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Budgeted and Non-Budgeted Causal Bandits

A Theoretical Preliminaries

We require the following two versions of the Chernoff-Hoeffeding inequality in our proof.

Lemma A.1 (Chernoff-Hoeffeding inequality). Suppose X1, . . . , XT are independent random variables taking

values in the interval [0, 1], and let X =
∑
t∈[T ]Xt and X =

∑
t∈[T ]Xt

T . Then for any ε ≥ 0 the following holds:

a) P{X − E[X] ≥ ε} ≤ e
−2ε2

T ,

b) P{X − E[X] ≥ ε} ≤ e−2ε2T .

B Omitted Proofs

B.1 Proof of Theorem 1

For B ∈ N, let ε =
√

2
pB log(16pMB). Also, let L = mint∈N{2

√
1
t log 16pMt ≤ p}. Note that L is a finite

constant dependent on p and M , and that for all B ≥ L

ε ≤
√
p/2 . (4)

In this proof, i indexes the set [M ], and x indexes the set {0, 1}. Recall pi,x = P{Xi = x} and pi = pi,1. Also
note that OBS-ALG plays the arm a0 for B rounds. For i ∈ [M ], let Xi(t) be the value of Xi sampled in round
t ∈ [B]. For all i, x, let

p̂i,x =

∑
t∈[B] 1{Xi(t) = x}

B
, and

µ̂i,x =

∑
t∈[B] Yt · 1{Xi(t) = x}∑
t∈[B] 1{Xi(t) = x}

,

where Yt is value of Y sampled in round t. Notice that µ̂i,x is the empirical estimate of µi,x computed by OBS-ALG

at the end of B rounds. Similarly the empirical estimate of µ0, denoted µ̂0, is computed by OBS-ALG at the end
of B rounds as follows:

µ̂0 =

∑
t∈[B] Yt

B
.

Finally, also let p̂i = p̂i,1. The proof of the theorem is completed using the following lemma.

Lemma B.1. At the end of B rounds played by OBS-ALG the following hold:

1. P{|µ̂0 − µ0| ≥ ε} ≤ 2e−2ε2B ≤ 4e−ε
2pB ,

2. For any fixed (i, x) P
{
p̂i,xB ≤

pB

2

}
≤ 2e−ε

2pB ,

3. For any fixed (i, x) P{|µ̂i,x − µi,x| ≥ ε} ≤ 4e−ε
2pB .

Proof. 1) Part 1 directly follows from Lemma A.1.

2) Observe that E[p̂i] = pi, and hence from Lemma A.1, for an i ∈ [M ] at the end of B rounds we have

P

{
|(p̂i − pi)B| ≥ εB

√
p

2

}
≤ 2e−ε

2pB . (5)

Since ε ≤
√
p/2 (from Equation 4), εB

√
p
2 ≤

pB
2 . This implies

pB

2
≤ pB − εB

√
p

2
. (6)

Hence from Equations 5 and 6, for a fixed (i, x) the following holds:

P
{
p̂i,xB ≤

pB

2

}
≤ 2e−ε

2pB .
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3) Notice that p̂i,xB is the number of times Xi was sampled as x in B rounds. In particular, part 2 of Lemma
B.1 bounds the probability that the number of times Xi was sampled as x is small. We use this to prove part 3.
First observe that from Lemma A.1 we have

P
{
|µ̂i,x − µi,x| ≥ ε

∣∣∣p̂i,xB >
pB

2

}
≤ 2e−ε

2pB . (7)

In particular, Equation 7 bounds the error probability of estimating µ̂i,x conditioned on the event that Xi has
been sampled as x sufficiently many times. Next by law of total probability, for any fixed (i, x),

P{|µ̂i,x − µi,x| ≥ ε} = P
{
|µ̂i,x − µi,x| ≥ ε

∣∣∣p̂i,xB >
pB

2

}
· P
{
p̂i,xB >

pB

2

}
+ P

{
|µ̂i,x − µi,x| ≥ ε

∣∣∣p̂i,xB ≤ pB

2

}
· P
{
p̂i,xB ≤

pB

2

}
P{|µ̂i,x − µi,x| ≥ ε} ≤ P

{
|µ̂i,x − µi,x| ≥ ε

∣∣∣p̂i,xB >
pB

2

}
+ P

{
p̂i,xB ≤

pB

2

}
.

Hence, from Equation 7 and part 2 of Lemma B.1 we have

P{|µ̂i,x − µi,x| ≥ ε} ≤ 4e−ε
2pB .

Let U0 be the event that |µ̂0 − µ0| ≤ ε, and for any i, x let Ui,x be the event |µ̂i,x − µi,x| ≤ ε. Also let
U = (∩i,xUi,x) ∩ U0, U denote the compliment of U . Then applying union bound on the events in part 1 and 3
in Lemma B.1, we have that

P{U} ≤ (2M + 1) · 4e−ε
2pB

Hence, we have that

P{U} ≥ 1− (8M + 4)e−ε
2pB ≥ 1− 16Me−ε

2pB .

Let a∗ = arg maxa∈A(µa). Note that if event U holds then the simple regret of OBS-ALG , rOBS-ALG (B) ≤ 1. On the
other hand, if the event U holds, and aB is the arm output by the algorithm, then rOBS-ALG (B) = µa∗−µaB ≤ 2ε.

