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Abstract

Learning good interventions in a causal graph
can be modeled as a stochastic multi-armed
bandit problem with side-information. First,
we study this problem when interventions are
more expensive than observations, and a bud-
get is specified. If there are no backdoor
paths from the intervenable nodes to the re-
ward node, then we propose an algorithm to
minimize simple regret that optimally trades-
off observations and interventions based on
the cost of interventions. We also propose an
algorithm that accounts for the cost of in-
terventions, utilizes causal side-information
and minimizes the expected cumulative re-
gret without exceeding the budget. Our al-
gorithm performs better than standard al-
gorithms that do not take side-information
into account. Finally, we study the problem
of learning best interventions without budget
constraint in general graphs and give an algo-
rithm that achieves constant expected cumu-
lative regret in terms of the instance param-
eters when the parent distribution of the re-
ward variable for each intervention is known.
Our results are experimentally validated and
compared to the best-known bounds in the
current literature.

1 Introduction

Causal Bayesian Networks (CBN) (Pearl, 2009) have
become the popular choice to model causal relation-
ships in many real-world systems such as online ad-
vertising, gene interaction networks, brain functional

1These authors have made equal contribution and their
names are alphabetically ordered.
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connectivity, etc. The underlying directed acyclic
graph (DAG) of a CBN is called its causal graph.
The nodes of this graph are labeled by random vari-
ables2 representing the underlying system, and edges
between these variables capture direct causal relation-
ships. Once the causal graph is known, any external
manipulations on the system that forcibly fixes some
target variables can be modeled via an operation called
intervention. An intervention simulates the effect of
the manipulation on other system variables by discon-
necting the target variables from their parents3 and
setting them to the desired value.

Two key questions in causal learning are: 1) learn-
ing the causal graph itself, and 2) finding the inter-
vention that optimizes some variable of interest (of-
ten called reward variable) assuming that the causal
graph is known. In this work, we focus on the sec-
ond question by modeling the causal learning problem
as an extension of the Stochastic Multi-armed Bandit
Problem (MAB) (Robbins, 1952). The MAB problem
is a popular model used to capture decision-making
in uncertain environments where a decision-maker is
faced with k choices (called arms), and at each time
step, the decision-maker has to choose one out of the
k arms (pull an arm). The arm that is pulled gives a
reward drawn from an underlying distribution that is
unknown to the decision-maker beforehand.

We study the MAB problem with dependencies be-
tween the arms modeled via a causal graph. This
model, called causal bandits, was studied in the re-
cent works of Bareinboim et al. (2015); Lattimore
et al. (2016); Sen et al. (2017a,b); Lee and Barein-
boim (2018); Yabe et al. (2018); Lee and Bareinboim
(2019); Lu et al. (2020), where the interventions are
modelled as the arms of the bandit and the influence
of the arms on the reward is assumed to conform to
a known causal graph. In addition to the possible
interventions allowed, the set of arms also contains
an empty intervention called the observational arm,

2The joint distribution of these random variables fac-
torizes over the graph.

3A process known as causal surgery.
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where the algorithm does not perform any interven-
tion on the causal graph. The goal of a causal bandit
algorithm is to learn the intervention that maximizes
the reward.
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Figure 1: Causal Graph - Product Marketing

We explain the causal bandit problem with a moti-
vating example from the marketing domain, for which
a simple causal graph is shown in Figure 1. An e-
commerce company sells a product online and makes
a profit whenever a customer purchases their product.
This corresponds to the green (reward) node labeled
Purchase in the causal graph. The product web page
is rendered using some values of the blue (interven-
able) nodes on every new customer visit, chosen from
an underlying distribution. For example, a customer
might see a large image, short description, no promo-
tions, and comparison with a competing brand. The
red nodes capture actions taken by the customer be-
fore they make any purchase decision. For example,
based on the rendered product page, a customer might
want to get more information from the reviews before
deciding to add the product to their shopping cart.
Note that while the blue nodes are actionable and can
be manipulated to increase the chances of purchase,
the red nodes are not directly manipulable and can
only be passively observed for any given values of the
blue nodes. For example, the company might take an
action by always offering a promotion, seeing which
customers might decide to skip going through the re-
views and directly add the product to their shopping
cart. The objective here is to learn the intervention (on
blue nodes) that maximizes the chances of the product
being purchased.

However, in many situations, interventions are costly
(Kocaoglu et al., 2017a,b; Lindgren et al., 2018; Ad-
danki et al., 2020). Consider the marketing example
above where observational data from this graph can
be collected via independent customer visits, whereas
to get an interventional sample, one needs to render
a specific page configuration that would require addi-
tional expenditure. But recent works suggest that, in
many scenarios, the effect of interventions can be ef-

ficiently estimated using observational samples (Tian
and Pearl, 2002; Bhattacharyya et al., 2020; Pearl,
2009). Hence, in the causal bandit framework, for a
fixed budget, there is a trade-off between the more
economical observational arm and the high-cost inter-
ventional arms. This is because the observational arm,
though less rewarding, aids in the exploration of the
possibly high rewarding interventional arms. This mo-
tivates the study of observation/intervention trade-off
in the budgeted bandit setting.

