
Hogwild! over Distributed Local Data Sets with Linearly Increasing
Mini-Batch Sizes

∗Nhuong V. Nguyen ∗Toan N. Nguyen †Phuong Ha Nguyen
‡Quoc Tran-Dinh ††Lam M. Nguyen ∗§Marten van Dijk

∗UConn †eBay ‡UNC Chapel Hill ††IBM Research §CWI Amsterdam

Abstract

Hogwild! implements asynchronous Stochas-
tic Gradient Descent (SGD) where multiple
threads in parallel access a common reposi-
tory containing training data, perform SGD
iterations, and update shared state that rep-
resents a jointly learned (global) model. We
consider big data analysis where training data
is distributed among local data sets in a het-
erogeneous way – and we wish to move SGD
computations to local compute nodes where
local data resides. The results of these lo-
cal SGD computations are aggregated by a
central “aggregator” which mimics Hogwild!.
We show how local compute nodes can start
choosing small mini-batch sizes which increase
to larger ones in order to reduce communica-
tion cost (round interaction with the aggrega-
tor). We improve state-of-the-art literature
and show O(

√
K) communication rounds for

heterogeneous data for strongly convex prob-
lems, where K is the total number of gradient
computations across all local compute nodes.
For our scheme, we prove a tight and novel
non-trivial convergence analysis for strongly
convex problems for heterogeneous data which
does not use the bounded gradient assumption
as seen in many existing publications. The
tightness is a consequence of our proofs for
lower and upper bounds of the convergence
rate, which show a constant factor difference.
We show experimental results for plain con-
vex and non-convex problems for biased (i.e.,
heterogeneous) and unbiased local data sets.

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

1 Introduction

The optimization problem for training many Machine
Learning (ML) models using a training set {ξi}Mi=1 ofM
samples can be formulated as a finite-sum minimization
problem as follows

min
w∈Rd

{
F (w) =

1

M

M∑

i=1

f(w; ξi)

}
.

The objective is to minimize a loss function with re-
spect to model parameters w. This problem is known
as empirical risk minimization and it covers a wide
range of convex and non-convex problems from the ML
domain, including, but not limited to, logistic regres-
sion, multi-kernel learning, conditional random fields
and neural networks. In this paper, we are interested
in solving the following more general stochastic opti-
mization problem with respect to some distribution
D:

min
w∈Rd

{F (w) = Eξ∼D[f(w; ξ)]} , (1)

where F has a Lipschitz continuous gradient and f is
bounded from below for every ξ.

Big data analysis in the form of ML over a large training
set distributed over local databases requires computa-
tion to be moved to compute nodes where local training
data resides. Local SGD computations are communi-
cated to a central “aggregator” who maintains a global
model. Local computations are executed in parallel
and resulting SGD updates arrive out-of-order at the
aggregator. For this purpose we need robust (in terms
of convergence) asynchronous SGD.

Our approach is based on the Hogwild! [Recht et al.,
2011] recursion

wt+1 = wt − ηt∇f(ŵt; ξt), (2)

where ŵt represents the vector used in computing the
gradient ∇f(ŵt; ξt) and whose vector entries have been
read (one by one) from an aggregate of a mix of previous

Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes

updates that led to wj , j ≤ t. In a single-thread setting
where updates are done in a fully consistent way, i.e.
ŵt = wt, yields SGD with diminishing step sizes {ηt}.
Recursion (2) models asynchronous SGD. We define
the amount of asynchronous behavior by function τ(t):
Definition 1. We say that the sequence {wt} is con-
sistent with a delay function τ if, for all t, vector
ŵt includes the aggregate of the updates up to and in-
cluding those made during the (t− τ(t))-th iteration∗,
i.e., ŵt = w0 −

∑
j∈U ηj∇f(ŵj ; ξj) for some U with

{0, 1, . . . , t− τ(t)− 1} ⊆ U .

Our main insight is that the asynchronous SGD frame-
work based on Hogwild! can resist much larger delays
than the natural delays caused by the network commu-
nication infrastructure, in fact, it turns out that τ(t)
can scale as much as ≈

√
t/ ln t for strongly convex

problems [Nguyen et al., 2018, 2019a]. This means
that recurrence (2) can be used/exploited in an asyn-
chronous SGD implementation over distributed local
data sets where much more asynchronous behavior is
introduced by design.

In our setting where SGD recursions are executed
locally at compute nodes where biased (i.e., hetero-
geneous) local training data resides, compute nodes
execute SGD recursions in ‘rounds’. From the per-
spective of a local compute node, a round consists
of the sequence of SGD recursions between two con-
secutive ‘update’ communications to the central ag-
gregator. Within a round, wt is iteratively updated
by subtracting ηt∇f(ŵt; ξt). The sum of updates∑
t∈round ηt∇f(ŵt; ξt) is communicated to the aggre-

gator at the end of the round after which a new round
starts leading to a next sum of updates to be commu-
nicated at the end of the next round. Locally, compute
nodes receive (out of sync) broadcast messages with
the current global model from the central aggregator
(according to some strategy, e.g., on average one or two
such messages per round). This is used to replace their
local model wt computed so far. Details are given in
Section 3.

Rather than having each round execute the
same/constant number of SGD recursions, this paper
builds on our main observation that we are allowed to
introduce asynchronous behavior by design while still
maintaining convergence (as we will see at a rate that
matches a lower bound up to a constant). We propose
to increase the number of SGD iterations performed
locally at each compute node from round to round. This
reduces the amount of network communication com-
pared to the straightforward usage of recurrence (2)
where each compute node performs a fixed number of
∗(2) defines the (t+ 1)-th iteration, where ηt∇f(ŵt; ξt)

represents the (t+ 1)-th update.