Setting δ = 16Me−ε
2pB , and substituting the value of ε, we have δ = 1

16Mp2B2 . Hence, the expected simple
regret is at most:

δ +

√
8

pB
log(16pMB) =

1

16Mp2B2
+

√
8

pB
log(16pMB) = O

(√
1

pB
log(pMB)

)
. (8)

B.2 Proof of Theorem 2

For convenience, we denote m(p) and m(p̂) as m and m̂ respectively. Throughout the proof we assume that
B is such that: a) B ≥ max(γm, pM) and b) B ≥ max( 16

p2 log 2MB
γm , 16

p2 log 2pMB). Note that the two con-

straints hold for sufficiently large B. To begin with observe that if γ = θ( 1
p·m(p) ) then O

(√
1
pB log(pMB)

)
=

O
(√

γm
B log MB

γm

)
. Hence, it is sufficient to show that if γ ≤ 1

5p·m(p) then the expected simple regret of γ-NB-ALG

is O
(√

γm
B log MB

γm

)
and if γ ≥ 5

p·m(p) then the expected simple regret of γ-NB-ALG is O
(√

1
pB log(pMB)

)
. The-

orem 2 is proved using Lemmas B.2 and B.3.

Lemma B.2. Let p̂i,1 = p̂i and F = 1{At the end of B/2 rounds there is an i ∈ [M ] such that |p̂i − pi| ≥ p
4}.

Then P{F = 1} ≤ 2Me−
p2

16B.

Proof. Let Fi = 1{At the end of B/2 rounds |p̂i − pi| ≥ p
4}. Then from Lemma A.1,

P{Fi = 1} ≤ 2e−
p2

16B .

Taking union bound over Fi = 1 for i ∈ [M ], we have P{F = 1} ≤ 2Me−
p2

16B .
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The following lemma is similar to Lemma 8 in Lattimore et al. (2016).

Lemma B.3. Let F be as in Lemma B.2, and let I = 1{At the end of B/2 rounds 2m(p)
5 ≤ m(p̂) ≤ 2m(p)}.

Then F = 0 implies I = 1, and in particular, P{I = 1} ≥ 1− 2Me−
p2

16B .

Proof. We are interested in the quantity minx∈{0,1} pi,x for each i ∈ [M ]. Without loss of generality, let us

assume minx∈{0,1} pi,x = pi,1 = pi for each i ∈ [M ], and also p1 ≤ p2 ≤ . . . ≤ pM ≤ 1
2 . Note that F = 0 implies

after B/2 rounds for all i ∈ [M ] |p̂i − pi| ≤ p
4 . Now, from the definition of m(p) we know that there is an

` ≤ m such that the following is true: for i > `, pi ≥ 1
m . Further, we can also conclude that p ≤ 1

m−1 (otherwise

m(p) = m − 1). Hence, p̂i ≥ pi − p
4 ≥

1
m −

1
4(m−1) . Hence for i > `, p̂i ≥ 3m−4

4m(m−1) ≥
1

2m (since m ≥ 2). Since

` ≤ m, we have |{j | p̂j < 1
2m}| ≤ 2m. This implies m̂ ≤ 2m. To prove the other inequality, observe that for

each i ≤ m, we have pi ≤ 1
m−1 (otherwise, m(p) ≤ m− 1). Then, p̂i ≤ pi + p

4 ≤
1

m−1 + 1
4(m−1) ≤

5
4(m−1) ≤

5
2m .

Hence for i ≤ m, p̂i ≤ 5
2m . This implies m̂ ≥ 2m

5 .

From Lemmas B.2 and B.3 it follows that if F = 0 then at the end of B/2 rounds the following holds:

p

2
≤ p̂ ≤ 3p

2
and

2m

5
≤ m̂ ≤ 2m

This implies that if F = 0 then at then end of B/2 rounds the following holds:

p ·m
5
≤ p̂ · m̂ ≤ 5p ·m (9)

Case a (γ < 1
5p·m ): We condition on F = 0. Hence, from the argument above it follows that Equation 9 holds.

Hence, γ < 1
5p·m ≤

1
p̂·m̂ . This implies at step 6 in γ-NB-ALG , p̂ ·m̂ < 1

γ , and γ-NB-ALG executes steps 11-14. That

is γ-NB-ALG makes B
4γ interventions in the remaining rounds. The algorithm constructs set A = {ai,x | p̂i,x ≤ 1

m̂}.
Now for arms in A, µ̂i,x is computed as in step 14 of γ-NB-ALG, i.e for ai,x ∈ A

µ̂i,x =
2γ|A|
B

B/2γ∑
t=B/2+1

Yt · 1{at = ai,x} .

Notice that |A| ≤ m̂ (from the definition of m(p̂)). Hence

B

2γ · |A|
≥ B

2γ · m̂
≥ B

4γ ·m
(from Lemma B.3).

Thus from Lemma A.1 for each arm ai,x ∈ A and any ε > 0

P
{
|µ̂i,x − µi,x| ≥ ε

∣∣∣F = 0
}
≤ 2e−ε

2 B
2γm (10)

Also for arms not in A, µ̂i,x is computed as in step 3 of γ-NB-ALG, i.e. for ai,x /∈ A

µ̂i,x =

∑B/2
t=1 Yt · 1{Xi = x}∑B/2
t=1 1{Xi = x}

.

Moreover, if ai,x /∈ A then p̂i,x ≥ 1
m̂ ≥

1
2m . Since p̂i,x = 2

B

∑B/2
t=1 1{Xi = x}, this implies if ai,x /∈ A then∑B/2

t=1 1{Xi = x} ≥ B
4m . Hence from Lemma A.1, for each arm ai,x /∈ A and any ε > 0,

P
{
|µ̂i,x − µi,x| ≥ ε

∣∣∣F = 0
}
≤ 2e−ε

2 B
2m ≤ 2e−ε

2 B
2γm (11)

The last inequality holds since γ ≥ 1. Using Equations 10 and 11 we have for any arm a ∈ A,

