Predictive Complexity Priors: Supplementary Materials

Eric Nalisnick Jonathan Gordon José Miguel Hernandez-Lobato
University of Amsterdam University of Cambridge University of Cambridge

1 ECP FOR LINEAR REGRESSION, CONTINUED

1.1 Varying Prior Parameters

We consider the following priors on the KLD, denoted 7(k) in the main text:

e Exponential(z; \) = e*z/k/)\

o Gamma(x; A = {1, \2}) = %e—x/&

e Log-Cauchy(z; \) = L (W)

Since the gamma prior favors pg and the exponential p;, we also consider a mixture of the two:
m(k; A) = AGamma (KL [p4 || po]) + (1 — A\)Exponential (KL [p4 || po]) -

This mixture should achieve the same interpolation behavior as the log-Cauchy, balancing preferences for py and
p+. See Figure 1(a) for a visualization of the ECP for the gamma-exponential mixture as the mixing coefficient is
varied. Figure 1(b) shows the log-Cauchy ECP as its scale is varied.

1.2 Dynamic Shrinkage Profile

One method for illuminating and comparing the effects of shrinkage priors is through their corresponding shrinkage
profile (Carvalho et al., 2009). Consider the model: y ~ N(0,1), 8 ~ N(0,7), 7 ~ p(7). Given one observation
¥ = Yo, the Bayes estimator for 0 is: E[0|yo, 7] = -0+ (1 — k) - yo, k = 1/(1+ 7). Making the change of variables
p(k) = p(7)|-L1/k — 1|, we can examine the induced prior p(x). If p(r) places high density near x = 1, then the
prior provides strong regularization since the Bayes estimator would be near zero. Conversely, a strong mode at
k = 0 means the resulting estimator would be near y, implying a tendency to follow the data. Figure 1(c) shows
the shrinkage profile for the log-Cauchy ECP for = € {.1,1, 3}, comparing the profiles of the horseshoe’s. The
horseshoe is an effective prior for robust regression since it is designed to equally favor 0 and 1 (k ~ Beta(.5,.5)).
The shrinkage profile for the log-Cauchy also can place density at both extremes. However, unlike the horseshoe,
the ECP enables dynamic shrinkage, being able to adjust the profile as a function of . We see that for z = 0.1,
the log-Cauchy ECP actually favors the unshrunk solution whereas for x = 3 strong shrinkage is preferred. The
mixture ECP’s shrinkage profile is shown in Figure 1(d). Due to the exponential not having a heavy tail, the
mixture ECP’s profile cannot place any significant density at x = 0, meaning that the model can never completely
‘forget’ the shrinkage regularization.

Predictive Complexity Priors: Supplementary Materials

7 = A= 15
6 m A= 1.0
— 3 A= 05
£
) L
3
2
1 \.._.*_____—__
0.0 0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.‘6 00.0 0:1 0.‘2 0.‘3 0.‘4 0:5 0.6
T T K
(a) Varying A for Gam-Exp Mixture (b) Varying A for Log-Cauchy (¢) Log-Cauchy Shrinkage Profile
= o8
: 0.050 A 07 1
A ooss|{ ™= A=0.7 b o6
£ 4| === 2A=05 o' o -
o == A=03 P > 0.5
> 0.035 .® =
= «® = 041
= 0.030 .® 0
Q i e © o3
© o025{ ® Q-
2 S 4.
= 0.020 a -
Eoms— —‘—'- — 01
=0 - T
.0 ¥ ; . . | S 0.010 == ‘— : : . = oo ' : ; : .
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 0.2 0.4 0.6 0.8 . 1.0
K Rank of Feature Matrix Scale of Feature Matrix
(d) Mixture Shrinkage Profile (e) Varying Rank of X (f) Varying Scale for Full-Rank X

Figure 1: p(t) for Linear Regression. Subfigures 1(a) and 1(b) show how the mixture and log-Cauchy ECP for T
changes as a function of \. Subfigures 1(c) and 1(d) show the shrinkage profiles for the log-Cauchy and mixture
ECPs (respectively). Subfigures 1(e) and 1(f) show how varying the rank and scale of the design matrix affects
the ECP’s tail probability.

1.3 Example: Multivariate Regression

We now examine the case of multivariate regression: E[y| X, B] = X, where y € RY is an N-dimensional vector
of responses, X € RV*P the design matrix, and B € R? a vector of parameters. Using the multivariate analogs
of the priors from above—py = 6(|@ — 0|), p+ = N(0,tl)—we can derive the following ECP:

. -1 9T T A 0 KL
p(T,A,X):ﬂ'KL (210g]I+TO_y .X X|+@tr{X X},A) ﬁ (1)

where tr{-} denotes the trace operation and | - | the determinant. The KLD is computed between p(y|X,T) and
po(y|X). We omit the details of the volume term due to space constraints.

Here the KLD is a multidimensional integral that takes into account correlations in the model’s predictions.
Hence, we can explore how characteristics of the design matrix influence the prior. We consider the tail probability
P(t > 1) since, as probability mass moves away from the origin, the ECP increasingly prefers the extended
model. Below we describe simulations using the mixture ECP due to its mixing weight A being interpretable.
First consider the case in which X has a rank of one and all row vectors have a length of one. This means that
the data is essentially redundant, generating the same predictions. As the rank of X increases, the predictions
start to become varied and the model output becomes responsive to each x,,. Thus, we should expect p(T) to
favor larger values as the rank of X increases. Indeed, this is exactly the behavior we observe in Figure 1(e),
plotting the tail probability P(t > 1) as we vary the rank from 1 to 20. Another attribute of X we can vary is its
scale: aX. Subfigure 1(f) shows the tail probability as the scale « increases (for full-rank X'). We find that scale
changes result in more pronounced tail effects than changes in rank.