SGD iterations within each round.

In the distributed data setting, each local compute node
may only execute for a fraction of an epoch (where the
number of iterations, i.e., gradient computations, in an
epoch is equal to the size of the global big training data
set defined as the collection of all local training data
sets together). In order to disperse to all local compute
nodes information from local updates by means of up-
dating the global model and receiving feedback from
the global model (maintained at the central aggrega-
tor), there needs to be a sufficient number of round
interactions. For the best convergence, we need to have
more round interactions at the very start where lo-
cal updates contain the most (directional) information
about (where to find) the global minimum to which we
wish to converge. This corresponds to small ’sample’
sizes (measured in the number of local SGD updates
within a round) in the beginning. And in order to gain
as much useful information about where to find the
global minimum, initial local updates should use larger
step sizes (learning rate).

From our theory we see that in order to bootstrap
convergence it is indeed the best to start with larger
step sizes and start with rounds of small sample size
after which these rounds should start increasing in
sample size and should start using smaller and smaller
step sizes for best performance (in terms of minimizing
communication while still achieving high test accuracy).
Experiments confirm our expectations.

Contributions. For the distributed data setting
where SGD recursions are executed locally at com-
pute nodes where local training data resides and which
update a global model maintained at a centralized ag-
gregator, we introduce a new SGD algorithm based on
Hogwild! [Recht et al., 2011] which does not use fixed-
sized min-batch SGD at the local compute nodes but
uses increasing mini-batch (sample) sizes from round
interaction to round interaction:

[I] The compute nodes and server can work together to
create a global model in asynchronous fashion, where
we assume that messages/packets never drop; they
will be re-sent but can arrive out of order. In Theo-
rem 1 we characterize distribution D in the stochastic
optimization problem (1) to which the global model
relates.

[II] Given a specific (strongly convex, plain convex or
non-convex) stochastic optimization problem, we may
assume (believe in) a delay function τ which character-
izes the maximum asynchronous behavior which our
algorithm can resist for the specific problem. Given the
delay function τ , we provide a general recipe for con-
structing increasing sample size sequences and dimin-
ishing round step size sequences so that our algorithm

N. Nguyen, T. Nguyen, PH. Nguyen, Tran-Dinh, L. Nguyen, M. van Dijk

maintains τ as an invariant. For strongly convex prob-
lems, [Nguyen et al., 2018, 2019a] prove that τ(t) can
be as large as ≈

√
t/ ln t for which our recipe shows a

diminishing round step size sequence of O(ln i
i2), where

i indicates the round number, that allows a sample
size sequence of Θ(i

ln i); the sample size sequence can
almost linearly increases from round to round.

[III] For strongly convex problems with ‘linearly’ in-
creasing sample size sequences Θ(i

ln i) we prove in The-
orem 2 an upper bound of O(1/t) on the expected
convergence rate E[‖wt − w∗‖2], where w∗ represents
the global minimum in (1) and t is the SGD iteration
number (each local node computes a subset of the wt).
In fact, the concrete expression of the upper bound
attains for increasing t the best possible convergence
rate (among stochastic first order algorithms) within a
constant factor ≤ 8 · 362, see Corollary 1 which directly
applies the lower bound from [Nguyen et al., 2019b].

[IV] Let K be the total number of gradient compu-
tations (summed over all local nodes) needed for the
desired test accuracy, and let T be the number of com-
munication rounds in our algorithm. Then, T scales
less than linear with K due to the increasing sample
size sequence (if a constant sample size sequence is
used, i.e., fixed-sized mini-batch SGD at each of the
local compute nodes, then T = O(K)). For strongly
convex problems with diminishing step sizes we show
T = O(

√
K) for heterogeneous local data while having

O(1/K) convergence rate. This implies that using di-
minishing step sizes give a much better performance
compared to constant step sizes in terms of communi-
cation.

[V] Experiments for linearly increasing sample size se-
quences for strongly convex problems as well as plain
convex and non-convex problems confirm the robust-
ness of our algorithm in terms of good test accuracies
(our theoretical understanding from strongly convex
problems seems to generalize to plain and non-convex
problems). We use biased local training data sets
(meaning different compute nodes see differently biased
subsets of training data) and compare to unbiased local
training data sets.

2 Related Work

Unbiased Local Data (iid). For strongly convex
problems with unbiased local data sets, [Stich, 2018]
showed O(1/K) convergence rate for O(

√
K) commu-

nication rounds. For the iid case this was improved
by [Spiridonoff et al., 2020] to just 1 communication
round, where each client performs local SGD sepa-
rately after which in “one shot” all local models are
aggregated (averaged) – this corresponds to O(n) total
communication for n clients. This result was gener-

alized by [Khaled et al., 2020]. Based on the strong
Polyak-Lojasiewicz (PL) assumption (which is a gener-
alization of strong convexity but covers certain noncon-
vex models), [Yu and Jin, 2019] proved for the iid case
a convergence rate of O(1/K) with log(K/n) communi-
cation rounds with an exponentially increasing sample
size sequence. For non-convex problems, [Yu and Jin,
2019] proved for the iid case the standard convergence
rate O(1/

√
K) (as defined for non-convex problems)

with O(
√
K log(K/n2)) communication rounds.