P
{
|µ̂a − µa| ≥ ε

∣∣∣F = 0
}
≤ 2e−ε

2 B
2γm .
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Hence, applying union bound we have

P
{

there is an a ∈ A such that |µ̂a − µa| ≥ ε
∣∣∣F = 0

}
≤ (4M + 2)e−ε

2 B
2γm ≤ 8Me−ε

2 B
2γm .

Substituting ε =
√

8γm
B log MB

γm we have

E[rγ-NB-ALG(B)|F = 0] ≤

√
8γm

B
log

MB

γm
+

8

M3

(γm
B

)4

≤

√
32γm

B
log

MB

γm
. (12)

To get the last inequality, we use that 8
M3

(
γm
B

)4 ≤ √ 8γm
B log MB

γm , as M ≥ 1 and B ≥ γm. Finally, we use

Equation 12 and Lemma B.2 to bound the expected simple regret of γ-NB-ALG in this case as follows:

E[rγ-NB-ALG(B)] = E[rγ-NB-ALG(B)|Y = 0]Pr{Y = 0}+ E[r(B)|Y = 1]Pr{Y = 1}
≤ E[rγ-NB-ALG(B)|Y = 0] + Pr{Y = 1}

≤

√
32γm

B
log

MB

γm
+ 2Me−

p2

16B

= O

(√
γm

B
log

MB

γm

)
.

In last but one line of the above equation, we use that B satisfies B ≥ 4
p2 log 2MB

γm and B ≥ γm implying

2Me−
p2

16B is at most
√

32γm
B log MB

γm .

Case b (γ ≥ 5
p·m(p) ): Again we condition on F = 0, and hence Equation 9 holds. Hence, γ ≥ 5

p·m(p) ≥
1

p̂·m(p̂) .

This implies at step 6 in γ-NB-ALG , p̂ ·m(p̂) ≥ 1
γ , and γ-NB-ALG executes steps 7-9. That is it plays the arm a0

for B rounds. Thus, from the analysis of Theorem 1 we have that (see Equation 8)

E[rγ-NB-ALG(B)|Y = 0] ≤
√

1

pB
+

√
8

pB
log(16pMB) . (13)

We use Equation 13 and Lemma B.2 to bound the expected simple regret of γ-NB-ALG in this case as follows:

E[rγ-NB-ALG(B)] = E[rγ-NB-ALG(B)|Y = 0]Pr{Y = 0}+ E[rγ-NB-ALG(B)|Y = 1]Pr{Y = 1}
≤ E[rγ-NB-ALG(B)|Y = 0] + Pr{Y = 1}

≤
√

1

pB
+

√
8

pB
log(16pMB) + 2Me−

p2

16B

= O

(√
1

pB
log(16pMB)

)

Again in the last but one line of the above equation, we use that 4 logMB
p2B ≤ 1 and hence 2Me−

p2

16B is at most√
8
pB log(16pMB).

B.3 Proof of Theorem 3

The proof of Theorem 3 requires the the following lemmas.

Lemma B.4. For any T ∈ N, at the end of T rounds the following hold:

1. P
{
|µ̂0(T )− µ0| ≥ d0

4

}
≤ 2

T
d20
8

,

2. Let p̂i,x =
∑T
t=1 1{at=a0 and Xi=x}

N0
T

. Then P{p̂i,x ≥ p
2} ≥ 1− 1

T
p2

2

,
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3. P
{∣∣∣ µ̂i,x(T )

γ − µi,x
γ

∣∣∣ ≥ d0
4

}
≤ 2

T
d20pγ

2

16

+ 1

T
p2

2

.

Proof. 1. Since β ≥ 1, at the end of T rounds arm a0 is pulled by CRM-NB-ALG at least (lnT )2 times. Hence,
N0
T ≥ (lnT ), and from Lemma A.1 we have

P
{
|µ̂0(T )− µ0| ≥

d0

4

}
≤ 2e−

d20
8 lnT =

2

T
d20
8

(14)

2. Observe that for any (i, x), pi,x ≥ p, and E[p̂i,x] = pi,x. Using Lemma A.1 and that N0
T ≥ lnT , for a fixed

(i, x) we have

P{p̂i,x ≥ pi,x −
p

2
≥ p

2
} ≥ 1− e−

p2

2 lnT = 1− 1

T
p2

2

.

3. Recall that the effective number of arm pulls of arm ai,x at the end of T rounds is

Ei,xT = N i,x
T +

T∑
t=1

1{at = a0 and Xi = x} .

Hence, Ei,xT = N i,x
T + p̂i,xN

0
T , where p̂i,x is as defined in part two of this lemma. Hence for any i, x at the end of

T rounds if p̂i,x ≥ p
2 then Ei,xT ≥

pN0
T

2 . Further, as N0
T ≥ lnT , it follows that at the end of T rounds if p̂i,x ≥ p

2

then Ei,xT ≥ p lnT
2 . Hence, from the definition of µ̂i,x(T ) and Lemma A.1, at the end of T rounds we have for

any fixed i, x:

P
{∣∣∣ µ̂i,x(T )

γ
− µi,x

γ

∣∣∣ ≥ d0

4

∣∣∣p̂i,x ≥ p

2

}
≤ 2e−

γ2d20
16 p lnT =

2

T
pγ2d20

16

. (15)

Finally by law of total probability,

P
{∣∣∣ µ̂i,x(T )

γ
− µi,x

γ

∣∣∣ ≥ d0

4

}
= P

{∣∣∣ µ̂i,x(T )

γ
− µi,x

γ

∣∣∣ ≥ d0

4

∣∣∣p̂i,x ≥ p

2

}
P{p̂i,x ≥

p

2
}

+ P
{∣∣∣ µ̂i,x(T )

γ
− µi,x

γ

∣∣∣ ≥ d0

4

∣∣∣p̂i,x ≤ p

2

}
P{p̂i,x ≤

p

2
}

≤ P
{∣∣∣ µ̂i,x(T )

γ
− µi,x

γ

∣∣∣ ≥ d0

4

∣∣∣p̂i,x ≥ p

2

}
+ P{p̂i,x ≤

p

2
}

≤ 2

T
pγ2d20

16

+
1

T
p2

2

.