1.1 Our Contributions:

We study the problem of finding the best intervention
in a causal graph in two settings: with and without
budget constraints. Further, we study these problems
with two common objectives in the MAB literature:
simple regret minimization and cumulative regret min-
imization.

Budgeted Setting: In Sections 3 and 4, we consider
a class of causal graphs that we call no-backdoor graphs
(see Section 3 for the definition). A special instance of
the class of no-backdoor graphs is the parallel graph
model defined in Lattimore et al. (2016): G consists
of M + 1 nodes, X = {Y,X1, . . . , XM}, and the only
edges in G are from each Xi to Y . For this, Lattimore
et al. (2016) propose an algorithm called the paral-
lel bandit algorithm (PB-ALG henceforth). We observe
that PB-ALG works for the more general class of no-
backdoor graphs.

We study the causal bandit problem for no-backdoor
graphs in the budgeted bandit setting (Tran-Thanh
et al., 2012), where a budget B is specified, and the
ratio of the cost of the intervention to the cost of ob-
servation is γ ≥ 1. The goal of an algorithm is to
find the best intervention such that the total cost of
arm pulls does not exceed B. In Section 3, we first
study this problem with the goal of minimizing sim-
ple regret. Note that PB-ALG does not take into ac-
count the cost of interventions and is only optimal in
the non-budgeted setting. We show that when γ is
higher than a threshold (unknown to the algorithm),
the simple algorithm OBS-ALG that plays the observa-
tional arm every time achieves better simple regret in
terms of B than PB-ALG. Next, we propose γ-NB-ALG
(Algorithm 1), which determines this unknown thresh-
old online and successfully manages to trade-off inter-
ventions with observations for a specified budget.

In Section 4, we study the cumulative regret minimiza-
tion (CRM) problem in the above setting and propose
the CRM-NB-ALG algorithm (Algorithm 2). CRM-NB-ALG
is based on the Fractional-KUBE algorithm (F-KUBE
henceforth) given in Tran-Thanh et al. (2012) for bud-
geted bandits with no side-information. CRM-NB-ALG
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achieves constant regret if the observational arm is
the optimal arm and otherwise achieves logarithmic
regret, which is better than that of F-KUBE in terms of
instance-specific constants.

Non-Budgeted Setting: In Section 5, we study the
problem of minimizing the cumulative regret for gen-
eral causal graphs in the non-budgeted setting. We
assume that the distribution of parents of the reward
variable for each intervention is known to the algo-
rithm. This assumption, though limiting in the prac-
tical setting, is also made in the recent work of Lu
et al. (2020) (which studies the same problem) and
Lattimore et al. (2016). Lu et al. (2020) proposed
an algorithm called C-UCB, which has a worst-case re-
gret guarantee of O(

√
knT ) where k is the number of

distinct values that each of the n parents of the re-
ward variable can take. For the same problem, we
propose C-UCB-2 (Algorithm 3) and show it has con-
stant expected cumulative regret in terms of instance
parameters, which is a significant improvement over
previously known results.

2 Model and Notation

A CBN is a directed acyclic graph G whose nodes are
labelled by random variables X = {X1, . . . , Xn}, and
a joint probability distribution P over X that factor-
izes over G. For each i ∈ [n], the range of Xi is a finite
subset of R. A node Xj is called a parent of node Xi if
there is an edge from Xj to Xi in G, i.e., changes in Xj

directly affect Xi. The set of parents of Xi is denoted
as Pa(Xi). An intervention of size m corresponds to
X ⊂ X such that |X| = m, where the variables in X
are set to x = (x1, . . . , xm), and this intervention is
denoted as do(X = x). For each Xi ∈ X, the interven-
tion also removes all the edges from Pa(Xi) to Xi, and
the resulting graph defines a probability distribution
P(Xc|do(X = x)) over Xc = X \ X. The empty in-
tervention, also called observation, corresponding to
X = φ is denoted as do(). A causal bandit algo-
rithm is given as input a causal graph G, the set of
allowed interventions A (which corresponds to the set
of arms), and a designated reward variable Y ∈ X
where Y ∈ {0, 1}. The distribution P is unknown to
the algorithm.

An algorithm for this problem is a sequential decision-
making process that at each time t performs an inter-
vention at ∈ A and observes reward Yt ∈ {0, 1}. For
each intervention a ∈ A, where a = do(X = x), the ex-
pected reward of a is denoted µa = E[Y | do(X = x)].
We study a budgeted as well as a non-budgeted variant
of this problem.