Biased Local Data (heterogeneous). Our focus
is on heterogeneous data between different clients
(this needs more communication rounds in order to
achieve convergence, one-shot averaging is not enough):
[Khaled et al., 2020] were the first to analyze the conver-
gence rate for plain convex problems in this scenario.
They use the bounded variance assumption in their
analysis with constant step-size and with sample size
sequences where sample sizes are bound by an a-priori
set parameter H. They prove that O(1/

√
K) conver-

gence rate (optimal for plain convex) is achieved for
O(K3/4) communication rounds (see their Corollary 5
and notice that their algorithm uses (K/n)/H commu-
nication rounds). For strongly convex problems in the
heterogeneous case (without assuming bounded vari-
ance), we show that convergence rate O(1/K) (optimal
for strongly convex) is achieved for O(

√
K) communi-

cation rounds.

Asynchronous Training. Asynchronous train-
ing [Zinkevich et al., 2009, Lian et al., 2015, Zheng
et al., 2017, Meng et al., 2017, Stich, 2018, Shi et al.,
2019] is widely used in traditional distributed SGD.
Hogwild!, one of the most famous asynchronous SGD
algorithms, was introduced in [Recht et al., 2011] and
various variants with a fixed and diminishing step size
sequences were introduced in [Mania et al., 2015, De Sa
et al., 2015, Leblond et al., 2018, Nguyen et al., 2018].
Typically, asynchronous training converges faster than
synchronous training in real time due to parallelism.
This is because in a synchronized solution compute
nodes have to wait for the slower ones to communicate
their updates after which a new global model can be
downloaded by everyone. This causes high idle waiting
times at compute nodes. Asynchronous training allows
compute nodes to continue executing SGD recursions
based on stale global models. For non-convex problems,
synchronous training [Saeed Ghadimi, 2013] and asyn-
chronous training with bounded staleness [Lian et al.,
2015], or in our terminology bounded delay, achieves
the same convergence rate of O(1/

√
K), where K is

the total number of gradient computations.

The methods cited above generally use mini-batch SGD
(possibly with diminishing step sizes from round to
round) at each of the distributed computing threads,

Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes

hence, parallelism will then lead to asynchronous be-
havior dictated by a delay τ which can be assumed to
be bounded. Assuming bounded delays, the conver-
gence rate is mathematically analysed in the papers
cited above with the exception of [Nguyen et al., 2018,
2019a] which also analyses the convergence rate for
unbounded delays (i.e., increasing delay functions τ).

As explained in this introduction, this paper exploits
the advantage of being able to resist much more asyn-
chronous behavior than bounded delay. We show how
one can use diminishing step sizes alongside increasing
sample sizes (mini-batch sizes) from round to round.
This provides a technique complimentary to [Zinkevich
et al., 2009, Lian et al., 2015, 2017, Zheng et al., 2017,
Meng et al., 2017, Stich, 2018, Shi et al., 2019] with
which current asynchronous training methods can be
enhanced at the benefit of reduced communication –
which is important when training over distributed local
data sets in big data analysis. For example, rather
than sending gradients to the server after each local
update, which is not practical for edge devices (such
as mobile or IoT devices) due to unreliable and slow
communication, [Shi et al., 2019] introduces the idea
of using a tree like communication structure which ag-
gregates local updates in pairs from leafs to root – this
technique for meeting throughput requirements at the
centralized server can be added to our technique of in-
creasing sample sizes from round to round. As another
example, [Lian et al., 2017] introduces asynchronous
decentralized SGD where local compute nodes do not
communicate through a centralized aggregator but in-
stead perform a consensus protocol – our technique of
increasing sample sizes is complementary and can pos-
sibly be beneficial to use in this decentralized network
setting. Similarly, our technique may apply to [Jie Xu,
2020], where the authors studied a new asynchronous
decentralized SGD with the goal of offering privacy
guarantees. We stress that our setting is asynchronous
centralized SGD and is completely different from asyn-
chronous decentralized SGD algorithms as in [Shi et al.,
2019, Lian et al., 2017, Jie Xu, 2020].

Federated Learning and Local SGD. Federated
Learning (FL) [Chen et al., 2016, McMahan et al.,
2016] is a distributed machine learning approach which
enables training on a large corpus of decentralized data
located on devices like mobile phones or IoT devices.
Federated learning brings the concept of “bringing the
code to the data, instead of the data to the code"
[Bonawitz et al., 2019]. Google [Konečnỳ et al., 2016]
demonstrated FL for the first time at a large scale when
they conducted experiments of training a global model
across all mobile devices via the Google Keyboard
Android application [McMahan and Ramage, 2017].

Original FL requires synchrony between the server and

clients (compute nodes). It requires that each client
sends a full model back to the server in each round
and each client needs to wait for the next computation
round. For large and complicated models, this becomes
a main bottleneck due to the asymmetric property
of internet connection and the different computation
power of devices [Chen et al., 2019a, Konečnỳ et al.,
2016, Wang et al., 2019, Hsieh et al., 2017].

In [Xie et al., 2019, Chen et al., 2019b] asynchronous
training combined with federated optimization is pro-
posed. Specifically, the server and workers (compute
nodes) conduct updates asynchronously: the server im-
mediately updates the global model whenever it receives
a local model from clients. Therefore, the communi-
cation between the server and workers is non-blocking
and more effective. We notice that [Xie et al., 2019]
provides a convergence analysis, while [Chen et al.,
2019b] does not.

In [Li et al., 2019], the authors introduce FedProx which
is a modification of FedAvg (i.e., original FL algorithm
of [McMahan et al., 2016]). In FedProx, the clients
solve a proximal minimization problem rather than
traditional minimization as in FedAvg. For theory, the
authors use B-local dissimilarity and bounded dissim-
ilarity assumptions for the global objective function.
This implies that there is a bounded gradient assump-
tion applied to the global objective function. Moreover,
their proof requires the global objective function to be
strongly convex.