The last line in the above inequality follows from Equation 15 and part 2 of this lemma.

Lemma B.5. Let L = arg mint∈N{ t
p2d20
16

ln t ≥ 15M}, and suppose CRM-NB-ALG pulls arms for T rounds, where

T ≥ max(L, e
50

d20 ), and let a∗ 6= a0. Then at the end of T rounds 8
9d20
≤ E[β2] ≤ 50

d20
. (Note that max(L, e

50

d20 ) is

a finite constant dependent on instance constants p, d0, and M .)

Proof. Recall that β is set as in steps 11-14 in CRM-NB-ALG . We begin by making the following easy to see
observations.

Observation B.1. 1. If a∗ 6= a0 then d0 = µa∗
γ − µ0.

2. Let µ̂∗ = maxi,x(µ̂i,x(T )) (as computed in step 11 of CRM-NB-ALG ). If |µ̂0(T )−µ0| ≤ d0
4 and | µ̂i,x(T )

γ − µi,x
γ | ≤

d0
4 for all (i, x) then d0

2 ≤
µ̂∗

γ − µ̂0(T ) ≤ 3d0
2 , and 32

9d20
≤ β2 ≤ 32

d20
. Notice that since T ≥ e

50

d20 , 32
d20
≤ lnT .

Let U0 be the event that |µ̂0 − µ0| ≤ d0
4 , and for any i, x let Ui,x be the event | µ̂i,xγ −

µi,x
γ | ≤

d0
4 . Also let

U = (∩i,xUi,x) ∩ U0, and let U0, U i,x, and U denote the compliment of the events U0, Ui,x, and U respectively.
From parts 1 and 3 of Lemma B.4, we have

P
{
U0

}
≤ 2

T
d20 lnT

8

, and
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for a fixed (i, x) P
{
U i,x

}
≤ 2

T
pγ2d20

16

+
1

T
p2

2

.

Hence applying union bound,

P{U} ≤ 4M

(
1

T
pγ2d20

16

+
1

T
p2

2

)
+

2

T
d20
8

≤ 4M

(
1

T
p2d20
16

+
1

T
p2d20
16

)
+

2M

T
p2d20
16

as γ ≥ 1, p ≤ 1, d0 ≤ 1

≤ 10M

T
p2d20
16

= δ .

We will use the above arguments to first show that E[β2] ≥ 8
d20

. From part 2 of Observation B.1 we have that

the event U implies β2 ≥ 32
9d20

. Since P{U} ≥ 1− δ,

E[β2] ≥ 32

9d2
0

(1− δ) =
32

9d2
0

− 32δ

9d2
0

Since T satisfies T
p2d20
16

lnT ≥ 15M , this implies 32δ
9d20
≤ 24

9d20
, and hence E[β2] ≥ 8

9d20
. Similarly, from part 2 of

Observation B.1 we have that the event U implies β2 ≤ 32
d20

. Here, we use that if U does not hold then β2 ≤ lnT .

Hence

E[β2] ≤ 32

d2
0

(1− δ) + δ lnT ≤ 32

d2
0

+ δ lnT .

Since T satisfies T
p2d20
16

lnT ≥ 15M , we have δ lnT ≤ 18
d20

, and hence E[β2] ≤ 50
d20

.

Lemma B.6. Suppose the algorithm pulls the arms for T rounds and if a∗ 6= ai,x. Then

E[N i,x
T |T ] ≤ max

(
0,

8 lnT

d2
i,x

+ 1− pi,xE[N0
t ]

)
+
π2

3
.

Further if a∗ 6= a0 then

E[N0,t|T ] ≤ max
(
E[β2] lnT,

8 lnT

d2
0

+ 1
)

+
π2

3
, .

Proof. For ease of notation we denote E[N i,x
T |T ] as E[N i,x

T ]. Observe that

N i,x
T =

∑
t∈T

1{a(t) = ai,x} . (16)

Since Ei,xT = N i,x
T +

∑
t∈[T ] 1{a(t) = a0 and Xi = x}, if Ei,xT = ` then N i,x

T = max(0, ` −
∑
t∈[T ] 1{a(t) =

a0 and Xi = x}). We use this to rewrite Equation 16 as follows

N i,x
T ≤ max(0, `−

∑
t∈[T ]

1{a(t) = a0 and Xi = x}) +
∑
t∈T

1{a(t) = ai,x, E
i,x
t ≥ `} . (17)

We require the following observation which is easy to prove.

Observation B.2.
∑
t∈[T ]E[1{a(t) = a0 and Xi = x}] = pi,xE[N0

T ] .

Proof. Observe that

E[
∑
t∈[T ]

1{a(t) = a0 and Xi = x}] =
∑
t∈[T ]

E[1{a(t) = a0 and Xi = x}] =
∑
t∈[T ]

P{1{a(t) = a0 and Xi = x}}

Also observe that

P{1{a(t) = a0 and Xi = x} = P{1{Xi = x} | a(t) = a0}} · P{a(t) = a0} = pi,xP{a(t) = a0} .
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We continue by taking expectation on both sides of Equation 17 and use Observation B.2,

E[N i,x
T ] ≤ max

(
0, `− pi,xE[N0

t ]
)

+
∑

t∈[`+1,T ]

P{a(t) = (i, x), Ei,xt ≥ `} . (18)

Now we bound
∑
t∈T P{a(t) = ai,x, E

i,x
t ≥ `}, and assuming a∗ 6= a0. The proof for a∗ = a0 is similar. Before

proceeding we make a note of few notations. We use Ea
∗

T to denote the effective number of pulls of a∗ at the

end of T rounds. Also, for better clarity in the arguments below, we use µ̂i,x(Ei,xT , T ) (instead of µ̂i,x(T )) and
µ̂0(N0

T , T ) (instead of µ̂0(T )) to denote the empirical estimates of µi,x and µ0 computed by CRM-NB-ALG at the

end of T rounds using Ei,xT and N0
T samples respectively.