2.1 Budgeted Causal Bandits

In the budgeted variant of our problem, we associate
a cost γ > 1 with each arm pull of a non-empty in-
tervention a ∈ A \ {do()}, whereas the cost of pulling
the observation arm do() is one. Hence, γ is the ratio
of the cost of a non-empty intervention to the cost of
the observational arm. The algorithm, in addition to
G and A, is specified a budget B ∈ R+. This model is
similar to the budget-limited bandit model considered
in Tran-Thanh et al. (2010); Tran-Thanh et al. (2012)
where each arm has an associated cost per pull. Differ-
ent cost models such as the linear cost model (Lindgren
et al., 2018) and identity cost model (Addanki et al.,
2020) have been studied in the causal discovery litera-
ture. The identity cost model is equivalent to consid-
ering a uniform cost γ across all interventions. In this
work, we are interested in the trade-off between obser-
vations and interventions, which is more perceptible in
the identity cost model. This is equivalent to consid-
ering a uniform cost γ across all interventions. More-
over, the algorithm presented for the budgeted setting
in this paper can be extended with a bit of effort to
different cost models. We study this problem from the
perspective of two objectives: minimization of simple
regret and cumulative regret, both being well-studied
in the bandit community.

Simple regret: Let ALG be an algorithm for the above
problem that outputs arm aB when the budget given
is B. Then the simple regret of ALG with budget B,
denoted rALG(B), is

rALG(B) = maxa∈Aµa − µaB (1)

An algorithm whose objective is to minimize the sim-
ple regret is a pure-exploration algorithm. Its goal is
to identify the best arm without restricting the num-
ber of times a sub-optimal arm may be played using
the budget B. In many applications, we may require
that a sub-optimal arm should not be pulled too many
times right from the start. This motivates the defini-
tion of cumulative regret.

Cumulative regret: Let GALG(B) be the expected
reward accumulated by algorithm ALG with budget B,
and let GB = maxALGGALG(B). Then, the cumulative
regret of an algorithm ALG with budget B, denoted
RALG(B), is

RALG(B) = GB −GALG(B) (2)

An algorithm for cumulative regret minimization has
to carefully trade-off between exploration vs. exploita-
tion. Hence, an algorithm with good simple regret
guarantees may not have good cumulative regret guar-
antees and vice-versa.
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2.2 Non-budgeted Causal Bandits

In the non-budgeted variant of the problem, the cost
associated with every intervention is the same, i.e., we
can assume γ = 1 for all a ∈ A. In Section 5, we
study this problem with the objective of minimizing
the expected cumulative regret when the time horizon
T is unknown but finite. The regret notion is defined
as in Equation 2 with B = T . Observe that GT =
T maxa∈A µa. The cumulative regret of an algorithm
ALG after T rounds, denoted RALG(T ), is then defined
as

RALG(T ) = T ·max
a∈A

µa −
∑
t∈[T ]

µat . (3)

The goal of any algorithm for such a setting is to mini-
mize the expected cumulative regret E[RALG(T )] where
the expectation is taken over the randomness in the re-
wards as well as in the algorithm.

3 Simple Regret with Budget:
No-backdoor Graphs

In this section and Section 4, we assume that the
interventions are of size 1. Formally, let {X1, . . . ,
XM} ⊆ X be the set of intervenable nodes such that
Xi ∈ {0, 1} for all i ∈ [M ]. An intervention in this
setting is defined as explicitly setting the value of a
single node Xi as either 0 or 1. When not intervened
upon, Xi ∼ Bernoulli(pi). Hence, we have 2M + 1 in-
terventions in total: 2M interventions correspond to
setting each of the M variables Xi to either 0 or 1,
denoted do(Xi = 0) and do(Xi = 1) respectively, and
the last intervention corresponds to the empty inter-
vention, do(). Moreover, we assume that there are no
backdoor paths from Xi to the reward variable. This
implies E[Y | do(Xi = x)] = E[Y | Xi = x] = µi,x (see
Section 3.3.1 Pearl (2000)). We call a causal graph G
satisfying this property as a no-backdoor graph (NB-
graph).

For ease of notation, we denote the intervention
do(Xi = x) by ai,x where i ∈ [M ] and x ∈ {0, 1},
and the empty intervention as a0. The set of interven-
tions is then A = {ai,x | i ∈ [M ], x ∈ {0, 1}} ] {a0}.
The expected reward for the intervention ai,x and a0

are µi,x = E[Y | Xi = x] and µ0 = E[Y ] respectively.
Throughout Sections 3 and 4, i ∈ [M ] and x ∈ {0, 1}.
Also, we use a to denote an intervention in A when
we do not differentiate between ai,x and a0. We study
the budgeted causal bandit problem for no-backdoor
graphs. As stated in Section 2, an algorithm for this
problem is given as input the graph G, the set of inter-
venable nodes {X1, . . . , XM}, a budget B, and γ which
is the cost for pulling an arm ai,x. The algorithm does
not know pi for any i. Note that if γ ≥ B then trivially

the algorithm can only make observations.