One major shortcoming in the terms of convergence
analysis of asynchronous SGD in many existing publica-
tions is that the bounded gradients and strongly convex
assumptions are used together, e.g. [Lian et al., 2015,
2017, Mania et al., 2015, De Sa et al., 2015, Jie Xu,
2020, Xie et al., 2019, McMahan et al., 2016, Li et al.,
2019]. However, the bounded gradient assumption is in
conflict with assuming strong convexity as explained in
[Nguyen et al., 2018, 2019a]. It implies that the conver-
gence analysis should not use these two assumptions
together to make the analysis complete.

Our method of increasing sample sizes together with
its convergence analysis for strongly objective functions
(which does not use the bounded gradient assumption)
complements the related work in FL and local SGD.
This paper analyses and demonstrates the promise of
this new technique but does not claim a full end-to-
end implementation of FL or distributed SGD with
asynchronous learning.

3 Hogwild! & Increasing Sample Sizes

The next subsections explain our proposed algorithm
together with how to set parameters in terms of a

N. Nguyen, T. Nguyen, PH. Nguyen, Tran-Dinh, L. Nguyen, M. van Dijk

concrete round to round diminishing step size sequence
and increasing sample size sequence.

3.1 Asynchronous SGD over Local Data Sets

Algorithm 1 ComputeNodec – Local Model

1: procedure Setup(n): Initialize increasing sample
size sequences {si}i≥0 and {si,c ≈ pcsi}i≥0 for each
compute node c ∈ {1, . . . , n}, where pc scales the
importance of compute node c. Initialize diminish-
ing round step sizes {η̄i}i≥0, a permissible delay
function τ(·) with t − τ(t) increasing in t, and a
default global model for each compute node to start
with.

2: end procedure
3:
4: procedure ISRReceive(v̂, k): This Interrupt Ser-

vice Routine is called whenever a broadcast mes-
sage with a new global model v̂ is received from the
server. Once received, the compute node’s local
model ŵ is replaced with v̂ from which the latest
accumulated update η̄i · U of the compute node in
the ongoing round (as maintained in line 17 below)
is subtracted. (We notice that the kth broadcast
message containing a global model v̂ from the server
is transmitted by the server as soon as the updates
up to and including rounds 0, . . . , k − 1 from all
compute nodes have been received; thus v̂ includes
all the updates up to and including round k − 1.)

5: end procedure
6:
7: procedure MainComputeNode(Dc)
8: i = 0, ŵ = ŵc,0,0
9: while True do
10: h = 0, U = 0
11: while h < si,c do
12: tglob = s0 + . . .+ si − (si,c − h)− 1
13: tdelay = sk + . . .+ si − (si,c − h)
14: while τ(tglob) < tdelay do nothing
15: Sample uniformly at random ξ from Dc
16: g = ∇f(ŵ, ξ)
17: U = U + g
18: Update model w = ŵ − η̄i · g
19: . w represents wc,i,h+1

20: Update model ŵ = w
21: h++
22: end while
23: Send (i, c, U) to the Server.
24: i++
25: end while
26: end procedure

Compute node c ∈ {1, . . . , n} updates its local model
ŵ according to Algorithm 1. Lines 15, 16, 18, and 20
represent an SGD recursion where ξ is sampled from

distribution Dc, which represents c’s local data set.
Variable U , see line 17, keeps track of the sum of the
gradients that correspond to si,c samples during c’s
i-th local round. This information is send to the server
in line 23, who will multiply U by the round step size
η̄i and subtract the result from the global model v̂. In
this way each compute node contributes updates U
which are aggregated at the server. As soon as the
server has aggregated each compute node’s updates for
their first k local rounds, the server broadcasts global
model v̂. As soon as c receives v̂ it replaces its local
model ŵ with v̂ − η̄i · U (this allows the last computed
gradients in U that have not yet been aggregated into
the global model at the server not to go to waste).

Line 14 shows that a compute node c will wait until
tdelay becomes smaller than τ(tglob). This will happen
as a result of ISRReceive(v̂, k) receiving broadcast
message v̂ together with a larger k after which the ISR
computes a new (smaller) tdelay. Line 14 guarantees
the invariant tdelay ≤ τ(tglob), where τ is initialized to
some "permissible" delay function which characterizes
the amount of asynchronous behavior we assume the
overall algorithm can tolerate (in that the algorithm
has fast convergence leading to good test accuracy).

Supplemental Material A has all the detailed pseudo
code with annotated invariants.

We want to label the SGD recursions computed in
each of the MainComputeNode(Dc) applications for
c ∈ {1, . . . , n} to an iteration count t that corresponds
to recursion (2): We want to put all SGD recursions
computed by each compute node in sequential order
such that it is as if we used (2) on a single machine.
This will allow us to analyse whether our algorithm
leads to a sequence {wt} which is consistent with the
initialized permissible delay function τ . In order to
find an ordering based on t we define in Supplemental
Material B.1 a mapping ρ from the annotated labels
(c, i, h) in MainComputeNode to t and use this to
prove the following theorem:
Theorem 1. Our setup, compute node, and server
algorithms produce a sequence {wt} according to re-
cursion (2) where {ξt} are selected from distribution
D =

∑n
c=1 pcDc. Sequence {wt} is consistent with

delay function τ as defined in Setup.

The theorem tells us that the algorithms implement
recursion (2) for distribution D =

∑n
c=1 pcDc, i.e., a

convex combination of each of the (possibly biased)
local distributions (data sets). Scaling factors pc rep-
resent a distribution (i.e., they sum to 1) and are
used to compute local sample sizes si,c ≈ pcsi, where
si =

∑n
c=1 si,c indicates the total number of samples

in rounds i across all compute nodes.