∑
t∈[`+1,T ]

P

{
a(t) = (i, x), Ei,xt ≥ `

}
=

∑
t∈[`,T−1]

P

{
µ̂a∗(E

a∗

t , t)

γ
+

√
2 ln t

γ2Ea
∗
t

≤ µ̂i,x(Ei,xt , t)

γ
+

√
2 ln(t)

γ2Ei,xt
, Ei,xt ≥ `

}

≤
∑

t∈[0,T−1]

P

{
mins∈[0,t]

µ̂a∗(s, t)

γ
+

√
2 ln t

γ2s
≤ maxsj∈[`−1,t]

µ̂i,x(sj , t)

γ
+

√
2 ln t

γ2sj

}

≤
∑
t∈T

∑
s∈[0,t−1]

∑
sj∈[`−1,t]

P

{
µ̂a∗(s, t)

γ
+

√
2 ln t

γ2s
≤ µ̂i,x(sj , t)

γ
+

√
2 ln t

γ2sj

}

If µ̂a∗ (s,t)
γ +

√
2 ln t
γ2s ≤

µ̂i,x(sj ,t)
γ +

√
2 ln t
γ2sj

is true then at least one of the following events is true

µ̂a∗(s, t)

γ
≤ µa∗

γ
−

√
2 ln t

γ2s
, (19a)

µ̂i,x(sj , t)

γ
≥ µi,x

γ
+

√
2 ln t

γ2sj
, (19b)

µa∗

γ
≤ µi,x

γ
+ 2

√
2 ln t

γ2sj
. (19c)

The probability of the events in Equations 19a and 19b can be bounded using Lemma A.1,

P

{
µ̂a∗(s, t)

γ
≤ µa∗

γ
−

√
2 ln t

γ2s

}
≤ t−4 ,

P

{
µ̂i,x(sj , t)

γ
≥ µi,x

γ
+

√
2 ln t

γ2sj

}
≤ t−4 .

Also if ` ≥ d 8 lnT
d2i,x
e then the event in Equation 19c is false, i.e. µa∗

γ >
µi,x
γ + 2

√
2 ln t
γ2sj

(as γ ≥ 1). Thus we set

` = 8 lnT
d2i,x

+ 1 ≥ d 8 lnT
d2i,x
e, which implies

∑
t∈T

P{a(t) = ai,x, E
i,x
t ≥ `} ≤

∑
t∈[T ]

∑
s∈[T ]

∑
sj∈[`,T ]

2t−4 ≤ π2

3
(20)

If a∗ = a0 then using the exact arguments as above we can show that Equation 20 still holds. Hence, using
Equations 18 and 20 we have if a∗ 6= ai,x then

E[N i,x
T ] ≤ max

(
0,

8 lnT

d2
i,x

+ 1− pi,xE[N0
t ]

)
+
π2

3
.

The arguments used to bound E[N0
T |T ] (denoted E[N0

T ] for convenience), when a∗ 6= a0 is similar. In this case
the equation corresponding to Equation 18 is

E[N0
T ] ≤ max

(
E[β2] lnT, `

)
+

∑
t∈[`+1,T ]

P{a(t) = a0, N
0
t ≥ `} . (21)
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Also the same arguments as above can be used to show that for ` = 8 lnT
d20

+ 1,

∑
t∈T

P{a(t) = a0, N
0
t ≥ `} ≤

π2

3
. (22)

Finally using Equations 21 and 22, we have

E[N0
T ] ≤ max

(
E[β2] lnT,

8 lnT

d2
0

+ 1

)
+
π2

3
.

Lemma B.7. If a∗ = a0 and suppose the algorithm pulls the arms for T rounds then

E[N0
T |T ] ≥ T −

2M(1 +
π2

3
)
∑
i,x

8 lnT

d2
i,x

 .

Proof. For convenience, we denote E[N i,x
T |T ] and E[N0

T |T ] as E[N i,x
T ] and E[N0

T ] respectively. At the end of T
rounds we have

N0
T +

∑
i,x

N i,x
T = T .

Taking expectation on both sides of the above equation and rearranging the terms we have,

E[N0
T ] = T −

∑
i,x

E[N i,x
T ] .

Now we use Lemma B.6 to conclude that

E[N0
T ] ≥ T −

2M(1 +
π2

3
)
∑
i,x

8 log T

d2
i,x

 .

Before we bound the regret of the algorithm we make the following observation regarding T , which is the number
of rounds CRM-NB-ALG pulls the arms before exhausting the budget B:

B

γ
≤ T ≤ B ⇒ B

γ
≤ ET [T ] ≤ B . (23)

Now are ready to bound the expected cumulative regret of CRM-NB-ALG for the two cases:

Case a (a∗ = a0): In this case we bound the expected cumulative regret of CRM-NB-ALG for B satisfying

B

γ
≥ 1

pi,x
(1 +

8 lnB

d2
i,x

) +

2M(1 +
π2

3
)
∑
i,x

8 lnB

d2
i,x

 . (24)

Observe that the constraint on B in Equation 24 is satisfied for any large B. We begin by making the following
observation which shows that in this case the expected number of pulls of a sub-optimal arm is bounded by a
constant for any large B. Observe that the constraint on B in Observation B.3 is satisfied for any large B.

Observation B.3. Let a∗ = a0, and T be the number of rounds CRM-NB-ALG pulls the arms before the budget B

is exhausted, where B satisfies the constraint in Equation 24. Then ET [N i,x
T ] ≤ π2

3 .