Eric Nalisnick, Jonathan Gordon, José Miguel Hernandez-Lobato

1.4 Example: ECP for the Linear Regression Coefficient

In the main text, we consider applying the ECP to the scale of the prior on 3, the regression coefficients. Yet, we
can also define the ECP on B directly. Consider the linear model E[y|z, B] = 5o + S1z, Bo ~ N(O, 0[2,,0). We wish
a define the ECP on (; to control deviation from the base model pgy : 81 = 0:

9 KL [py (ylz, 81) || po(y|z)]
0B

p(Bi: M) = mie (KL [ps (vl) || polyle)]:) \

= 1 IS 612_372 A
9 K 202 +03,)

where o is the response noise. Figure 2(a) shows three choices for iy, —exponential (green), gamma (purple),
and log-Cauchy (red)—and Figure 2(b) shows the prior each induces on 1. We see that choice of 7y, is significant.
If 7, places too little density at zero, the volume term |52 /(o7 + 0;“30)| in the ECP dominates, driving p(51) to
zero at f1 = 0. In turn, this drives f; from reflecting the behavior of py and suppresses any regularization. We see
this behavior from the exponential (green) as its ECP has no density at zero. At the other end of the spectrum
is the gamma (purple). It places too much density at zero, forcing p(/31) to preference the base model 8; = 0.
Lastly, the log-Cauchy (red) has the most interesting behavior: it has strong shrinkage at the origin to reflect pg
but also significant density away from zero to represent p,. Hence the log-Cauchy is able to balance preferences
for both p; and po, interpolating between the exponential and gamma’s single-mindedness. Lastly, Figure 2(c)
shows how p(f1) changes as x is varied—the data adaptive nature mentioned above. The ECP’s shrinkage is
adjusted to the scale of the features, applying stronger regularization when x is large and relaxing as x decreases.
This is sensible since the models predictions cannot change as drastically for small xs as they can for large ws.

51332 (2)

2 2
Ty + T80

Connection to Non-Local Priors Perhaps the (log-Cauchy and mixture) ECP’s most interesting feature is
in how it balances between pg and py through multi-modality. In addition to the strong mode at zero, there are
modes separated from and symmetric about the origin; see Figure 2(d). This is the defining feature of so-called
non-local priors (Johnson and Rossell, 2010). This class of priors is designed to achieve good convergence rates in
Bayesian hypothesis testing by carefully allocating density exactly at the null and distinctly away from the null
to represent the alternative. Shin et al. (2018) apply this non-local principle to Bayesian variable selection in
high-dimensional regression via the following prior:
52
B ~zd+ (1 —2z)pne(8), 2z~ Bernoulli(p), pnu(8)= ?N(ﬂ; 0,0) (3)

where (is the linear model’s coefficient and pyp, is known as a product (2nd) moment prior (Johnson and
Rossell, 2010). See Figure 2(f) for a visualization. While the ECP and non-local prior have clear similarities,
the connection can be made explicit my considering the Bayes factor BF(+]0) = p, (v|z, 04)/po(y|2), which is
what we would use to test Hy : 64 = 0 vs H; : 64 # 0. The ECP’s KLD term contains this exact expression:
KL [p || po] = E,, [log BF(+/0)], which can be interpreted as the (log) Bayes factor expected if the data is truly
generated by the extended model.

2 BIJECTIVITY CONDITIONS FOR NEURAL NETWORKS

Below we show that Eg | KL[py||po] is bijective w.r.t. 7 for Gaussian and categorical observation models, ReLU
activations, and Gaussian weight priors W; ~ N(®;, 7;X). We assume the base model has weights W, ~ §[®],
where ®; is the prior mean of the expanded model. In turn, the change of variables is well-defined and the
PredCP is proper (i.e. integrates to 1) when used in the applications given in Section 5. Before diving into the
technical details, we point out that invertibility should not be hard to guarantee since T € RT is a scalar. If the
reader is familiar with the literature on normalizing flows (Papamakarios et al., 2019) and invertible architectures
(Song et al., 2019), one may have the impression that invertibility is hard to guarantee for neural networks, often
requiring constraints on the weights. This is only the case because an invertible architecture must preserve
bijectivity w.r.t. the entire input vector. We, to the contrary, just have to preserve scalar information. Moreover,
we know this scalar T is strictly positive, which eliminates any symmetry about the origin. Thus, intuitively,
the information about T should be preserved at every hidden layer as long as at least one ReLLU unit is active.
This brings up the only assumption that we require: non-degeneracy. That is, for every hidden layer, there

Predictive Complexity Priors: Supplementary Materials

=== | 0g-Cauchy
=== Gamma
==== Exponential

0 1 2
KLDIp(y[T)]lpoly)]
(a) Varying 7k,

(d) Varying X for Log-Cauchy

n(B1)

(b) Induced Prior m(5:)

mm A=03
0.4 mmmm A=0.5
A=0.7

(e) Varying X for Gam-Exp Mixture

n(B1)

(f) Varying o for Non-Local Prior

Figure 2: w(83) for Linear Regression. Subfigure 2(a) shows three choices for mky,: exponential (A = .5), gamma
(A =(.2,2)), and log-Cauchy (A = 1). Subfigure 2(b) shows the priors induced on 3; for each KLD prior. Subfigure
2(c) shows how the log-Cauchy ECP changes as a function of z. Subfigure 2(d) shows how the log-Cauchy
ECP changes when varying its scale parameter (z = 1). Subfigure 2(e) shows how the mixture (gamma and
exponential) ECP changes when varying the mixture weight A (z = 1). Subfigure 2(f) shows the non-local prior

for three scales.

