quality in the portfolio optimization ap-
plication. The plot shows the multiplicative increase
in the objective function value of our algorithm’s
solution—for various choices of ε and δ—over the ob-
jective function value of the optimal solution to the
original optimization problem (Equation (8)). Darker
shading corresponds to lower values of ε and hence
stronger privacy. See Section 4.1 for details.

of asset i held throughout the period, with xi in dol-
lars, at the price at the beginning of the period. We
adopt the classic Markowitz (1952) portfolio optimiza-
tion model. The return of each asset is represented by
the random vector p ∈ Rn, which has known mean p̄
and covariance Σ. Therefore with portfolio x ∈ Rn,
the return r is a (scalar) random variable with mean
p̄ · x and variance x>Σx. The choice of a portfolio
x involves a trade-off between the return’s mean and
variance. Given a minimum return rmin, the goal is
to solve the following quadratic program while keeping
the budget b(D) private:

minimizex≥0 x>Σx
such that p̄ · x ≥ rmin ∧ x · 1 ≤ b(D)

(8)

We run experiments using real-world data from stocks
included in the Dow Jones Industrial Average, com-
piled by Bruni et al. (2016). They collected weekly
linear returns for 28 stocks over the course of 1363
weeks. The mean vector p̄ ∈ R28 is the average of these
weekly returns and the covariance matrix Σ ∈ R28×28

is the covariance of the weekly returns.

In Figure 3, we analyze the quality of our algorithm.
First, we set the number of individuals n to be 1000.
Then, we define each element of the database (money
given by individuals to an investor) as a draw from the
uniform distribution between 0 and 1, so b(D) equals
the sum of these n random variables. The sensitivity of
b(D) is therefore ∆ = 1. We set the minimum return
rmin to be 2.5. We calculate the objective value v∗ ∈ R
of the optimal solution to Equation (8). Then, for δ ∈[

1
n2 , 0.002

]
and ε ∈ [0.5, 2.5], we run our algorithm 50

times and calculate the average objective value v̂ε,δ ∈
R of the optimal solutions.
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In Figure 3, we plot
v̂ε,δ
v∗ . We see that even strict values

for the privacy parameters do not lead to a significant
degradation in the value of the objective function. For
example, setting ε = 0.5 and δ = 2.5 · 10−4 increases
the value of the objective function by about 1%.

In Appendix D, we perform the same experiment with
the number n of investors in {500, 1000, 1500} and the
minimum return rmin in the interval [1, 5]. We obtain
plots that are similar to Figure 3. As we describe in
Appendix D, we find that there is a sweet spot for the
parameter choices n and rmin. If rmin is too small,
the budget constraint is non-binding with or without
privacy, so the variance increase over optimal is always
1. Meanwhile, if rmin is too large, then the original
quadratic program (Equation (8)) is infeasible.

4.2 Internet advertising

Many internet publishers hire companies called supply-
side platforms (SSPs) to manage their advertising in-
ventory. A publisher using an SSP partitions its web-
site’s pages into M groups, and informs the SSP of the
number nj of impressions (i.e., visiting users) available
in each group j. For example, an online newspaper
might have a sports section, a fashion section, and so
on. The SSP relays the list of inventory groups to N
potential advertisers, and each advertiser i responds
with the monetary amount cij ≥ 0 they are willing to
pay per impression from each group j, and also their
budget b(D)i ≥ 0 for overall spending on the pub-
lisher’s website, where D represents advertisers’ con-
fidential business information, such as their financial
health and strategic priorities. The SSP then allocates
xij impressions from each group j to each advertiser
i so as to maximize the publisher’s revenue while re-
specting both the impression supply constraints and
advertiser budget constraints:

maximize
∑
ij cijxij

such that
∑N
i=1 xij ≤ nj for j ∈ [M ]∑M
j=1 cijxij ≤ b(D)i for i ∈ [N ]

xij ≥ 0.

(9)

This linear program is similar to the transportation
problem from Figure 1.

Existing algorithms for private optimization are not
guaranteed to output a solution that satisfies all the
problem constraints, so we explore how often those al-
gorithms violate the constraints when applied to the
advertising problem in Equation (9). The algorithm
most closely related to ours is by Hsu et al. (2014),
but our settings do not quite match: they require that
the optimal solution have constant norm across all pos-
sible private database. If this is not the case (and it is

not for our advertising problem), Hsu et al. (2014) rec-
ommend normalizing the problem parameters by the
norm of the optimal non-private solution (which it-
self is a sensitive value). However, this will necessar-
ily impact the problem’s sensitivity parameter ∆, and
Hsu et al. (2014) do not provide guidance on how to
quantify this impact, though knowing this sensitivity
is crucial for running the algorithm.

Therefore, we compare our algorithm with an alter-
native baseline. We run experiments that use two al-
gorithms to transform each advertiser’s budget b(D)i
in Equation (9) to a private budget b̄(D)i. Both al-
gorithms set b̄(D)i = max {b(D)i − s+ η, 0}, where

s = ∆
ε ln

(
N(eε−1)

δ + 1
)

for privacy parameters ε, δ and

sensitivity parameter ∆, and η is a random variable.
The first algorithm follows our method described in
Section 3 and draws η from the truncated Laplace dis-
tribution with support [−s, s] and scale ∆

ε . The base-
line algorithm instead draws η from the Laplace dis-
tribution with scale ∆

ε , and thus is (ε, 0)-differentially
private. Both algorithms use noise distributions with
roughly the same shape, but only our algorithm is
guaranteed to satisfy the original constraints.

Our experiments consist of simulations with parame-
ters chosen to resemble real data from an actual SSP.
The publisher has M = 200 inventory groups, and
there are N = 10 advertisers who wish to purchase
inventory on the publisher’s website. The amount cij
each advertiser i is willing to pay per impression from
each group j is $0 with probability 0.2, and drawn uni-
formly from [$0, $1] with probability 0.8. The num-
ber of impressions nj per group j is 107, and each
advertiser’s budget b(D)i is drawn uniformly from
[$107 −∆/2, $107 + ∆/2], where ∆ = $102 is also the
sensitivity of the budgets with respect to the private
database D. The results for various values of the pri-
vacy parameter ε (with the privacy parameter δ fixed
at 10−4) are shown in Figure 4, where every data point
on the plot is the average of 400 simulations.

Figure 4 shows that for small values of ε, using the
baseline algorithm yields a large number of violated
constraints, while using our algorithm violates no con-
straints and incurs virtually no loss in revenue.

5 Conclusions

We presented a differentially private method for solv-
ing linearly-constrained optimization problems, where
the right-hand side of the constraints Ax ≤ b depends
on private data, and where the constraints must always
be satisfied. We showed that our algorithm is nearly
optimal: its loss is tight up to a factor of O(logm)
among all DP algorithms. Empirically, we used real
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Figure 4: Quality in the advertising application. Ratio
of the revenue of our algorithm’s solution and that of
the baseline algorithm’s solution (circle markers, left
vertical axis), and fraction of constraints in the orig-
inal optimization problem (Equation (9)) violated by
the baseline algorithm (triangle markers, right vertical
axis). See Section 4.2 for details.

and synthetic datasets to show that our algorithm re-
turns nearly optimal solutions in realistic settings. A
natural direction for future research would be to allow
the matrix A to also depend on private data.
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