As stated above, Xi ∼ Bernoulli(pi). Let pi,1 =
P(Xi = 1) = pi and pi,0 = 1 − pi,1. We assume
p = min(i,x){pi,x} > 0, which is reasonable in situ-
ations where the best arm is observable, and if the
best arm is not observable then observational samples
are not useful. Also, let p = (p1 . . . pM ). PB-ALG, the
algorithm by Lattimore et al. (2016) minimizes the
expected simple regret for the parallel graph model
in the non-budgeted setting. We observe that PB-ALG

works for any no-backdoor graph model. In particu-
lar, PB-ALG when applied to the budgeted setting plays
the observational arm a0 for the first B

(1+γ) rounds

and in the remaining B
(1+γ) rounds plays the inter-

ventional arms that were observed only a few times
during the arm pulls of a0 (because the probability of
observing them when a0 is pulled is low). The simple
regret guarantee of PB-ALG depends on the quantity
m(p) which captures the number of Xi’s such that
min(pi, 1 − pi) � 1/2, (i.e. the number of arms that
would be observed fewer number of times when the
arm a0 is pulled in the initial rounds). Formally, for
τ ∈ [2,M ], let Iτ =

{
i | minx{pi,x} < 1

τ

}
. Then,

m(p) = min{τ | |Iτ | ≤ τ} and the simple regret of the

PB-ALG algorithm is O
(√

γm(p)
B log(MB

γm )
)

.

In Section 3.1, we show that for γ = Ω( 1
p·m(p) ) the

simple algorithm that plays the observation arm for
B rounds achieves better expected simple regret than
PB-ALG. Since pi for all i is unknown, the threshold

1
p·m(p) is a priori unknown to an algorithm. Hence, in

Section 3.2, we propose an algorithm that estimates
this threshold online and trades-off between interven-
tions and observations dependent on γ and the thresh-
old to minimize the expected simple regret.

3.1 Observational Algorithm

Here, we analyze the simple-regret of the observational
algorithm (OBS-ALG) which plays the arm a0 for all the
rounds, and at the end of B rounds outputs the arm
a ∈ A with the highest empirical mean estimate. The
empirical estimate of µi,x is computed as the average
of the rewards accrued in those rounds where Xi was
sampled as x. Theorem 1 shows the dependence of the
expected simple regret of OBS-ALG on p.

Theorem 1. The expected simple regret of OBS-ALG

with budget B is O
(√

1
pB log(pMB)

)
.

The proof of Theorem 1 is in Appendix B.1 in the
extended version of the paper4. Theorem 1 is proved
by crucially leveraging the fact that the arm a0 aides

4https://arxiv.org/pdf/2012.07058.pdf

https://arxiv.org/pdf/2012.07058.pdf
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in the exploration of all the other 2M arms, which is
the side-information available in NB-graphs. Observe
that the guarantee of OBS-ALG is better than that of
PB-ALG in Lattimore et al. (2016) if γ = Ω( 1

p·m(p) ).

Intuitively, the quantity 1
p·m(p) captures the tipping

point where intervening on the least observable arm is
more costly than observing it.

3.2 Observation-Intervention Trade-off

We next propose γ-NB-ALG (Algorithm 1), which
trades-off between observations and interventions de-
pending on the value of γ to minimize the expected
simple regret. The idea behind γ-NB-ALG is that, if
γ is larger than the threshold 1

p·m(p) , then performing

only observations gives a better regret (as stated at
the end of Section 3.1), whereas if γ is less than this
threshold, then the algorithm follows the strategy of
PB-ALG.

γ-NB-ALG pulls arm a0 for the first B
2 rounds (see

Step 1). We note here that the regret of the algo-
rithm (in Theorem 2) remains the same in order, if
instead of B

2 , for any constant c, B
c arm pulls of a0

are made initially. Since p and p are not known a
priori, the algorithm has to estimate the threshold on-
line as done in Step 6 of γ-NB-ALG. Note that at Step
6, p̂ = (p̂1 . . . p̂M ), where p̂i = p̂i,1, and m(p̂) is de-
fined similar to m(p). If γ is less than the estimated
threshold, then γ-NB-ALG chooses to play the interven-
tions that were observed less frequently in the elapsed
rounds. At Step 11, γ-NB-ALG determines the set A
of such interventions, and at Step 12, plays them for
an equal number of times in the remaining rounds. At
Steps 13-14, the empirical estimates of only the arms
in A are updated.

In Theorem 2, we bound the expected simple regret of
γ-NB-ALG, which depends on γ and the value of the
threshold.