Proof. From Lemmas B.6 and B.7 for any T satisfying

T ≥ 1

pi,x
(1 +

8 lnT

d2
i,x

) +

2M(1 +
π2

3
)
∑
i,x

8 lnT

d2
i,x

 (25)
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we have E[N i,x
T |T ] ≤ π2

3 . Notice that the constraint on T in Equation 25 is the same as the constraint on B
γ in

Equation 24. Moreover, observe that if B
γ satisfies the constraint in Equation 24 then T ≥ B

γ satisfies Equation

25 with probability 1. Hence, ET [N i,x
T |T ] ≤ π2

3 .

Next observe that in this case GB (see Equation 2) is Bµ0, i.e the optimal solution is to play arm a0 in all the
rounds. We require the following observation which lower bounds ET [T ] in terms of B, which is the total number
of rounds played by the optimal solution.

Observation B.4. Let a∗ = a0, and T be the number of rounds CRM-NB-ALG pulls the arms before the budget B

is exhausted, where B satisfies the constraint in Equation 24. Then ET [T ] ≥ B − 1− 2Mπ2(γ−1)
3 .

Proof. Let cat denote the cost of arm at pulled at time t ≤ T . That is cat = γ if at = ai,x and cat = 1 if at = a0.
Then the following is always true, as CRM-NB-ALG pulls arms till the budget is the exhausted:

B − 1 ≤
∑
t∈[T ]

cat . (26)

Taking expectation over T and the sequence of arm pulls {at} made by CRM-NB-ALG , on both sides of the above
equation, we have

B − 1 ≤ ET,{at}
[ ∑
t∈[T ]

cat

]
≤ ET

[
E{at}[

∑
t∈[T ]

cat ]
]

≤ ET
[ ∑
t∈[T ]

(
P{at = a0}+ γ(

∑
i,x

P{at = ai,x}
)]

≤ ET
[
T +

∑
t∈[T ]

(γ − 1)(
∑
i,x

P{at = ai,x})
]

≤ ET [T ] + ET

[∑
i,x

(γ − 1)(
∑
t∈[T ]

P{at = ai,x})
]

≤ ET [T ] + ET

[∑
i,x

(γ − 1)E[N i,x
T |T ]

]
.

The third line in the above set of equations follows by using P{at = a0} = 1 −
∑
i,x P{at = ai,x}. Finally

from Observation B.3, we have E[N i,x
T ] ≤ π2

3 . Substituting this in the last line of the above equation, we have

ET [T ] ≥ B − 1− 2Mπ2(γ−1)
3 .

Finally we bound the expected cumulative regret of CRM-NB-ALG when a∗ = a0 as follows:

E[RCRM-NB-ALG(B)] ≤GB − ET,{at}

∑
t∈[T ]

µat


≤Bµ0 − ET

[
T∑
t=1

E{at}[µat ]

]

≤ET

[
Bµ0 −

T∑
t=1

E{at}[µat ]

]

≤ET

[
Bµ0 −

T∑
t=1

∑
a∈A

µaP{at = a}

]
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≤ET

[
(B − T )µ0 +

T∑
t=1

(µ0 −
∑
a∈A

µaP{at = a})

]

≤ET [(B − T )µ0] + ET

[
T∑
t=1

∑
∆a>0

∆aP{at = a})

]
.

Thus, from Observations B.3 and B.4, we have

E[RCRM-NB-ALG(B)] ≤ 1 +
2Mπ2(γ − 1)

3
+
∑

∆a>0

∆a
π2

3
.

Observe that the expected regret of CRM-NB-ALG is bounded by a constant for large B and hence O(1).

Case b (a∗ 6= a0): In this case we bound the expected cumulative regret of CRM-NB-ALG for B satisfying

B ≥ max(L, e
50

d20 ), where L is as in Lemma B.5. Observe that the constraint is satisfied for any large B. Let T
be the number of rounds CRM-NB-ALG pulls the arms before exhausting the budget B. Then from Equation 25,

we have T ≥ max(L, e
50

d20 ). Hence, from Lemmas B.5 and B.6, and as T ≤ B (from Equation 23), we have for
a∗ 6= ai,x

ET

[
E[N i,x

T |T ]
]
≤ max

(
0, 1 + 8 lnB

(
1

d2
i,x

− pi,x
9d2

0

))
+
π2

3
, (27)

and ET
[
E[N0

T |T ]
]
≤ 50 lnB

d2
0

+
π2

3
. (28)

Also observe that in this case GB is at most Bµa∗
γ . Below we bound the expected cumulative regret of CRM-NB-ALG

when a∗ 6= a0

E[RCRM-NB-ALG(B)] ≤Bµa
∗

γ
− ET,{at}

∑
t∈[T ]

µat


≤ Bµa∗

γ
− ET

[
T∑
t=1

E{at}[µat ]

]

≤ ET

[
Bµa∗

γ
−

T∑
t=1

E{at}[µat ]

]

≤ ET

[
Bµa∗

γ
−

T∑
t=1

∑
a∈A

µaP{at = a|T}

]

≤ ET

[(B
γ
− T

)
µa∗ +

T∑
t=1

(µa∗ −
∑
a∈A

µaP{at = a|T})

]

≤ ET

[(B
γ
− T

)
µa∗

]
+ ET

[
T∑
t=1

∑
∆a>0

∆aP{at = a|T})

]
.