Eric Nalisnick, Jonathan Gordon, José Miguel Hernandez-Lobato

must be at least one active ReLU unit (i.e. a unit evaluated to a positive value). This is an extremely weak
assumption, especially for all but the smallest neural networks, and ReLLU networks commonly satisfy much
stronger non-degeneracy assumptions (Phuong and Lampert, 2020). If dead layers would arise for some reason,
initializing the biases to be positive should prevent the pathology. Before moving on to the main results, we first
introduce two conventions.

Non-Centered Parameterization: We assume all weights are represented in the observation model p(y| X, W)

using the following non-centered form: W, 4 ®; + /T, - Z, = ~ N(0,X). This parameterization is useful for
‘exposing’ T; so that we can write the KLLD as an explicit function of T.

Linear Representation of ReLU Activations Recall that feedforward networks with ReLU activations are

piecewise-linear functions. Thus, it is equivalent to express a dense ReLU layer in terms of a diagonal ‘gating’
matrix I (Ma et al., 2018):

D
ReLU(hW) = hWI, where 1;;=1 if 0<) w;;h;, (4)

otherwise Ej, j = 0. Using this convention, we can then represent the network’s linear output as:

out = <H WlHl> out

where F,,; is a matrix containing the network’s linear output (i.e. before a softmax is applied, in the classification
setting) for all training features X.

2.1 Gaussian Observation Model

Let’s now consider checking for bijectivity w.r.t. 7, when the observation model is Gaussian, i.e. y ~ N(f,, 05]1).
The expected KLD is then:

N D 2
EW;‘TlKL[N(Fjuta QH)HN(Out7 Z Z W[lTL |:(n,d,out fr?,d,out) :|
n=1d=1
- ﬁ Z Z WL|TL n d, out)] - 2]EW1|T1 [frt,d,out}fg,d,out + (fg,d,out)Q
Y n=1d=1

where n indexes the training features and d the output dimensions. Since fJ,, does not involve 7, we can treat is
as a constant. The sum over n and d forms a conic combination. Therefore if all terms have the same monotonicity
and are bijective, then the sum will be bijective as well.

We first turn toward the expectation in the middle term and expand it using the non-centered parameterization.
We drop the indexes to help with notational clutter:

L
IEW1,|7'L [f(;;t] = EW”TI, |fB (H lel> wout‘|
=1

l [(H('In + v - E)l) wout] (6)
xr (H \/7Tl . EJI[) wout] .
=1

L
i |fB (H élﬁl> Wout
=1
L ~ L -
= (H (I)IEEL {HJ) Wout + T (H \/7Tl :]EEZ |:El]Il:|> Wout-
=1 =1

E

0

E

0]

Pushing through the expectation, we have:

Predictive Complexity Priors: Supplementary Materials

Considering the first term, we have that E[;] = 1 if > ¢ih; > 0. For the second, Ez, {Elﬁl} = 0. Thus,

Ew, |- [£.h 1] reduces to the first term, and since this term depends only on the prior means, it is equivalent to the
output of the base model:

0
EWL\TI [f;;;t] = fout' (7)
Now turning to the other expectation term in Equation 5 and using the expansion from Equation 6, we have:

EW[|7 [(fcj;t)z] =

oo o)) e =)o
=)o)

The middle term drops out after taking the expectation. We are left with the two remaining terms:

L 2 I 2
IEVVZ|"'1 [(fjut)ﬂ = EEI (i[} (H (ﬁlﬁl> wout) +7 H T - EEZ <w <H Elﬁl) 'LUout>
=1 =1

£l

Ez,

>0 >0
Y1 Y2

We use the variables v; and 2 to denote these two terms from here forward. They have the following three
properties that will come in handy below. Firstly, their values are strictly positive due to the square and
non-degeneracy assumption (trace{ﬁl} # 0 V). We emphasize this by giving them the superscript > 0. Secondly,
we know their derivative w.r.t. 77 is zero. This is true for 41 because it depends on 7; only through I and therefore
only through the sign function. For s, it does not depend on 7;; we have factored it out already. Thirdly, v; and
2 are bounded w.r.t. 7;. We know this in the former case because, again, 7; controls only the ‘gates’ in v; and ®
is bounded. The latter case is trivial due to 72 not being a function of 7;. Now substituting back into Equation 5,
we have

szl‘n [(out)Z] - 2EW1\TL [fjut]f(?ut + (fr())ut)2

= ,Yl>0 + Tl72>0 - Qf(?ut oout + (3ut>2 (8)
=71+ 175 — (fou)™-

All that is left to do is to check for injectivity and surjectivity. For the former, we need to verify the derivative
has a constant sign, and we find that:

0
a9 (sz\ﬁ [(0ut>2} - 2]EW1|7'1 [fjut]fgut + (fgut)Z) = 72>0'

ot 1
Clearly, the derivative is always positive, meaning the function is strictly increasing. Lastly, for surjectivity, it is
sufficient to check that

1+ = (o) =07 as 7 — 07

WO+ = (o) o0 as T oo,

As 7 — 0, we have that v1 — (f0,;)?, therefore causing the first and last terms to cancel. The remaining 7,75 "

term is then forced to zero simply by 7 going to zero. As 7 — o0, the second term is sufficient for the full quantity
to go to infinity since all other terms are bounded as a function of 7.

