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6 Appendix

6.1 Detailed Proof for Lemma 2

From Equation (16), we can see that �̂Az (z) is a function of z. For a real value z, there exists t1z such that
for any real value z0 in [z, z + t1z), all elements of �̂Az0 (z

0) remain the same signs with �̂Az (z). Similarly, from
Equation (17), we can see that sAc

z
(z) is a function of z. Then, for a real value z, there exists t2z such that for

any real value z0 in [z, z + t2z), all elements of sAc
z0
(z0) are smaller than 1 in absolute value. Finally, by taking

tz = min{t1z, t
2

z}, we obtain the interval in which the active set and signs of lasso solution remain the same. The
remaining task is to compute t1z and t2z.

We first show how to derive t1z. From Equation (16), we have

�̂Az (z
0)� �̂Az (z) =  Az (z)⇥ (z0 � z).

To guarantee �̂Az (z
0) and �̂Az (z) have the same signs,

sj(z
0) = sj(z), 8j 2 Az. (27)

For a specific j 2 Az, we consider the following cases:

• If �̂j(z) > 0, then �̂j(z0) = �̂j(z) +  j(z)⇥ (z0 � z) > 0.

– If  j(z) > 0, then z0 � z > �
�̂j(z)
 j(z)

(This inequality always holds since the left hand side is positive

while the right hand side is negative).

– If  j(z) < 0, then z0 � z < �
�̂j(z)
 j(z)

.

• If �̂j(z) < 0, then �̂j(z0) = �̂j(z) +  j(z)⇥ (z0 � z) < 0.

– If  j(z) > 0, then z0 � z < �
�̂j(z)
 j(z)

.

– If  j(z) < 0, then z0 � z > �
�̂j(z)
 j(z)

(This inequality always holds since the left hand side is positive

while the right hand side is negative).

Finally, for satisfying the condition in Equation (27),

z0 � z < min
j2Az

 
�
�̂j(z)

 j(z)

!

++

= t1z.

We next show how to derive t2z. From Equation (17), we have

�sAc
z
(z0)� �sAc

z
(z) = �Ac

z
(z)⇥ (z0 � z).

To guarantee k�sAc
z
(z0)k1 = k�sAc

z
(z) + �Ac

z
(z)⇥ (z0 � z)k1 < �,

�� < �sj(z) + �j(z)⇥ (z0 � z) < �, 8j 2 A
c
z. (28)

For a specific j 2 A
c
z, we have the following cases:

• If �j(z) > 0, then ����sj(z)
�j(z)

< z0 � z < ���sj(z)
�j(z)

.

• If �j(z) < 0, then ���sj(z)
�j(z)

< z0 � z < ����sj(z)
�j(z)

.

Note that the first inequalities of the above two cases always hold since the left hand side is negative while the
right hand side is positive). Then, for satisfying the condition in Equation (28),

z0 � z < min
j2Ac

z

✓
�
sign(�j(z))� sj(z)

�j(z)

◆

++

= t2z.

Finally, we can compute tz by taking tz = min
�
t1z, t

2

z

 
.
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6.2 Derivations of the Proposed Method for Various Settings

6.2.1 Elastic Net

In some cases, the lasso solutions are unstable. One way to stabilize them is to add an `2 penalty to the objective
function, resulting in the elastic net (Zou and Hastie, 2005). Therefore, we extend our proposed method and
provide detailed derivation for testing the selected features in elastic net case. We now consider the optimization
problem with parametrized response vector y(z) for z 2 R as follows

�̂(z) = argmin
�2Rp

1

2n
ky(z)�X�k2

2
+ �k�k1 +

1

2
�k�k2

2
. (29)

For any z in R, the optimality condition is given by

1

n
X>

⇣
X�̂(z)� y(z)

⌘
+ �s(z) + ��̂(z) = 0, s(z) 2 @k�̂(z)k1. (30)

Similar to lasso case, to construct the truncation region Z, we have to 1) compute the entire path of �̂(z) in
Equation (29), and 2) identify a set of intervals of z on which A(y(z)) = A(yobs).

Lemma 3. Let us consider two real values z0 and z (z0 > z). If �̂Az (z) and �̂Az0 (z
0) have the same active set

and the same signs, then we have

�̂Az (z
0)� �̂Az (z) =  Az (z)⇥ (z0 � z), (31)

�sAc
z
(z0)� �sAc

z
(z) = �Ac

z
(z)⇥ (z0 � z), (32)

where  Az (z) = (X>

Az
XAz + n�I|Az|

)�1X>

Az
b, and �Ac

z
(z) = 1

n (X
>

Ac
z
b�X>

Ac
z
XAz Az (z)).