Theorem 2. If γ ≥ 1
p·m(p) then the expected simple

regret of γ-NB-ALG is O
(√

1
pB log(pMB)

)
, and if γ ≤

1
p·m(p) then it is O

(√
γ·m(p)
B log MB

γ·m(p)

)
.

The proof of Theorem 2 is in Appendix B.2. Observe
that the expected simple regret of γ-NB-ALG is equal
to that of PB-ALG if γ ≤ 1

p·m(p) , and is equal to the

that of OBS-ALG if γ > 1
p·m(p) . For γ = O( 1

p·m(p) )

the optimality of the regret up to log factors follows
from Theorem 2 in Lattimore et al. (2016) where they
show a Ω

(√
γm
B

)
lower bound on the expected simple

regret.5 Experiment 2 in Section 6 shows that the

5The lower bound is shown in non-budgeted setting,
which translates to Ω

(√
γm
B

)
lower bound in our setting if

Algorithm 1 γ-NB-ALG

INPUT: G, B, and γ.

1: Play arm a0 for the first B/2 rounds.
2: For each a ∈ A, compute

3: µ̂i,x =
∑B/2
t=1 Yt·1{Xi=x}∑B/2
t=1 1{Xi=x}

, µ̂0 =
2
∑B/2
t=1 Yt
B

4: For each (i, x), compute

5: p̂i,x = 2
B

∑B/2
t=1 1{Xi = x}, and p̂ = mini,x p̂i,x

6: if p̂ ·m(p̂) ≥ 1
γ then

7: Play arm a0 for the remaining B/2 rounds.
8: For each a ∈ A, compute

9: µ̂i,x =
∑B
t=1 Yt·1{Xi=x}∑B
t=1 1{Xi=x}

, µ̂0 =
∑T
t=1 Yt
B

10: else
11: Compute A = {ai,x | p̂i,x < 1

m(p̂)}.
12: Play each arm ai,x ∈ A, for B

2γ|A| rounds.

13: For each ai,x ∈ A, set

14: µ̂i,x = 2γ|A|
B

∑B
2 + B

2γ

t=B
2 +1

Yt · 1{at = ai,x}.
15: end if
16: Output arg maxa∈A µ̂a.

performance of γ-NB-ALG matches or is better than
the performance of PB-ALG for all values of γ, which
validates our theoretical claim.

4 Cumulative Regret with Budget:
No-backdoor Graphs

In this section, we propose CRM-NB-ALG (Algorithm 2)
that minimizes the cumulative regret for the model in
Section 3. CRM-NB-ALG is based on Fractional-KUBE

(F-KUBE, Tran-Thanh et al. (2012)), which is a budget-
limited version of Upper Confidence Bound (UCB,
Auer et al. (2002)) but without side-information. In
our setting, since arm a0 aids in the exploration of all
other 2M arms and has a unit cost, CRM-NB-ALG un-
like F-KUBE ensures that arm a0 is pulled sufficiently
many times. Importantly, in CRM-NB-ALG the esti-
mate for an arm ai,x is made using the effective num-
ber of pulls of the arm ai,x, which is equal to the
number of pulls of the arm ai,x plus the number of
pulls of arm a0 where Xi was sampled as x. For-
mally, let N i,x

t and N0
t denote the number of pulls

of arm ai,x and a0 respectively after t rounds, and let
at denote the arm pulled at round t. The effective
number of arm pulls of ai,x after t rounds is equal to

Ei,xt = N i,x
t +

∑t
s=1 1{as = a0 and Xi = x}.

At the end of t rounds, CRM-NB-ALG computes µ̂i,x(t)
and µ̂0(t), which are the empirical estimates of µi,x

γ = O( 1
p·m(p)

).
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and µ0 respectively, as follows: µ̂i,x(t) is equal to∑t
s=1 Ys · 1{(as = ai,x) or (as = a0 and Xi = x)}

Ei,xt

µ̂0(t) =
1

N0
t

t∑
s=1

Ys · 1{as = a0}
)

Based on these estimates, CRM-NB-ALG computes the
weighted UCB estimates µi,x(t) and µ0(t) for the arms
ai,x and a0 respectively, as follows:6

µi,x(t) =
1

γ

(
µ̂i,x(t) +

√
8 log t

Ei,xt

)

µ0(t) = µ̂0(t) +

√
8 log t

N0
t

In each round, CRM-NB-ALG first ensures that arm a0

is pulled at least β2 log T times (steps 4-5), where β is
set as in steps 11-14, and otherwise pulls the arm with
the highest weighted UCB estimate (steps 6-8). Ensur-
ing that arm a0 is pulled at least β2 log T times at the
end of T rounds delicately balances the explore-exploit
trade-off between the causal side-information obtained
by pulling arm a0, which ensures free exploration of
the other 2M interventions, and the loss experienced
in pulling the arm a0 (if a0 is the sub-optimal arm).
The reason for setting β as in steps 11-14 is explained
after Theorem 3, which bounds the expected cumula-
tive regret of CRM-NB-ALG. Observe that CRM-NB-ALG

halts once it has exhausted its entire budget B. Cru-
cially though, the decisions of CRM-NB-ALG do not de-
pend on the budget, i.e., it is budget-oblivious. But
note that the decisions of the algorithm do take into
account the cost of an intervention, i.e., the algorithm
is not cost-oblivious.