We remark that our asynchronous distributed SGD is

Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes

compatible with the more general recursion mentioned
in [Nguyen et al., 2018, 2019a] and explained in Supple-
mental Material C.1. In this recursion each client can
apply a "mask" which indicates the entries of the local
model that will be considered. This allows each client
to only transmit the local model entries corresponding
to the mask.

3.2 Delay τ

We assume that messages/packets never drop. They
will be resent but can arrive out-of-order. We are ro-
bust against this kind of asynchronous behavior: The
amount of asynchronous behavior is limited by τ(·);
when the delay is getting too large, then the client
(local compute node) enters a wait loop which termi-
nates only when ISRReceive receives a more recent
global model v̂ with higher k (making tdelay smaller).
Since τ(t) increases in t and is much larger than the
delays caused by network latency and retransmission
of dropped packets, asynchronous behavior due to such
effects will not cause clients to get stuck in a waiting
loop. We assume different clients have approximately
the same speed of computation which implies that this
will not cause fast clients having to wait for long bursts
of time.†

We exploit the algorithm’s resistance against delays
τ(t) by using increasing sample size sequences {si,c}.
Since the server only broadcasts when all clients have
communicated their updates for a "round" k, increasing
sample sizes implies that tdelay can get closer to τ(tglob).
So, sample size sequences should not increase too much:
We require the property that there exists a threshold
d such that for all i ≥ d,

τ




i∑

j=0

sj


 ≥ 1 +

i∑

j=i−d
sj . (3)

In Supplemental Material B.2 we show that this allows
us to replace condition τ(tglob) < tdelay of the waiting
loop by i > k + d when i ≥ d while still guaranteeing
tdelay ≤ τ(tglob) as an invariant. In practice, since sam-
ple sizes increase, we only need to require (3) for d = 1
(which means we allow a local lag of one communication
round) in order to resist asynchronous behavior due to
network latency.

†When entering a waiting loop, the client’s operating
system should context switch out and resume other com-
putation. If a client c is an outlier with slow computation
speed, then we can adjust pc to be smaller in order to have
its mini-batch/sample size si,c be proportionally smaller;
this will change distribution D and therefore change the
objective function of (1).

3.3 Recipe Sample Size Sequence

Given a fixed budget/number of gradient computations
K which the compute nodes together need to perform,
an increasing sample size sequence {si} reduces the
number T of communication rounds/interactions (de-
fined by update messages coming from the compute
nodes with broadcast messages from the server). Con-
vergence to an accurate solution must be guaranteed,
that is, {si} has to satisfy (3) if we assume τ is indeed
a permissible delay function.

Supplemental Material B.3 proves how a general for-
mula for function τ translates into an increasing sample
size sequence {si} that satisfies (3).
Lemma 1. Let g > 1. Suppose that τ(x) = M1 + (x+
M0)1/g for some M1 ≥ d+ 2 and M0 ≥ ((m+ 1)(g −
1)/g)g/(g−1), where m ≥ 0 is an integer. Then

si =

⌈
1

d+ 1

(
m+ i+ 1

d+ 1

g − 1

g

)1/(g−1)
⌉

satisfies property (3).

The above lemma is a direct consequence of Supple-
mental Material B.3 which has a more general proof
that also allows functions such as τ(x) = M1 + ((x+
M0)/ ln(x+M0))1/g (needed for analysing the conver-
gence of strongly convex problems with g = 2).

3.4 Recipe Round Step Size Sequence

As soon as we have selected an increasing sample size
sequence based on τ , Supplemental Material B.4 shows
how we can translate the diminishing step size sequence
{ηt} of recurrence (2) to a diminishing round step size
sequence {η̄i} that only diminishes with every mini-
batch si from round to round. The lemma below is a
direct consequence of Supplemental Material B.4 which
has a slightly more general statement.

Lemma 2. Let 0 ≤ q ≤ 1 and {Et} a constant or
increasing sequence with Et ≥ 1. For q and {Et}
consider the set Z of diminishing step size sequences
{ηt} in recurrence (2) with ηt = αt/(µ(t+Et)

q) where
{αt} is some sequence of values with α0 ≤ αt ≤ 3 · α0.

We assume sample size sequence {si} of Lemma 1 for
g ≥ 2. For i ≥ 0, we define Ēi = E∑i

j=0 sj
. We define

Ē−1 = E0. If Ēi ≤ 2Ēi−1 for i ≥ 0 and if s0− 1 ≤ E0,
then there exists a diminishing step size sequence {ηt}
in set Z such that

ηt =
αt

µ(t+ Et)q
=

α0

µ((
∑i−1
j=0 sj) + Ēi−1)q

def
= η̄i

for t ∈ {(∑i−1
j=0 sj), . . . , (

∑i−1
j=0 sj) + si − 1}.

N. Nguyen, T. Nguyen, PH. Nguyen, Tran-Dinh, L. Nguyen, M. van Dijk

Notice si = Θ(i1/(g−1)) and η̄i = O(i−q·(1+1/(g−1))).

In Supplemental Material C.3 we discuss plain and non-
convex problems. We argue in both cases to choose a
diminishing step size sequence of O(t−1/2), i.e., q = 1/2,
and to experiment with different increasing sample size
sequences Θ(i1/(g−1)), for g ≥ 2, to determine into
what extent the presented asynchronous SGD is robust
against delays. Substituting p = 1/(g − 1) ∈ (0, 1]
gives sample size sequence Θ(ip) and round step size
sequence O(i−(1+p)/2). It turns out that p = 1 gives
a good performance and this confirms our intuition
that the results from our theory on strongly convex
functions in the next section generalizes in that also
plain and non-convex problems have fast convergence
for linearly increasing sample size sequences.