2.2 Categorical Observation Model

In the previous subsection, we showed that bijectivity is preserved at least up through the neural network’s linear
output F, ,. We now consider the case of a categorical observation model. This case is harder to show explicitly

because the expectation cannot be pushed through to individual terms as we did above. Rather, we base the

Eric Nalisnick, Jonathan Gordon, José Miguel Hernandez-Lobato

argument on the fact that compositions of bijections form a bijection. In particular, given that f.\, is bijective,
we need the three following operations to preserve that bijectivity: Ez o KLD o softmax o f.,(7;).

First considering the softmax, the softmax function is defined as:

_ exp{ray}
= D
>a=1exp{Tza}
where z; € R, 7 € RT, 0 < 7; < 1, and ZdD:l mq = 1. We want to prove that the softmax is invertible w.r.t. the
scale 7 for fixed & = {z1,...,xp}. Since 7 is a scalar, it suffices that only one 7; need be invertible. Below we

show bijectity by showing injectivity and then surjectivity. We can show injectivity by examining the softmax’s
derivative w.r.t. 7 and showing it has a constant sign:

(1) = 7 (Zﬂdxd>
(+) —_———
(+) or (=)

where the first term 7; is positive and the second could be positive or negative, depending on the = values.
Denoting the maximum element of @ as z.x = maxy xg, the derivative in this dimension is:

D
7T;nax(T) = Tmax (xmax - Z']le'd> > 0,

+) =1

(+)

. . . . D . o .

and now we know the second term is strictly positive since), | w44 is a convex combination of x. That is,
. D .

assuming that there’s at least one 4 < Tmax, then > de1 TdTd < Tmax- Conversely, for Tyi, = ming x4, we have:

D
7r1/rnin(7—) = Tmin (fEmin - Z Wdl'd) < 0,

+) =1

(=)

. D . .
since Y | J—1 TdTd > Tmin- Lhus, we have that at least two dimensions—
those corresponding to xpyi, and z,.x—of the softmax are injective

w.r.t. 7. For surjectivity, it is sufficient to check the limits. For _% Z.j- - 2.00 /
T — 0%, m; — 1/D (Vj), and for 7 — oo, we have Ty — 0 and 5 0'6_ 1.85
Tmax — 1. Thus, Ty, is strictly decreasing on (1/D,0) and that 8 067 =— 1.20
Tmax 18 strictly increasing on (1/D,1). In turn, Softmax:T — Tmin/max §_ Z-i: = 0.50
is a bijection. The figure to the right shows the softmax outputs for 5 /
one particular setting of x; each line represents an output ;. We see 2 037,
that the blue (z = 2.00) and red (z = 0.50) lines, the max and min g 021
dimensions respectively, are strictly monotonic. On the other hand, & 011
the orange line (z = 1.85) is clearly not bijective since it doesn’t pass ¥ %0 :
0 2 4 6 8 10

the horizontal line test.

On to the KLD, KL[p*|[p] is strictly convex w.r.t. pT for fixed p°.

This is indeed our setting since only p* is a function of 7;. This strict

convexity implies that KL[pT||p°] has a unique, global minimum at 7 = 0 and is strictly increasing as 7 — oo—and
hence, is bijective. Lastly, the expectation does not have an analytical solution, and thus here (as well as in
practice), we consider the Monte Carlo approximation:

Bz KL [p(y|X. Z,7) lpo(v]X)] ZKL[¥IX. Eo,) Ipo (v 1)

where the approximation becomes exact as S — co. The Monte Carlo approximation is a weighted sum of
bijective, strictly increasing functions and therefore is also strictly increasing and bijective.

Predictive Complexity Priors: Supplementary Materials

Traditional Feedforward Network Residual Network

1o Normal Horseshoe PredCP, Log-Cauchy Normal Horseshoe PredCP, Log-Cauchy
[
£ 3 0.5
o
:‘ > 00
-l

-0.5
n

_1'0—‘4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 g -2 0 2 4

X X X X X X
Horseshoe PredCP, Log-Cauchy Normal Horseshoe PredCP, Log-Cauchy
[
f
o
>
«©
-
n
N
-4 2 0 2 4 4 2 0 2 4 4 2 o 2 4 -4 5 0 2 44 2 0 2 4
X X X X X

Figure 3: Induced Prior Over Functions. We compare a standard normal prior, the horseshoe (T ~ C*(0,1)), and
the depth-wise PredCP (w(k) = Log-Cauchy(0, 1)) for 5 and 25 layer NNs.

2.3 Residual Networks

The preceding two sections hold as well for residual networks. In fact, residual networks allow us to relax the
non-degeneracy assumption. That is, for invertibility w.r.t. 7;, we can have h; = 0 for j > [just so long as there
is a path of skip (identity) connections from layer [to layer m > j. This identity path preserves the information
about 7; that would be lost due to h; = 0.