Before stating Theorem 3, we introduce a few more no-
tations which are used in the theorem. Let vi,x =

µi,x
γ ,

and v0 = µ0, and a∗ = arg maxa∈A{va}. Further, let
∆a = µa∗ − µa and da = va∗ − va for each a ∈ A.
Note that there could be a ∈ A such that ∆a < 0. In
Theorem 3 we analyze the instance-dependent regret
guarantee of CRM-NB-ALG , that is, the regret expres-
sion shows how the regret grows logarithmically with
B given that the other instance-dependent parameters
remain fixed.

Theorem 3. If a∗ = a0 then the expected cumulative
regret of the algorithm is O(1) and otherwise the
expected cumulative regret of the algorithm is of order∑

∆i,x>0 ∆i,x

(
max

(
0, 1 + 8 lnB

(
1
d2i,x
− pi,x

3d20

))
+ π2

3

)
+

∆0

(
50 lnB
d20

+ 1 + π2

3

)
.

6If we have different costs for each intervention, say γi,x
corresponding to arm ai,x, then the estimate µi,x(t) can be
calculated by replacing γ with γi,x.

Algorithm 2 CRM-NB-ALG

INPUT: G, Set of nodes {X1, . . . , XM}, B, γ

1: Pull each arm once and set t = 2M + 2
2: Update Bt−1 = B − 2γM − 1 and let β = 1.
3: while Bt ≥ 1 do
4: if N0

t−1 < β2 log t or Bt < γ then
5: Pull at = a0

6: else
7: Pull at = arg maxa∈A µa(t− 1)
8: end if
9: Update Na

t = Na
t−1 + 1{at = a}

10: Update Eat , µ̂a(t) and µa(t) for all a ∈ A.
11: Let µ̂∗ = maxi,xµ̂i,x(t).

12: if µ̂0(t) < µ̂∗

γ then

13: Update β = min( 2
√

2
µ̂∗/γ−µ̂0(t) ,

√
log t)

14: end if

15: Update Bt+1 =

{
Bt − 1 if at = a0

Bt − γ if at 6= a0

16: Set t = t+ 1
17: end while

The optimal arm a∗ is equal to a0 if the ratio of the ex-
pected reward of any intervention to expected reward
of a0 is at most γ. In particular, if

maxi,xµi,x
µ0

≤ γ, then
a∗ = a0, and in this case the expected cumulative re-
gret of CRM-NB-ALG is bounded by a constant. The
proof of Theorem 3 is given in Appendix B.3. For the
value of β set as in steps 11-14, we show that if a∗ 6= a0

then 8
9d20
≤ E[β2] ≤ 50

d20
(see Lemma B.5 in Appendix

B.3). This, in particular, ensures that if a∗ 6= a0 then
the expected number of pulls of a sub-optimal arm

ai,x is at most max
(

0, 1 + 8 lnB
(

1
d2i,x
− pi,x

3d20

))
+ π2

3 .

Hence, note that if 1
d2i,x
≥ pi,x

3d20
, then this sub-optimal

arm is pulled at most a constant number of times. In
Section 6, we show via simulation that CRM-NB-ALG

performs much better than F-KUBE even for small val-
ues of γ. Note that F-KUBE does not take side infor-
mation into account.

5 Cumulative Regret without Budget:
General Graphs

In this section, we study the non-budgeted version of
the causal bandit problem for general graphs (see Sec-
tion 2.2) with the goal of minimizing the expected cu-
mulative regret. This problem was studied in the re-
cent work of Lu et al. (2020) who gave a UCB based
algorithm, called C-UCB, which has a worst-case regret
bound of

√
knT when each of the n parent nodes of

Y (the reward variable) in the graph can take one of
k values. For the same problem, we propose an al-
gorithm called C-UCB-2, which has constant regret in
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terms of instance-parameters. Additionally, C-UCB in
Lu et al. (2020) takes the time horizon T as input, but
our algorithm C-UCB-2 works for any unknown (but
finite) time horizon.