4 Convergence Rate for Strongly
Convex problems

In this section we provide a round step size sequence
and a sample size sequence for strongly convex prob-
lems. We show tight upper and lower bounds. For
strongly convex problems, we assume the following:

Assumption 1 (L-smooth). f(w; ξ) is L-smooth for
every realization of ξ, i.e., there exists a constant L > 0
such that, ∀w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖.

Assumption 2. f(w; ξ) is convex for every realization
of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ)− f(w′; ξ) ≥ 〈∇f(w′; ξ), (w − w′)〉.

Assumption 3 (µ-strongly convex). The objective
function F : Rd → R is a µ-strongly convex, i.e., there
exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+
µ

2
‖w − w′‖2.

Being strongly convex implies that F has a global
minimum w∗. For w∗ we assume:

Assumption 4 (Finite σ). Let N = 2E[‖∇f(w∗; ξ)‖2]
where w∗ = arg minw F (w). We require N <∞.

In this section we let f be L-smooth, convex, and
let the objective function F (w) = Eξ∼D[f(w; ξ)] be
µ-strongly convex with finite N = 2E[‖∇f(w∗; ξ)‖2]
where w∗ = arg minw F (w). Notice that we do not as-
sume the bounded gradient assumption which assumes
E[‖∇f(w; ξ)‖2] is bounded for all w ∈ Rd (not only
w = w∗ as in Assumption 4) and is in conflict with as-
suming strong convexity as explained in [Nguyen et al.,
2018, 2019a].

4.1 Sample Size and Round Step Size
Sequences

After sequentially ordering the SGD recursions from
all compute nodes we end up with a Hogwild! ex-
ecution as defined by recursion (2) and we may ap-
ply the results from [Nguyen et al., 2018, 2019a] that
state that {wt} is consistent with any delay function
τ(t) ≤

√
(t/ ln t) · (1− 1/ ln t). By suitably choosing

such a function τ (see Supplemental Material C.2.2 for
details), application of the more general Lemma 1 from
Supplemental Material B.3 gives sample size sequence

si =

⌈
m+ i+ 1

16(d+ 1)2

1

ln(m+i+1
2(d+1))

⌉
= Θ

(
i

ln i

)
.

For a fixed number of gradient computations K, the
number T of communication rounds satisfies K =∑T
j=0 sj . When forgetting the ln i component, this

makes T proportional to
√
K – rather than propor-

tional to K for a constant sample size sequence. This
reduction in communication rounds and overall network
communication is possible because we use a diminish-
ing step size sequence (which allows us to still prove
tight upper and lower bounds on the convergence rate).

For our choice of τ , we are restricted in the more general
Lemma 2 from Supplemental Material B.4 to a family
Z of step size functions with a0 = 12 and Et = 2τ(t).
For strongly convex problems we may choose q = 1
which gives a step size sequence ηt = αt/(µ(t+ Et)

q)
for which the convergence rate E[‖wt−w∗‖2] = O(1/t).
This results in a O

(
ln i
i2

)
round step size sequence

η̄i =
12

µ
· 1

∑i−1
j=0 sj + 2M1 +

√
(m+1)2/4+

∑i−1
j=0 sj

ln((m+1)2/4+
∑i−1

j=0 sj)

,

where

M1 = max

{
d+ 2, 72 · L

µ
,

1

2

⌈
m+ 1

16(d+ 1)2

1

ln(m+1
2(d+1))

⌉}

4.2 Upper Bound Convergence Rate

Based on the sequences {si} and {η̄i} we prove in
Supplemental Material C.2.2 the following upper bound
on the convergence rate for strongly convex problems:‡

Theorem 2. For sample size sequence {si} and round
step size sequence {η̄i} we have expected convergence

‡We remark that this theorem also holds for our algo-
rithm where the compute nodes compute mini-batch SGD
for the sample set and it can be adapted for the more gen-
eral recursion with masks as explained in Supplemental
Material C.1 (with “D > 1”).

Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes

rate

E[‖wt − w∗‖2] ≤ 4 · 362 ·N
µ2

1

t
+O

(
1

t ln t

)
. (4)

where t represents the total number of gradient evalua-
tions over all compute nodes performed so far.§

Notice that t is equal to n times the average num-
ber of grad evaluations t̄ per compute node, hence,
convergence rate O(1/t) = O(1/(nt̄)) showing the ex-
pected 1/n dependence. We also remind the reader
that si =

∑
c si,c where si,c ≈ pcsi.

We do not know whether the theory for delay functions
τ for strongly convex problems gives a tight bound in
terms of the maximum delay¶ for which we can prove
a tight upper bound on the convergence rate. For
this reason we also experiment with the larger linear
si = Θ(i) in the strongly convex case. (For si = Θ(i)
we have η̄i = O(i−2).)

As one benchmark we compare to using a constant step
size η = η̄i. Supplemental Material C.2.1 analyses this
case and shows how to choose the constant sample size
s = si (as large as a

Lµ(d+1) for a well defined constant
a) in order to achieve the best convergence rate.

4.3 Lower Bound Convergence Rate

Applying the lower bound from [Nguyen et al., 2019b]
for first order stochastic algorithms shows the following
corollary, see Supplemental Material C.2.3 for a de-
tailed discussion (also on how fast the O((ln t)/t) term
disappears and how this can be influenced by using
different less increasing sample size sequences).