3 DRAWING SAMPLES FROM THE PREDCP

The user may want to draw samples from the PredCP—for instance, to perform a prior predictive check (Box,
1980). In general, sampling from a reparameterized model can be done via: & ~ p(x), 6 = T(&) where p(x) is the
base distribution and T is the transformation (Papamakarios et al., 2019). Applying this formula to the PredCP,
in theory, we could draw samples via:

Rm(x), 7=T""(k) (9)

where # represents a sampled value of Eg|<KL [p, ||po] and T’ ~! represents an inversion of the expected-KLD,
yielding T as a function of k. Unfortunately, the analytical inverse of Eg <KL [p||po] is not available in general.
Instead, we use the numerical inversion technique proposed by Song et al. (2019). See Algorithm 1 below.

Algorithm 1 Sampling from the PredCP

Input: Prior 7w(k), number of iterations T', step size «
Sample & ~ w(k)
Initialize 79« &
For ¢t = [1,T):

Compute D(ri—1) = Egjr,_, KL [p1||po]

Compute 9ID(7_1)/071—1

Update 7+ 7¢_1 —a (ID(ry_1)/0m_1) " (D(11_1) — &)
Return 7

We used Algorithm 1 to sample from the depth-wise PredCP and ancestral sampling to draw functions from
the NN. We considered both residual and non-residual architectures, both having batch normalization applied
at each hidden layer. The observation model is Gaussian with o, = 1. We used a log-Cauchy(0,1) KLD prior,
a=5x1075T = 20, and 5 Monte Carlo samples for the 0|t expectation. In Figure 3, we show 5 function samples
for the standard Normal, horseshoe (T ~ CT(0,1)), and PredCP for 5 and 25 hidden layers. The PredCP’s
samples are notably simpler.

Eric Nalisnick, Jonathan Gordon, José Miguel Hernandez-Lobato

4 MODULAR PRIOR SPECIFICATION FOR META-LEARNING

We provide details for specifying and evaluating modular priors for meta-learning. Following Chen et al. (2019),
we split 0 into M distinct modules (e.g., layers), such that 6 = [9{, el GE}T. Our goal is then to place a
separate prior on each module, and allow the modules to adapt differently to new tasks. Denoting ¢,, and T, as
the global parameters and shrinkage parameter of module m, respectively, we have that 0y ,, ~ N(¢s,, Tr, 1) for
the local parameters of task ¢ at module m. By specifying p,,(T..), we can control how much each module is
allowed to deviate from the global model. For example, Chen et al. (2019) place an improper flat prior on T, and
perform MAP estimation. Importantly, to perform MAP estimation for {t,,}}_;, we need only evaluate the log
density of the priors p,,(T,,), and add these terms to the outer-loop optimization objective (Chen et al., 2019).

Defining a PredCP Prior for T In this setting, It is natural to consider the global parameters as defining the
base model for the PredCP prior. We can achieve this by specifying the prior to be pg m (0¢m) = 0(0rm — Pm)-

Denoting po(0) = H%ﬂ P0,m(Om), we then have

po(yle) = / Py,)p0(8)d0 = py(ylx),

where we denote py(y|x) as the predictions made by the model using only global parameters. Next, for every
module m, we can define the extended model

P (918 Tm) = / (Y12, B, 01) P (Brn|Tre)dOn,

where we use the notation p(y|x, ¢, 0,,) to denote the model that uses ¢ for all but module m, which uses
0,,. Using the notation from the main text, we further denote po(D¢) = [[, yep, Po(¥|®) and pp.(D¢[0,m) =
Hw’yeDt Pm(y]E, d, 0,,). Recall that using the KLD upper bound, the PredCP prior for this setting can be

expressed as
T2

We can approximate the intractable term inside (k) without bias via Monte-Carlo sampling:

T
B Ee KL|
p(Tm) =7 < ZEGt ,,L\T,,LKL[m(Dt|et m) H Po Dt) IT

~

Eo.. e KL [P (D1]81.m) || po(D1)] ~ Z L [pn(Di10{),) Il po(Dy)]

where 0, ~ N(¢m, T, I). Note that the KLD term itself is a sum over the KLD terms for each (x,y) in the
support set. In turn, each of these terms is a KLD between categorical likelihoods, which is easily computed.
As detailed in the main text, we divide the sum by the number of points in the set to ease the reasoning about
the parameters of wky,. We can further achieve an unbiased estimator to the term inside 7k, using stochastic
mini-batches of tasks, as is standard in the few-shot classification literature.

Finally, assuming a factorization of the T,,’s, we can simply evaluate the log-density for each prior, and compute
their sum. In practice, we use single-sample estimators of the KL term, and compute the prior terms over batches
of tasks to reduce the number of forward passes through the network required to compute the objective. The
procedure for evaluating the PredCP prior for a batch of B tasks is detailed in Algorithm 2. Here we use the
notation CNN(z;-) to denote a forward pass through a convolutional neural network using a set of parameters,
applied to an input. We treat the output of such a call as the logits of a categorical distribution.

5 LOGISTIC REGRESSION EXPERIMENTAL DETAILS

For the logistic regression experiment in Section 6 (Table 1), we used the probabilistic programming language
Stan (Carpenter et al., 2017) for the implementation of both Markov chain Monte Carlo (MCMC) and variational
inference (VI) (Kucukelbir et al., 2017). In both cases, we performed inference for the full posterior p(f, A, 7| X, y).
Following Piironen and Vehtari (2017)’s implementation, we used a non-centered parameterization: g = Ag-7- &4,
&4 ~ N(0,1). For MCMC, we left Stan at its default settings. We evaluated the predictive log-likelihood using 4000
posterior samples (the default output). For VI, Stan uses a mean-field Normal posterior, appropriately transforming