Proof. From the optimality conditions of the elastic net (30) , we have

(X>

Az
XAz + n�I|Az|

) �̂Az (z)�X>

Az
y(z) + n�sAz (z) = 0, (33)

(X>

Az0
XAz0 + n�I|Az0 |

) �̂Az0 (z
0)�X>

Az0
y(z0) + n�sAz0 (z

0) = 0. (34)

By substracting (33) from (34) and Az = Az0 , we have

�̂Az (z
0)� �̂Az (z) = (X>

Az
XAz + n�I|Az|

)�1X>

Az
(y(z0)� y(z))

= (X>

Az
XAz + n�I|Az|

)�1X>

Az
(a+ bz0 � a� bz)

= (X>

Az
XAz + n�I|Az|

)�1X>

Az
b⇥ (z0 � z).

Thus, we achieve Equation (31). Similarly, we can write the optimality conditions with XAc
z
for z and z0, and

easily obtain Equation (32).

Now, we can see that �̂Az (z) and sAc
z
(z) are functions of z. Then, for a real value z, there exists tz such that for

any real value z0 in [z, z + tz), all elements of �̂Az0 (z
0) remain the same signs with �̂Az (z), and all elements of

sAc
z0
(z0) are strictly smaller than 1 in absolute value. The value of tz can be computed by Lemma 2 as in lasso

case.

6.2.2 Full Target Case

In the full target case, as discussed in Liu et al. (2018), the data is used to choose the interesting features but
it is not used for summarizing the relation between the response and the selected features. Therefore, we can
always use all the features to define the direction of interest

⌘j = X(X>X)�1ej ,

where ej 2 Rp is a zero vector with one at its jth coordinate. The conditional inference is defined as

⌘>

j Y |
�
j 2 A(Y ), q(Y ) = q(yobs)

 
. (35)
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In Liu et al. (2018), the authors proposed a solution to conduct conditional inference for a specific case when
p < n, and there is no solution for the case when p > n. With the proposed parametric programming method,
we can solve this problem. We first re-write the conditional inference in (35) as the problem of characterizing
the sampling distribution of

Z | {Z 2 Z} where Z = {z 2 R | j 2 A(y(z))}. (36)

The y(z) in (36) is defined as in (11). Then, to identify Z, we only need to obtain the path of Lasso solution �̂(z)
as we proposed in §3, and simply check the intervals in which j is an element of the active set corresponding to
�̂(z) along the path. Finally, after having Z, we can easily compute the selective p-value or selective confidence
interval.

6.2.3 Stable Partial Target Case

In the stable partial target case, as discussed in Liu et al. (2018), we only allow stable features to influence the
formation of the test-statistic. The stable features are those with very strong signals and we would not to miss
out. We will choose a set Hobs of stable features. Then, for any j 2 Hobs, j 2 Aobs,

⌘j = XHobs(X
>

Hobs
XHobs)

�1ej .

And, for any j 62 Hobs, j 2 Aobs,

⌘j = XHobs[{j}(X
>

Hobs[{j}XHobs[{j})
�1ej .

We next show how to construct Hobs according to Liu et al. (2018).

Stable target formation by setting higher value of � (TN-`1). In this case, Hobs is the lasso active set
but with a higher value of � than the one was used to select Aobs. We denote Hobs = H(yobs), the conditional
inference is then defined as

⌘>

j Y |
�
j 2 A(Y ),H(Y ) = H(yobs), q(Y ) = q(yobs)

 
. (37)

The main drawback of the method in Liu et al. (2018) is that they have to consider all 2|Hobs| sign vectors, which
requires huge computation time when |Hobs| is large. With our piecewise-linear homotopy computation, we can
easily overcome this drawback. We first re-write the conditional inference in (37) as the problem of characterizing
the sampling distribution of

Z | {Z 2 Z} where Z = {z 2 R | j 2 A(y(z)),H(y(z)) = H(yobs)}. (38)

We now can easily identify Z = Z1 \ Z2, where Z1 = {z 2 R | j 2 A(y(z))} which is the same with full target
case, and Z2 = {z 2 R | H(y(z)) = H(yobs)} which we can simply obtain by using the proposed method in §3
of the main paper.