Now observe that as T ≥ B
γ , ET [(Bγ − T )µa∗ ] ≤ 0. Also note that ET [

∑T
t=1 P{at = a|T}] = ET [Na

T |T ]. Using
this and Equations 27 and 28, we have our result as follows:

E[RCRM-NB-ALG(B)] ≤ ∆0ET
[
E[N0

T |T ]
]

+
∑

∆i,x>0

∆i,xET

[
E[N i,x

T |T ]
]

≤ ∆0

(50 lnB

d2
0

+
π2

3

)
+

∑
∆i,x>0

∆i,x max

(
0, 1 + 8 lnB

(
1

d2
i,x

− pi,x
9d2

0

))
+
π2

3
.
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Hence, we have that the expected cumulative regret of CRM-NB-ALG is:

E[RCRM-NB-ALG(B)] ≤

1 + 2Mπ2(γ−1)
3 +

∑
∆a>0 ∆a

π2

3 when a∗ = a0

∆0

(
50 lnB
d20

+ π2

3

)
+
∑

∆i,x>0 ∆i,x max
(

0, 1 + 8 lnB
(

1
d2i,x
− pi,x

9d20

))
+ π2

3 when a∗ 6= a0

B.4 Proof of Theorem 4

Throughout this proof a and y indexes the sets A and Sn respectively. Let δ, L1, L2,a and La for all a, be as
in the theorem statement. Let a∗ = arg maxa(µa). As is standard in MAB literature, we assume without loss of
generality that a∗ is unique. Further, let ∆a = µa∗ − µa. The regret upper bound is proved using Lemmas B.8
and B.9.

Lemma B.8. Let T be the number of rounds C-UCB 2 has pulled the arms. Then for T ≥ L1 the following holds:

1. For all y such that cy > 0, P
{
Ny,T ≤ E[Ny,T ]

2

}
≤ e−

E[Ny,T ]2

2T ,

2. For all y such that cy > 0 and for any εy ≥ 0, P{|µ̂y(T )− µy| ≥ εy} ≤ 2e−c
2
yTε

2
y + e−

c2yT

2 ,

3. For all a, P
(
|µ̂a(T )− µa| ≥

√
log(knT 2/2)

T ζa

)
≤ 2

T 2 .

Proof. 1. Part 1 of the lemma follows from Lemma A.1.

2. Using Lemma A.1 again, it follows that for all y such that cy > 0, and for all εy ≥ 0,

P
{
|µ̂y(T )− µy

∣∣∣ ≥ εy | Ny,T >
E[Ny,T ]

2

}
≤ 2e−E[Ny,T ]ε2y . (29)

Hence, for all y such that cy > 0, using the law of total probability we have

P(|µ̂y(T )− µy| ≥ εy) = P
{
|µ̂y(T )− µy| ≥ εy

∣∣∣Ny,T >
E[Ny,T ]

2

}
P
{
Ny,T >

E[Ny,T ]

2

}
+

P
{
|µ̂y(T )− µy| ≥ εy

∣∣∣Ny,T ≤
E[Ny,T ]

2

}
P
{
Ny,T ≤

E[Ny,T ]

2

}
≤ P

{
|µ̂y(T )− µy| ≥ εy

∣∣∣Ny,T >
E[Ny,T ]

2

}
+ P

{
Ny,T ≤

E[Ny, T ]

2

}
≤ 2e−E[Ny,T ]ε2y + e−

E[Ny,T ]2

2T

≤ 2e−cyTε
2
y + e−

c2yT

2

≤ 2e−c
2
yTε

2
y + e−

c2yT

2 .

The second line in the above equations follows from Equation 29 and part one of this lemma. The last two
inequalities follow by observing that E[Ny,T ] ≥ cyT ≥ c2yT . This is true as for each y, cy = minaP{Pa(Y ) = y |
do(a)}, and hence 0 < cy ≤ 1.

3. Let εy =
√

log(knT 2/2)
c2yT

if cy > 0, and εy = 0 if cy = 0. Since the parent distributions have the same non-zero

support, and as µ̂a(T ) =
∑

y µ̂y(T )P{Pa(Y ) = y|do(a)}, the event

|µ̂a(T )− µa| ≥
∑

y,cy>0

εyP{Pa(Y ) = y|do(a)}

implies there is a y such that cy > 0 and {|µ̂y(T )− µy| ≥ εy}. Hence, using part 2 of this lemma and applying
union bound over all y such that cy > 0, we have for every a

P
{
|µ̂a(T )− µa| ≥

∑
y,cy>0

εyP{Pa(Y ) = y|do(a)}
}
≤

∑
y,cy>0

(
2e−c

2
yTε

2
y + e−

c2yT

2

)
.
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Substituting the values of εy and using ζa =
∑

y,cy>0
P{Pa(Y )=y|do(a)}

cy
in the above equation, we have

P
{
|µ̂a(T )− µa| ≥

√
log(knT 2/2)

T
ζa

}
≤ 1

T 2
+
∑

y,cy>0

e−
c2yT

2

≤ 1

T 2
+ kne−δ

2T/2

where δ = mincy>0 cy. Since T ≥ L1, T ≥ 2 log(knT 2)
δ2 . This implies kne−δ

2T/2 ≤ 1
T 2 , and

P
{
|µ̂a − µa| ≥

√
log(knT 2/2)

T
ζa

}
≤ 2

T 2
.

Lemma B.9. Let a ∈ A be a sub-optimal intervention. Then the expected number of times intervention a is

made after La = max{L1, L2,a} rounds is at most 2π2

3 .

Proof. For ease of notation, we denote
√

log(knt2/2)
t ζa as ca,t. Note that ca,t is the confidence radius of intervention

a C-UCB-2 maintains at the end of t rounds. Further, let N ′a,T denote the number of times the algorithm performs
intervention a from time La + 1 to time T ≥ La, and also let at denote the intervention performed at time t.
Hence,

N ′a,T =

T∑
t=La+1

1
{
at = a

}
. (30)

Note that at = a implies µ̄a∗(t − 1) ≤ µ̄a(t − 1) i.e. µ̂a∗(t − 1) + ca∗,t−1 ≤ µ̂a(t − 1) + ca,t−1 . Hence from
Equation 30, we have

N ′a,T ≤
T−1∑
t=La

1
{
µ̂a∗(t) + ca∗,t ≤ µ̂a(t) + ca,t

}
.