Predictive Complexity Priors: Supplementary Materials

Algorithm 2 Single sample evaluation of 7; for modular meta-learning

Input: Global parameters {¢,,}M_, network architecture CNN
Input: Prior 7(k), current values {t,,}M_;
Input: Inputs from all tasks in batch {{z,,})_,: b=1,...,B}

Compute pj* < CNN(z,, ; })

For m = [1,M]:
Sample 0, ~ N (¢, Tm])
Compute p"’ < CNN(z,, ;; ¢, 0,,)
Compute KL,, + 75 Db KLD(pl*, po™*)

m
8KLm‘

Compute log 7, + log k1, (KL,,) + log ‘ o

Return E%:l log 7.,

all variables so that their support is R. Again we left all hyper-parameters at their defaults. The predictive
log-likelihood was evaluated with 1000 samples drawn from the approximate posterior. For the PredCP, we used
10 samples to evaluate the Monte Carlo expectation over 0|t for colon and breast. For allaml, we used only
one Monte Carlo sample due to the data set being larger and requiring more time to run the MCMC. The allaml
and colon data sets were downloaded from http://featureselection.asu.edu/datasets.php. breast was
downloaded from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra. We standardized
the features using the z-transform (x — fi)/&, which we found to improve the speed at which the MCMC converged.
We made 20 80% - 20% train-test splits for all three data sets. We left out 10% of the training set for each as a
validation set that we ultimately did not use.

6 RESNET EXPERIMENTAL DETAILS

For the resnet regression experiment in Section 6 (Table 2), we followed the experimental framework of Nalisnick
et al. (2019)! (which followed Gal and Ghahramani (2016) and Hernandez-Lobato and Adams (2015)). All
networks had two hidden layers, ReLU activations, and no batch or layer normalization. The posterior was
approximated as:

3
AW AL Ty, X) =~ [[a(W0) a() g(m) = [N(W3; , diag{Z1}) 5[N] 6[i]. (10)
=1 =1

The weight approximation (Bayes-by-backprop (Blundell et al., 2015), fully factorized Gaussian) was optimized
using Adam (Kingma and Ba, 2014) with a learning rate of 1 x 10~3 (other parameters left at Tensorflow defaults),
using mini-batches of size 32, and run for 4500 epochs. The Monte Carlo expectations in the ELBO and PredCP
both used 10 samples and flipout (Wen et al., 2018) for decorrelation. The ARD scales A could be updated
in closed-form for all models. The PredCP does not allow for a closed-form T update (for ADD) and so we
used an iterative maximization step. We used only one step per update so that the PredCP’s training time was
comparable to the other models’. The UCI data sets were standardized and divided into 20 90% - 10% train-test
splits, following Hernandez-Lobato and Adams (2015). The test set RMSE was calculated using 500 samples
from the N(W;) posterior. For the fixed scale model, we selected the better performing of 7o = {.1,1}. For the
PredCP, we used the log-Cauchy(0, 1) KLD prior, finding it worked well in the logistic regression experiment and
generated sensible sample functions. In Algorithm 3, we provide pseudo-code for evaluating the depth-wise (log)
PredCP.

7 FEW-SHOT CLASSIFICATION: EXPERIMENTAL DETAILS AND
ADDITIONAL RESULTS

We provide experimental details and results for our few-shot classification experiments.

"https://github.com/enalisnick/dropout_icml2019

http://featureselection.asu.edu/datasets.php
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra
https://github.com/enalisnick/dropout_icml2019

Eric Nalisnick, Jonathan Gordon, José Miguel Hernandez-Lobato

Algorithm 3 Evaluating the Depth-Wise Log-PredCP
Input: Scales T1q,...,Ty, prior 7(k), number of Monte Carlo samples S, feature matrix X

Initialize 7+ 0
Initialize pg < p(y|X, Win, Wout)

For | = [1,L]:
Sample Wi i,...,W; s~ p(W|T;)
For s = [1,95]:

ComPUte P+,s = p(Y|Xa Win7 {Wj,s}é‘:h Wout)
Compute &; = %Zle KL[p+ s||po.s]
Update =« 7+ logw(k;) + log|0&k;/07|

Update {po1,...,po,s} < {p+,1,--.. P45}
Return 7 (log-PredCP)

7.1 Data Details

We use two standard few-shot classification benchmarks for our experiments: mini-ImageNet (Vinyals et al., 2016)
and few-shot CIFAR100 (FC; (Oreshkin et al., 2018)). For mini-ImageNet, images are first down-sampled to
84x84, and then normalized. For FC, the images are classified in their 32x32 format after normalization. We
use the standard split as suggested by Vinyals et al. (2016) for mini-ImageNet, containing 64 training classes,
16 validation classes, and 20 test classes. For FC, we follow the protocol proposed by Oreshkin et al. (2018),
using the CIFAR100 super-classes to split the data. See Oreshkin et al. (2018) supplementary for full details. An
N — way, K — shot task is randomly sampled according to the following procedure:

e Sample N classes from the appropriate set uniformly at random.
e For each class, sample K examples uniformly at random for the context / support set.

e For each class, sample 15 examples uniformly at random for the target / query set.

Evaluation is conducted by randomly sampling 600 tasks from the test set. Average accuracy and standard errors
are reported.

7.2 Network Architectures

For all tasks, we use the standard convolutional architecture proposed by Finn et al. (2017). Each network is
comprised of four convolutional blocks, followed by a linear classier. For mini-ImageNet, we use a standard 3x3
convolution with 32 channels, followed by a max-pool (stride 2), a ReLU non-linearity, and a batch normalization
layer. We flatten the output of the final layer, leading to an 800d representation, which is then passed through
the linear classifier.