Stable target formation by setting a cuto↵ value c (TN-Custom). In this case, we choose Hobs by
setting a cuto↵ value c for choosing �j such that |�j | � c 1. The set Hobs is defined as

Hobs = {j 2 Aobs, |�j | � c} ,

where �j = e>j (X
>

Aobs
XAobs)

�1X>

Aobs
yobs. We denote Hobs = H(Aobs) ⇢ Aobs, the conditional inference is then

formulated as

⌘>

j Y | {H(A(Y )) = H(Aobs),A(Y ) = Aobs} . (39)

The main drawback of the method in Liu et al. (2018) is that they still require conditioning on {A(Y ) = Aobs},
which is computationally intractable when |Aobs| is large because the enumeration of 2|Aobs| sign vectors is
required. With our proposed method, we can easily overcome this drawback.

1
We note that our formulation is slightly di↵erent but more general than the one in Liu et al. (2018).
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6.2.4 Marginal Model

In the case of marginal model, we can always decide a priori to investigate the marginal relationship between the
column j of feature matrix X and the observed response vector yobs if j is selected. The conditional inference
is defined as

⌘>

j Y |
�
j 2 A(Y ), q(Y ) = q(yobs)

 
, (40)

where ⌘j = Xj(X>

j Xj)�1ej . The solution for conducting this conditional inference is the same with the full
target case. The only di↵erence between marginal model case and full target case is the formulation of ⌘j .

6.2.5 Interaction Model

Firstly, we apply Lasso on {X,yobs
} to obtain the active set Aobs = A(yobs). Next, we construct a feature

matrix for interaction model as
Xinter = (XiXj)i,j2Aobs,i<j 2 Rn⇥d,

where d = 0.5|Aobs|(|Aobs|� 1). Then, the Lasso optimization problem for the interaction model is given by

�̂ = argmin
�2Rd

1

2
kyobs

�Xinter�k
2

2
+ �k�k1.

Let us denote Ainter = Ainter(yobs) be the active set of the interaction model with yobs, the conditional inference
on the jth selected feature in Ainter is defined as

⌘>

j Y | {j 2 Ainter(Y ),A(Y ) = A(yobs), q(Y ) = q(yobs)}, (41)

where ⌘j = Xinter(X>

inter
Xinter)�1ej in which ej 2 Rd. We note that Ainter(Y ) is di↵erent from A(Y ) which is

the active set when we apply Lasso on data {X,Y }. By restricting the response vector to a line as in (11), the
conditional inference in (41) is re-defined as

Z | {Z 2 Z} where Z = {z 2 R | j 2 Ainter(y(z)),A(y(z)) = A(yobs)}.

From now on, the process of identifying Z is straightforward which is based on the method we proposed in §3 of
the main paper and the extension for full target case in the Appendix.

6.3 Additional Experiments.

For the experiments, we executed the code on Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz.

E�ciency of the proposed method. We checked the computation time of our extension for elastic net when
applying on synthetic data. The results are shown in Figure 9.

Figure 9: Computation time of our proposed method in elastic net case.
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Figure 10: The robustness of the proposed method in terms of the FPR control.

(a) TN-Full (b) TN-A (c) TN-As (d) TN-Marginal

(e) TN-`1 (f) TN-Custom (g) TN-Interaction (h) TN-Validation

Figure 11: Uniform QQ-plot of the pivotal quantity.

The robustness of the proposed method in terms of the FPR control. We applied our proposed
method to the case when the data follows Laplace distribution, skew normal distribution (skewness coe�cient
10), and t20 distribution. We also conducted experiments when �2 is also estimated from the data. We generated
n outcomes as yi = x>

i � + "i, i = 1, ..., n, where p = 5,xi ⇠ N(0, Ip), and "i follows Laplace distribution, skew
normal distribution, or t20 distribution with zero mean and standard deviation was set to 1. In the case of
estimated �2, "i ⇠ N(0, 1). We set all elements of � to 0, and set � = 0.5. For each case, we ran 1,200 trials for
each n 2 {100, 200, 300, 400}. The FPR results are shown in Figure 10.
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Uniformity verification of the pivotal quantity. We generated n = 100 outcomes as yi = x>

i � + "i,
i = 1, ..., n, where p = 5,xi ⇠ N(0, Ip), and "i ⇠ N(0, 1). We set the first two elements of � to 2, and set � = 5.
We applied our method and ran 1,200 trials for each case of conditioning: TN-Full, TN-A, TN-As, TN-Marginal
(marginal model), TN-`1, TN-Custom, TN-Interaction (interaction model), and TN-Validation (considering
validation selection event). For stable partial target formation, to identify Hobs, we set the value of higher � to
15 in the case of TN-`1, and cuto↵ value c is set to 1 in the case of TN-Custom. We set ⇤ = {2�1, 20, 21} and
performed 5-fold cross-validation in the case of TN-Validation. The results are shown in Figure 11.