Let Y1, . . . , Yn be the parents of Y , hence we have
|Pa(Y )| = n. Further, let S ⊂ R and |S| = k be the
set of values that a parents node of Y can take. We de-
note the realization of Yi = yi, where yi ∈ S for each
i ∈ [n], as Pa(Y ) = y where y = (y1 . . . yn) ∈ Sn.
We assume the following: (a) the algorithm receives
as input P(Pa(Y ) = y|do(a)) for all a, and (b) the
distributions P(Pa(Y ) = y|do(a)) for all a have the
same non-zero support. Assumption (a) is also made
in Lu et al. (2020); Lattimore et al. (2016) whereas
Assumption (b) is made in other existing literature
on causal bandits (see Sen et al. (2017a)). Let cy =
mina(P(Pa(Y ) = y | do(a)). Observe that the ex-
pected reward µa of any intervention a ∈ A satisfies

µa =
∑
y∈Sn

E[Y | Pa(Y ) = y] · P(Pa(Y ) = y | do(a)) .

We denote E[Y | Pa(Y ) = y] as µy. In C-UCB-2

(Algorithm 3), ζa =
∑
cy>0

P(Pa(Y )=y|do(a))
cy

for each

a, and Ny,t denotes the number of times Pa(Y ) have
been sampled as y in t rounds. Let Pat(Y ) denote
the realization of Pa(Y ) at time t. Then, Ny,t =∑t
s=1 1{Pas(Y ) = y} and µ̂y(t) is the empirical es-

timate of µy at the end of t rounds defined as,

µ̂y(t) =
1

Ny,t

t∑
s=1

Ys · 1{Pas(Y ) = y}.

if Ny,t ≥ 1 and otherwise µ̂y(t) = 0. The algorithm
also computes the empirical estimate µ̂a(t) and the
UCB estimate µa(t) for all a using µ̂y(t) at the end of
every round as follows:

µ̂a(t) =
∑
y∈Sn

µ̂y(t) · P(Pa(Y ) = y|do(a)), and

µa(t) = µ̂a(t) +

√
log(knt2/2)

t
ζa .

The quantity
√

log(knt2/2)
t ζa is called the confidence ra-

dius around the empirical estimate µ̂a(t) at the end of
t rounds. We remark here that the difference between
our algorithm C-UCB-2 and C-UCB by Lu et al. (2020)
is that C-UCB maintains a UCB estimate for each par-
ent value tuple y, whereas C-UCB-2 maintains a UCB
estimate for each intervention a ∈ A. We note that ζa
sums only over cy > 0, and since the parent distribu-
tions have the same non-zero support, ζa is summed
over same y for all a ∈ A. This is used in proof of
Theorem 4 (see Lemma B.8), which bounds the ex-
pected cumulative regret of C-UCB-2 . In Theorem 4,
∆a = maxb∈A µb − µa.

Algorithm 3 C-UCB-2

INPUT: G, P(Pa(Y ) = y|do(a)) for all a ∈ A.

1: Play each intervention in round robin and for t =
|A| update Ny,t, µ̂y(t), µ̂a(t), µa(t).

2: Set t = |A|+ 1
3: loop
4: Play at = arg maxa∈A µa.
5: Update Ny,t, µ̂y(t), µ̂a(t), µa(t).
6: t = t+ 1
7: end loop

Theorem 4. Let δ = miny∈Sn{cy > 0}, L1 =

min
{
t ∈ N | t ≥ 2 log(knt2)

δ2

}
, L2,a = min

{
t ∈

N | t ≥ 4 log(knt2/2)
∆2
a

ζ2
a

}
for all a ∈ A, and La =

max{L1, L2,a}. Then the expected cumulative regret

of C-UCB-2 after T rounds is at most
∑
a∈A∆a

(
La +

2π2

3

)
.

Observe that in Theorem 4, La is a constant based on
problem instance parameters, and hence Theorem 4
proves that C-UCB-2 achieves instance dependent con-
stant regret. Theorem 4 is proved by showing that
the expected number of pulls of a sub-optimal arm

a ∈ A after time La is at most 2π2

3 (proof in Appendix
B.4). In Section 6, we show via simulations that the
expected cumulative regret of C-UCB-2 is better than
that of C-UCB, and the experiment also validates that
the regret of C-UCB-2 is a constant.

6 Simulations

In this section, we experimentally validate our theoret-
ical results. The rationale behind the choice of param-
eters and the causal graphs used in the experiments
are explained in Appendix C.

Figure 2: General Graphs

Experiment 1 (γ-NB-ALG vs. PB-ALG): This ex-
periment compares the performance of γ-NB-ALG and
PB-ALG on a parallel graph with M = 50, i.e the re-
ward variable Y has 50 parents X1, . . . , X50: Xi ∼
Bernoulli(pi) for i ∈ [50], p1 = p2 = 0.02, and
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(b) γ-NB-ALG vs. PB-ALG
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(c) γ = 1
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(d) γ = 1.1
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(e) γ = 1.5
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(f) C-UCB-2 vs. C-UCB

Figure 3

pi = 0.5 for i ∈ [3, 50]. For this choice of pi’s the
PB-ALG algorithm asymptotically achieves the best re-
gret. The rewards variable Y depends on Xi’s as fol-
lows (unknown to both the algorithms): if X1 = 1
then Y ∼ Bernoulli(0.5 + ε) and otherwise Y ∼
Bernoulli(0.5 − ε′), where ε = 0.3, and ε′ = p1ε

1−p1 ∼
0.006.