For FC, we employ the same architecture, but with 64 channels, and no max-pooling. A global-average pooling
is applied to the output of the final convolutional layer, resulting in a 64d representation, which is then passed
through the linear classifier.

We used the standard hyper-parameters proposed by Finn et al. (2017), without any tuning. In particular, we use
5 gradient steps for the inner loop during training, and 10 at test time. The inner learning rate is fixed to 0.01,
and the meta-learning rate is le-3. We use a meta-batch size of 4, and train all models for 60,000 iterations.

7.3 Hyper-Priors and Additional Results

For the modular shrinkage model, we experiment with four hyper-priors: Half-Cauchy, log-Cauchy, a mixture of
Gamma and Exponential (GEM), and standard Exponential. Each of these is experimented with as a standard
shrinkage prior, as well as the base prior for the PredCP. The parameters of the hyper-priors are fixed throughout
experimentation, and are given as follows:

e Half-Cauchy: p(0), k1, = half-Cauchy(1.0)

Predictive Complexity Priors: Supplementary Materials

Table 1: Complete results for few-shot classification with few-shot CIFAR100. Considering four priors for cMAML
and four base priors for PredCP.

Beta Half-Cauchy Log-Cauchy Gem Exponential
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
PreDCP
le-0 33.2 £ 1.8 51.7 + 0.9 37.7 £ 1.7 51.8 + 0.9 379 +19 520+£097 389 +138 51.4 £ 1.0
le-1 39.6 £ 1.6 51.4 £ 0.9 379+ 1.9 50.6 £ 0.7 40.9 £ 1.8 51.7 £ 0.9 39.5 £ 1.9 51.1 £ 0.8
le-2 38.2 +£1.8 50.9 £+ 0.8 40.1 £ 1.9 52.5 £ 0.9 37.8 £ 1.8 51.6 +£ 0.8 40.3 £ 1.9 49.1 £ 1.1
le-3 39.7+19 529+ 0.9 402+ 138 50.6 +£ 1.0 38.8 £ 1.8 51.3 £ 0.9 38.5 £ 1.8 50.8 + 0.9
le-4 37.4 + 1.7 52.7 + 0.9 37.7+ 1.8 50.5 + 0.9 35.8 + 1.7 51.5 + 0.9 41.2 + 1.8 50.9 + 0.9
SHRINKAGE PRIORS
le-0 36.9 £ 1.8 51.4 + 0.9 39.5 £ 1.9 52.2 + 1.1 39.8 £ 1.8 52.4 £ 0.9 39.4 £ 1.8 52.6 £ 0.7
le-1 39.8+19 52.7+ 0.8 409+ 1.9 52.7+09 366+138 52.5 £ 0.8 38.7+ 1.9 51.6 £ 1.1
le-2 38.2 +1.8 52.0 £ 0.9 38.8 £ 1.7 51.2 +£ 0.8 36.4 + 1.8 51.4 £ 0.9 39.1 £ 1.9 52.2 £ 0.9
le-3 39.3 + 1.7 51.3 + 0.7 359 £ 1.8 50.8 + 0.9 40.8 £ 1.9 51.9 + 1.0 375+ 1.9 52.2 + 0.8
le-4 38.6 £ 1.7 51.5 + 0.9 409 £ 1.8 50.1 + 0.9 38.8 £ 1.8 51.8 £ 0.9 40.1 £ 1.8 51.4 £ 0.9
MAML (flat 6, prior) 35.6 £ 1.8 50.3 £ 0.9
ocMAML (flat 7 prior) 39.3 £ 1.8 51.0 £ 1.0

Table 2: Complete results for few-shot classification with mini-ImageNet. Considering four priors for cMAML
and four base priors for PredCP.

Beta Half-Cauchy log-Cauchy GEM Exponential
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
PrRepCP
le-0 334 £ 1.7 60.7+0.8 28.6 +£ 1.6 59.8 £ 0.8 287+ 16 59.1 £08 30.2+1.7 59.1 £+ 0.8
le-1 479 £1.7 604 +09 49.3 + 1.7 60.4 £ 0.7 475+ 1.9 61.4+ 0.8 47.7 £ 1.7 60.6 + 0.9
le-2 47.0 £1.8 60.3 £ 0.7 459 £ 1.6 60.7 £ 0.8 46.7 £ 1.8 61.7 0.7 472 +19 61.9 +0.9
le-3 46.4 £ 1.7 61.3 £0.8 48.1 £ 1.8 61.2 +£ 0.9 479 +£ 1.7 605 +£0.8 469 + 1.7 60.5 £ 0.8
le-4 477 £1.8 60.4 + 0.9 47.7 £ 1.8 60.3 £ 0.9 481+ 19 60.1 £ 0.9 483 £+ 1.8 60.4 £+ 0.9
SHRINKAGE PRIORS
le-0 429 +£1.8 573+09 485 +1.7 60.9+09 24.74+15 29.0+0.7 44.5+1.8 57.8 £ 0.9
le-1 46.5 £ 1.8 59.2 + 0.9 472 £ 1.8 59.7 £ 0.9 45.8 £ 1.8 58.7 + 0.8 47.0 £ 1.8 59.6 £+ 0.9
le-2 46.8 £ 1.7 59.3 £ 0.8 46.3 £ 1.9 59.3 £ 0.8 46.7 £ 1.7 60.1 £ 0.7 46.8 £ 1.8 59.1 £+ 0.9
le-3 473 +1.9 59.2+ 09 477 £ 1.7 59.3 £ 0.9 4724+ 19 601 +£09 475+ 1.9 59.5 £ 1.0
le-4 46.7 £ 1.8 59.2 + 0.9 474 £ 1.7 60.2 £ 0.7 48.0 £ 1.5 59.5+ 0.9 478 £ 1.7 58.6 £ 0.9
MAML (flat 6, prior) 45.6 £ 1.8 584 + 0.9
ocMAML (flat 7 prior) 47.4 + 1.8 60.1 + 0.9