Corollary 1. Among first order stochastic algorithms,
upper bound (4) converges for increasing t to within
a constant factor 8 · 362 of the (theoretically) best at-
tainable expected convergence rate, which is at least
N

2µ2
1
t (1−O(ln t

t)) (for each t).

Notice that the factor is independent of any parameters
like L, µ, sparsity, or dimension of the model.

The corollary shows that non-parallel (and therefore
synchronous) SGD can at most achieve a factor 8 · 362

faster convergence rate compared to our asynchronous
SGD over (heterogeneous) local data sets. It remains an
open problem to investigate second (and higher) order
stochastic algorithms and whether their distributed
versions attain tight convergence rates when increasing
sample sizes and diminishing step sizes from round to
round.

§Mapping ρ maps annotated labels to t: wt = wρ(c,i,h).
¶Permissible delay functions can possibly be larger than√

(t/ ln t) · (1− 1/ ln t).

5 Experiments

We summarize experimental results for strongly con-
vex, plain convex and non-convex problems with linear
increasing sample sequences and biased versus unbiased
local data sets.

As the plain convex objective function we use logistic
regression: The weight vector w̄ and bias value b of
the logistic function can be learned by minimizing the
log-likelihood function J :

J = −
M∑

i

[yi · log(σi) + (1− yi) · log(1− σi)],

whereM is the number of training samples (xi, yi) with
yi ∈ {0, 1}, and σi = σ(w̄, b, xi) is the sigmoid function
σ(w̄, x, b) = 1

1+e−(w̄Tx+b)
. The goal is to learn a vector

w∗ which represents a pair w = (w̄, b) that minimizes
J . Function J changes into a strongly convex problem
by adding ridge regularization with a regularization
parameter λ > 0. i.e., we minimize Ĵ = J + λ

2 ‖w‖
2

instead of J . For simulating non-convex problems, we
choose a simple neural network (LeNet) [LeCun et al.,
1998] for image classification.

We use a linearly increasing sample size sequence
si = a · ic + b, where c = 1 and a, b ≥ 0. For simplicity,
we choose a diminishing round step size sequence cor-
responding to η0

1+β·t for the strongly convex problem
and η0

1+β·
√
t
for both the plain convex and non-convex

problems, where η0 is an initial step size. The asyn-
chronous SGD simulation is conducted with d = 1, see
(3).

Our asynchronous SGD with linear increasing
sample sizes: Figures 1a, 2a and 3a show our pro-
posed asynchronous SGD with linear increasing sample
size sequence for constant step sizes and diminishing
step sizes. We conclude that diminishing step sizes
achieve (approximately) a convergence which is as fast
as the convergence of the best constant step size se-
quence. See Supplemental Material D.2.3 for details
and larger sized graphs (also for other data sets); we
also show experiments in D.2.1 and D.2.2 that com-
pare using slower increasing sample size sequences with
linear sample size sequences and they all achieve ap-
proximately the same convergence rate. We conclude
that using a linear sample size sequence over a con-
stant sized one does not degrade performance – on the
contrary, the number of communication rounds reduces
significantly. This confirms the intuition generated
by our theoretical analysis for strong convex problems
which generalizes to plain and non-convex problems.

Our asynchronous SGD with biased data sets:
The goal of this experiment is to show that our asyn-
chronous SGD can work well with biased (non-iid) local

N. Nguyen, T. Nguyen, PH. Nguyen, Tran-Dinh, L. Nguyen, M. van Dijk

(a) Convergence rate

(b) Test error

Figure 1: Our asynchronous SGD for strongly convex
problems: (a) The Phishing data set - various step size
sequences. (b) MNIST - biased and unbiased data sets.

(a) Convergence rate

(b) Test error

Figure 2: Our asynchronous SGD for plain convex
problems: (a) The Phishing data set - various step size
sequences. (b) MNIST - biased and unbiased data set.

data sets meaning that different compute nodes use
different distributions Dc (contrary to all nodes using
unbiased data sets such that they all have the same
Dc = D distribution). We continue with the setting as

(a) Test error

(b) Test error

Figure 3: Our asynchronous SGD for non-convex prob-
lems: (a) The MNIST data set - various step size
sequences. (b) MNIST - biased and unbiased data set.

mentioned above with an adapted initial step size η0,
see Supplemental Material D.2.4 for details. Figures 1b
and 2b show no significant difference between using
biased or unbiased data sets for strongly convex and
plain convex problems. For the non-convex problem,
Figure 3b shows that although the accuracy might fluc-
tuate during the training process, our asynchronous
SGD still achieves good accuracy in general. We con-
clude that our asynchronous SGD tolerates the effect
of biased data sets, which is quite common in practice.

Scalability: Supplemental Material D.2.5 shows that
our asynchronous SGD with linear sample size sequence
scales to larger number of compute nodes. The accuracy
for the same total number of gradient computations
stays approximately the same and the overall execution
time will reach a lower limit (where increased paral-
lelism does not help). The linear sample size sequence
gives a reduced number of communication rounds (also
for an increased number of compute nodes).

6 Conclusion

We provided a tight theoretical analysis for strongly con-
vex problems over heterogeneous local data for our asyn-
chronous SGD with increasing sample size sequences.
Experiments confirm that not only strongly convex but
also plain and non-convex problems can tolerate linear
increasing sample sizes – this reduces the number of
communication rounds.

Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes

References

Keith Bonawitz, Hubert Eichner, Wolfgang
Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano
Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Op-
timization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

Jerry Chee and Panos Toulis. Convergence diagnostics
for stochastic gradient descent with constant learning
rate. In International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2018, pages 1476–1485,
2018.

Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal
Jozefowicz. Revisiting distributed synchronous sgd.
ICLR Workshop Track, 2016.