The experiment in Figure 3a compares the simple re-
gret of the two algorithms when γ = 60 and the budget
is increased to 3000. The regret is computed by aver-
aging it over 1000 independent runs. The experiment
in Figure 3b illustrates the effect on the simple regret
of the algorithms as γ increases from 1 to 75. Ob-
serve that till a threshold value of γ both algorithms
have very close simple regret and post the threshold,
γ-NB-ALG trades off between observations and inter-
ventions to yield a much better simple regret.

Experiment 2 (F-KUBE vs. CRM-NB-ALG): This ex-
periment compares the performance of F-KUBE and
CRM-NB-ALG . The model is as in Experiment 1, except
ε = 0.5. This was done to ensure better visualiza-
tion. Figures 3c, 3d, and 3e illustrate the cumulative
regrets of both the algorithms for γ equal to 1, 1.1 and
1.5 respectively as the budget is increased. The regret
is computed by averaging over 50 independent runs.
Notice that CRM-NB-ALG yields a much better regret in
all three cases and its regret is constant for γ = 1.5.

Experiment 3 (C-UCB vs. C-UCB-2): This ex-
periment compares the performance of C-UCB and

C-UCB-2. The underlying causal graph of our model
is shown in Figure 2. Since node X2 has a backdoor
path, this model is not a no-backdoor graph. The con-
ditional probability distribution for each node (given
its parents) is given in Table 1, Appendix C. We model
the conditional distribution of reward variable Y as:
Y |w1, w2 = θ1w1 + θ2w2 + ε, where ε is a Gaussian
random variable N (0, 0.01). The parameters θ1 and
θ2 are fixed to 0.25. Figure 3f shows a comparison of
cumulative regret incurred by both algorithms for val-
ues of T in the range [5, 100]. The regret is computed
by averaging over 500 independent runs. Notice that
the regret of C-UCB is much higher than C-UCB-2 and
also grows with time. Moreover, the regret of C-UCB-2
grows a little initially and then becomes constant as
proved in Theorem 4.

7 Discussion and Future Work

The MAB problem can be used to model several real-
world scenarios where additional information besides
the reward of the pulled arms is available and hence the
study of the MAB problem with side-information has
been an area of significant interest in the research com-
munity. One of the most prominent models with side-
information is the contextual MAB problem where the
algorithm receives extra information (called context)
before each arm pull (Lu et al., 2010). A class of ban-
dit problems where the side-information obtained con-
forms to a feedback graph has also been studied in the
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literature (Alon et al., 2015). The special case of par-
allel causal graphs studied by Lattimore et al. (2016)
and in this work is in fact captured by such a model,
but as shown by Lattimore et al. (2016) their regret
bounds are not optimal in this setting.

In this work, we study the the causal bandit prob-
lem for no-backdoor graphs in the budgeted bandit
framework. In this setting, observations are cheaper
compared to interventions, which is practically well-
motivated. In Sections 3 and 4 we provided two
algorithms, γ-NB-ALG and CRM-NB-ALG , that mini-
mized the expected simple regret and expected cumu-
lative regret respectively. Sen et al. (2017a) also study
the best intervention identification problem via impor-
tance sampling under budget constraint. But in con-
trast to our work, they consider soft interventions on a
single node V , and also assume that the interventional
distributions and the marginals of the parent distribu-
tion of the node V are known. This is incomparable
with hard interventions on no-backdoor graphs, where
interventions can be performed on different variables
and the parent distributions of the intervened nodes
are not known. Also, their setting is parameterized by
B′ and T , where B′ is the upper bound on the average
cost of sampling and T is the total number of sam-
ples that the algorithm draws. This can be mapped
to our model by setting the budget to be B′T . In our
budgeted setting, T is not given as input to the algo-
rithm, and this is important for the trade-off between
observations and interventions.

In the non-budgeted setting, we showed that our al-
gorithm, C-UCB-2, has constant expected cumulative
regret in terms of instance-parameters. We conjec-
ture that the worst-case regret bound of our algorithm
matches that in Lu et al. (2020), and resolving that re-
mains open. The work by Sachidananda and Brunskill
(2017) studies a similar problem as that in our work
and experimentally show the effectiveness of Thomp-
son Sampling but do not provide any theoretical guar-
antees.

Finally, many of the works in the literature such as
those of Lu et al. (2020) and Lattimore et al. (2016)
assume that the parent distribution for each interven-
tion is known to the algorithm. We only make this
assumption in Section 5. This assumption is limiting
in practice and showing a non-trivial regret guaran-
tee for settings without this assumption remains an
important open direction.
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