e Log-Cauchy: p(o),mkr, = log-Cauchy(2.0)
e GEM: p(0), kL = 0.5(I'(0.2,2.0) + Exp(0.5))

e Exponetial: p(o), mkr, = Exp(0.5)

Additionally, we experimented with a vague (flat) prior, which recovers the model proposed by Chen et al. (2019).
In addition, we also add a constant weight 3, which multiplies the prior on ¢ in the outer-loop objective for both
the regular shrinkage and PredCP. For each prior, we experiment with g € {le —0,1e — 1,1e — 2, 1le — 3, 1le — 4}.

Tables 1 and 2 provide our complete results for these experiments. For both datasets, and for both 1- and 5- shot,
we observe that a PredCP prior with appropriate weighting on the prior term provides the best performance in
terms of accuracy on the test set.

References

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in Neural
Networks. In Proceedings of the 32nd International Conference on Machine Learning, 2015.

George E. P. Box. Sampling and Bayes’ Inference in Scientific Modelling and Robustness. Journal of the Royal
Statistical Society: Series A, 1980.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus
Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. Stan: A Probabilistic Programming Language. Journal of
Statistical Software, 2017.

Eric Nalisnick, Jonathan Gordon, José Miguel Hernandez-Lobato

Carlos M. Carvalho, Nicholas G. Polson, and James G. Scott. Handling Sparsity via the Horseshoe. In Proceedings
of the 12th International Conference on Artificial Intelligence and Statistics, 2009.

Yutian Chen, Abram L. Friesen, Feryal Behbahani, David Budden, Matthew W. Hoffman, Arnaud Doucet, and
Nando de Freitas. Modular Meta-Learning with Shrinkage. NeurIPS Workshop on Meta-Learning, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In Proceedings of the 34th International Conference on Machine Learning, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in
Deep Learning. In Proceedings of the 33rd International Conference on Machine Learning, 2016.

José Miguel Herndndez-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian
Neural Networks. In Proceedings of the 32nd International Conference on Machine Learning, 2015.

Valen E. Johnson and David Rossell. On the Use of Non-Local Prior Densities in Bayesian Hypothesis Tests.
Journal of the Royal Statistical Society: Series B, 2010.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proceedings of the International
Conference on Learning Representations, 2014.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David Blei. Automatic Differentiation
Variational Inference. The Journal of Machine Learning Research, 2017.

Fangchang Ma, Ulas Ayaz, and Sertac Karaman. Invertibility of Convolutional Generative Networks from Partial
Measurements. In Advances in Neural Information Processing Systems, 2018.

Eric Nalisnick, José Miguel Hernandez-Lobato, and Padhraic Smyth. Dropout as a Structured Shrinkage Prior.
In Proceedings of the 36th International Conference on Machine Learning, 2019.

Boris Oreshkin, Pau Rodriguez Lopez, and Alexandre Lacoste. TADAM: Task Dependent Adaptive Metric for
Improved Few-Shot Learning. In Advances in Neural Information Processing Systems, 2018.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
Normalizing Flows for Probabilistic Modeling and Inference. ArXiv e-Prints, 2019.

Mary Phuong and Christoph H. Lampert. Functional vs. Parametric Equivalence of ReLU Networks. In Proceedings
of the International Conference on Learning Representations, 2020.

Juho Piironen and Aki Vehtari. On the Hyperprior Choice for the Global Shrinkage Parameter in the Horseshoe
Prior. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 2017.

Minsuk Shin, Anirban Bhattacharya, and Valen E. Johnson. Scalable Bayesian Variable Selection Using Nonlocal
Prior Densities in Ultrahigh-Dimensional Settings. Statistica Sinica, 2018.

Yang Song, Chenlin Meng, and Stefano Ermon. MintNet: Building Invertible Neural Networks with Masked
Convolutions. In Advances in Neural Information Processing Systems, 2019.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan Wierstra. Matching Networks for One Shot Learning.
In Advances in Neural Information Processing Systems, 2016.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient Pseudo-Independent Weight
Perturbations on Mini-Batches. In Proceedings of the International Conference on Learning Representations,
2018.

	ECP FOR LINEAR REGRESSION, CONTINUED
	Varying Prior Parameters
	Dynamic Shrinkage Profile
	Example: Multivariate Regression
	Example: ECP for the Linear Regression Coefficient

	BIJECTIVITY CONDITIONS FOR NEURAL NETWORKS
	Gaussian Observation Model
	Categorical Observation Model
	Residual Networks

	DRAWING SAMPLES FROM THE PREDCP
	MODULAR PRIOR SPECIFICATION FOR META-LEARNING
	LOGISTIC REGRESSION EXPERIMENTAL DETAILS
	RESNET EXPERIMENTAL DETAILS
	FEW-SHOT CLASSIFICATION: EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS
	Data Details
	Network Architectures
	Hyper-Priors and Additional Results