The event µ̂a∗,t + ca∗,t ≤ µ̂a,t + ca,t implies that at least one of the following events is true{
µ̂a∗(t) ≤ µa∗ − ca∗,t

}
(31){

µ̂a(t) ≥ µa + ca,t
}

(32){
µa∗ < µa + 2ca,t

}
(33)

Since t ≥ La ≥ L1, using Lemma B.8 the probability of the events in Equations 31 and 32 can be bounded as:

P
{
µ̂a∗(t) ≤ µa∗ − c1,t

}
≤ 2t−2 ,

P
{
µ̂a(t) ≥ µa + ca,t

}
≤ 2t−2 .

The event in equation 33
{
µa∗ < µa + 2ca,t

}
can be written as

{
µa∗ − µa − 2

√
log(knt2/2)

t ζa < 0
}

. Substituting

∆a = µa∗ − µa and since t ≥ La ≥ L2,a, we have

P

({
∆a − 2ca,t < 0

})
= 0 . (34)

Hence,

E[N ′a,T ] ≤
T−1∑
t=L

4

t2
≤
∞∑
t=1

4

t2
≤ 2π2

3
.
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Now we bound the expected cumulative regret of C-UCB-2. From Equation 3 in Section 2, we have at the end of
T rounds

E[RC-UCB-2(T )] = Tµa∗ −
∑
a∈A

µaE[Na,T ]

=
∑
a∈A

∆aE[Na,T ] ≤
∑
a∈A

∆a(La +
2π2

3
) .

The inequality in the last line of the above equation follows from Lemma B.9.

C Rational for Simulation Parameters and Additional Experiments

C.1 Model and Parameter Choices in Section 6

Experiment 1: In this experiment the underlying causal graph and distributions pi = P(Xi = 1) is the same
as that in Lattimore et al. (2016). The expected reward of the best arm is set to 0.8 by choosing ε = 0.3. Under
these settings, Lattimore et al. (2016) demonstrated a faster exponential decay of simple regret compared to
the non-causal algorithms. Since in this experiment we compare γ-NB-ALG to PB-ALG (adapted to the budgeted
version), we choose the same causal graph and distribution.

Experiment 2: In this experiment 2 the underlying causal graph and distributions pi are the same as in
Experiment 1. If the reward distribution is the same as in experiment 1 the cumulative regret of CRM-NB-ALG

even with γ = 1.1 converges very quickly to a small constant. This is attributed to the fact that the observation
arm is closer to being optimal (i.e. d0 is smaller). Even though this validates the better performance of our
algorithm, for a better visual appeal we set the expected reward of the best arm to 1. Even with this reward
distribution, the performance of CRM-NB-ALG is much better than F-KUBE.

Experiment 3: The causal graph used in this experiment is as shown in figure 2. Notice that this graph has a
backdoor path from X2 to Y and therefore algorithms such as PB-ALG , γ-NB-ALG and CRM-NB-ALG , which are
for no-backdoor graphs, cannot be used. Our conditional probabilities for nodes (P (node|Pa(node))) are given
in Table 1.

Conditional Variable Probability
X1 = 0 0.45
X1 = 1 0.55
X2 = 0|X1 = 0 0.55
X2 = 1|X1 = 0 0.45
X2 = 0|X1 = 1 0.45
X2 = 1|X1 = 1 0.55
W1 = 0|X1 = 0 0.46
W1 = 1|X1 = 0 0.54
W1 = 0|X1 = 1 0.54
W1 = 1|X1 = 1 0.46
W2 = 0|X2 = 0 0.52
W2 = 1|X2 = 0 0.48
W2 = 0|X2 = 1 0.48
W2 = 1|X2 = 1 0.52

Table 1: Conditional Probability Distributions

The conditional distribution of the reward variable Y was chosen as Y |w1, w2 = θ1X1 + θ2X2 + ε, where ε is
distributed as N (0, 0.01). Here N (0, 0.01) denotes the normal distribution with mean 0 and standard deviation
0.01. Since we compare the performance of C-UCB-2 with C-UCB proposed by Lu et al. (2020), we choose
our conditional distribution similar to that in Lu et al. (2020). The conditional probabilities in the above
table are chosen to be close to each other in order to ensure that the expected rewards for all the arms are
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competitive and the algorithm takes longer to distinguish between them. The expected reward of the four arms
do(Xi = x), i ∈ [2], x ∈ {0, 1} are given in the Table 2.

Arm Expected Reward
do(X1 = 0) 0.2595
do(X1 = 1) 0.2405
do(X2 = 0) 0.244
do(X2 = 1) 0.254

Table 2: Expected Reward of the Arms

C.2 Additional Experiment

In this section we show results for an additional experiment that validates our result in Theorem 1. The
experiment 4 below plots the regret of OBS-ALG and PB-ALG (from Lattimore et al. (2016)) with respect to the
minimum probability.

Experiment 4 (OBS-ALG vs. PB-ALG): This experiment demonstrates the performance of OBS-ALG with respect
to PB-ALG on the same graph and parameters as chosen in Experiment 1 of Section 6. In figure 4, we plot simple
regret vs. minimum probability. Note that the minimum probability is p = mini,x{pi,x}, as defined in Section
3.1. We fix the budget B to a moderate value 100 and cost of intervention γ to 1. Note that the performance
of γ-NB-ALG is best for γ = 1. The plot shows an inverse relationship between simple regret of OBS-ALG and p
as proved in Theorem 1, whereas the simple regret of PB-ALG does not depend on p. Recall that the expected
simple regret of PB-ALG depends on m(p) (and not on p) and for the pi’s used in Experiment 1, the quantity
m(p) = 2, does not change. Finally, also observe that after a threshold value of p, OBS-ALG starts performing
much better than PB-ALG as can be seen from the plot.
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Figure 4: OBS-ALG vs PB-ALG
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