Yang Chen, Xiaoyan Sun, and Yaochu Jin.
Communication-efficient federated deep learning with
asynchronous model update and temporally weighted
aggregation. arXiv preprint, 2019a. URL https:
//arxiv.org/pdf/1903.07424.pdf.

Yang Chen, Xiaoyan Sun, and Yaochu Jin.
Communication-efficient federated deep learning with
asynchronous model update and temporally weighted
aggregation. arXiv preprint, 2019b. URL https:
//arxiv.org/pdf/1903.07424.pdf.

Christopher M De Sa, Ce Zhang, Kunle Olukotun,
and Christopher Ré. Taming the wild: A unified
analysis of hogwild-style algorithms. In NIPS, pages
2674–2682, 2015.

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar,
Dimitris Konomis, Gregory R. Ganger, Phillip B. Gib-
bons, and Onur Mutlu. Gaia: Geo-distributed ma-
chine learning approaching LAN speeds. 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 17)., 2017.

Fei Wang Jie Xu, Wei Zhang. Asynchronous decen-
tralized parallel stochastic gradient descent with dif-
ferential privacy. arXiv preprint arXiv:2008.09246,
2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter
Richtárik. Tighter theory for local sgd on identical and
heterogeneous data. In International Conference on
Artificial Intelligence and Statistics, pages 4519–4529.
PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Daniel Ra-
mage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527, 2016.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-
Julien. Improved asynchronous parallel optimization
analysis for stochastic incremental methods. JMLR,
19(1):3140–3207, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86
(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith. Feder-
ated optimization for heterogeneous networks. arXiv
preprint, 2019. URL https://arxiv.org/pdf/1812.
06127.pdf.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for noncon-
vex optimization. In Advances in Neural Information
Processing Systems, pages 2737–2745, 2015.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu.
Asynchronous decentralized parallel stochastic gradi-
ent descent. arXiv preprint arXiv:1710.06952, 2017.

Horia Mania, Xinghao Pan, Dimitris Papailiopou-
los, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Perturbed Iterate Analysis for Asyn-
chronous Stochastic Optimization. SIAM Journal on
Optimization, pages 2202–2229, 2015.

Brendan McMahan and Daniel Ramage. Fed-
erated learning: Collaborative machine learn-
ing without centralized training data, 2017.
URL https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html. Last
accessed 09/24/2019.

H. Brendan McMahan, Eider Moore, Daniel Ramage,
and Blaise Agüera y Arcas. Federated learning of deep
networks using model averaging. ICLR Workshop
Track, 2016.

Qi Meng, Wei Chen, Jingcheng Yu, Taifeng Wang, Zhi-
Ming Ma, and Tie-Yan Liu. Asynchronous stochastic
proximal optimization algorithms with variance reduc-
tion. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Lam M. Nguyen, Phuong Ha Nguyen, Marten van
Dijk, Peter Richtárik, Katya Scheinberg, and Martin
Takác. SGD and hogwild! convergence without the
bounded gradients assumption. In Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, pages 3747–3755, 2018.

N. Nguyen, T. Nguyen, PH. Nguyen, Tran-Dinh, L. Nguyen, M. van Dijk

Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik,
Katya Scheinberg, Martin Takáč, and Marten van
Dijk. New convergence aspects of stochastic gradient
algorithms. Journal of Machine Learning Research,
20(176):1–49, 2019a.

P. H. Nguyen, L. M. Nguyen, and M. van Dijk. Tight
dimension independent lower bound on the expected
convergence rate for diminishing step sizes in SGD.
The 33th Annual Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019b.

Benjamin Recht, Christopher Re, Stephen Wright,
and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances
in neural information processing systems, pages 693–
701, 2011.

Herbert Robbins and Sutton Monro. A stochastic
approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Hongchao Zhang Saeed Ghadimi, Guanghui Lan. Mini-
batch stochastic approximation methods for noncon-
vex stochastic composite optimization. arXiv preprint
arxiv:1308.6594, 2013.

Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng
Tang, Yuxin Wang, Xiang Huang, and Xiaowen Chu.
A distributed synchronous sgd algorithm with global
top-k sparsification for low bandwidth networks. arXiv
preprint arXiv:1901.04359, 2019.

Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch
Paschalidis. Local sgd with a communication overhead
depending only on the number of workers. arXiv
preprint arXiv:2006.02582, 2020.

Sebastian U Stich. Local sgd converges fast and com-
municates little. arXiv preprint arXiv:1805.09767,
2018.

Marten Van Dijk, Lam Nguyen, Phuong Ha Nguyen,
and Dzung Phan. Characterization of convex objective
functions and optimal expected convergence rates for
sgd. In International Conference on Machine Learning,
pages 6392–6400, 2019.

Luping Wang, Wei Wang, and Bo Li. Cmfl: Mitigating
communication overhead for federated learning. IEEE
International Conference on Distributed Computing
Systems., 2019.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asyn-
chronous federated optimization. arXiv preprint, 2019.
URL https://arxiv.org/pdf/1903.03934v1.pdf.

Hao Yu and Rong Jin. On the computation and com-
munication complexity of parallel sgd with dynamic

batch sizes for stochastic non-convex optimization. In
International Conference on Machine Learning, pages
7174–7183. PMLR, 2019.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen,
Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu. Asyn-
chronous stochastic gradient descent with delay com-
pensation. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
4120–4129. JMLR. org, 2017.

Martin Zinkevich, John Langford, and Alex J Smola.
Slow learners are fast. In Advances in neural infor-
mation processing systems, pages 2331–2339, 2009.

