
Group testing for connected communities

Appendix

A Appendix for Section 3: The lower
bounds

A.1 Proof of Theorem 1

Proof. Ineq. (1) is because of the following counting
argument: There are only 2T combinations of test re-
sults. But, because of the community model I, there

are
(
F
kf

)
·
∏kf

j=1

(Mj

k j
m

)
possible sets of infected members

that each must give a different set of results. Thus,

2T ≥
(

F

kf

)
·

kf∏
j=1

(
Mj

k j
m

)
,

which reveals the result. The RHS of the latter in-
equality is because there are

(
F
kf

)
combinations of in-

fected families, and for each infected family j , there

are
(Mj

k j
m

)
possible combinations of infected family

members—hence for each combination of kf infected

families, there are
∏kf

j=1

(Mj

k j
m

)
possible combinations of

infected family members. The symmetric bound is ob-
tained as a corollary by taking Mj = M and k j

m = km
for each infected family j .

A.2 Proof of Theorem 2

Proof. Let V be the indicator random vector for the
infection status of all families. By rephrasing [Li et al.,
2014, Theorem 1], any probabilistic group testing algo-
rithm using T noiseless tests can achieve a zero-error
reconstruction of U if:

T ≥ H (U) = H (V) + H (U|V)−H (V|U). (A.1)

The first term is: H (V) =
∑F

j=1 H (Vj) = F h2 (q).

The second term is calculated as:

H (U|V) =

n∑
v=1

H (Uv|VEv
)

=

n∑
v=1

∑
x∈{0,1}

P(VEv = x)H (Uv|VEv = x)

=

n∑
v=1

(qH (Uv|VEv
= 1) + (1− q)H (Uv|VEv

= 0))

=

n∑
v=1

qh2 (pEv
)= q

F∑
j=1

Mjh2 (pj),

where Ev is the family containing vertex v.

Finally, we compute the third term as:

H (V|U) =

F∑
j=1

H (Vj |U) =

F∑
j=1

H (Vj |USj)

=

F∑
j=1

P(USj = 0)h2 (P(Vj = 0|USj = 0))

=

F∑
j=1

(1− q + q(1− pj)
|Sj |)h2

(
1− q

1− q + q(1− pj)|Sj |

)
where Sj is the set of members who belong to family
j and |Sj | = Mj . Combining all the 3 terms concludes
the proof.

B Appendix for Section 4.1: The
noiseless adaptive case

B.1 Rationale for Alg. 1

Group testing already has a rich body of literature
with near-optimal test designs in the case of indepen-
dent infections, we do not try to improve upon them.
Instead, we adapt these ideas to incorporate the cor-
relations arisen from the community structure. All
test designs described in this section are conceptually
divided into two parts. This split is guided by the
community structure and attempts to identify the dif-
ferent infection regimes inside the community, so that
the best testing method (individual or classic group
testing) is used. We show that such a two-part de-
sign is enough to significantly reduce the cost of group
testing and also achieve the lower bound in some cases.

Two-part design: Two parts of Algorithm 1 serve
complimentary goals:

The goal of Part 1 is to detect the infection regime
inside each family j : i.e., to accurately estimate which
of the F families have a high infection rate (“heavily”
infected) and which are have a low or zero infection
rate (“lightly” infected). Our interest in detecting the
infection regime is motivated by prior work [Riccio and
Colbourn, 2000,Hu et al., 1981], which has shown that
group testing offers benefits over individual testing,
only if the infection rate is low (pj ≤ 0.38). This

Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi

Figure 6: Expected number of tests from (7) as a func-
tion of size of representative set and probability of in-
fection inside a family.

allows us to define the two regimes as follows: In the
combinatorial model I (resp. probabilistic model II), a
is considered heavily infected when k j

m/Mj ≥ 0.38 (resp.
pj ≥ 0.38); conversely, it is considered lightly infected
family when k j

m/Mj < 0.38 (resp. pj < 0.38).

For each family j , we regard Ûx(rj) as an estimate of

the family’s infection regime. If Ûx(rj) is positive, we
consider the family to be highly infected and there-
fore perform individual testing for all of its members.
Otherwise, if Ûx(rj) is negative, we consider the fam-
ily to be lightly infected and group test its members
with all other lightly infected families. The challenge
is therefore to produce accurate enough regime esti-
mates, such that the overall number of tests that are
needed from Alg. 1 to achieve exact infection-status re-
construction for all members i = 1, . . . ,n is minimal.
We discuss this challenge further below.

Given all estimates Ûx(rj) from Part 1, the goal of the
Part 2 is then to identify all infected members, by us-
ing the appropriate testing method (group or individ-
ual testing) according to the infection regime of each
family (light or heavy). In this way, at the end of Part
2, the algorithm returns an estimate Ûi of the true
infection status Ui of each individual member i .

Selection of family representatives: Function
SelectRepresentatives() at line 2 refers to any sampling
function on a set of family members, as long as it re-
turns a fixed number of members from family j . That
is, one may use their own sampling function, as long
as the accuracy of Part 1 is well defined. In this paper,
we consider only random-sampling functions without
replacement (i.e. |rj | members are randomly chosen
from the family members and each subset of that size
has the same probability of being selected as the rep-
resentative subset). But perhaps, more elaborate sam-
pling functions may be considered in other contexts.

For example, if the internal structure of family j can
be represented through a contact graph, in which only
specific family nodes have external contacts with other
families, it may make sense to include (some of) these
nodes into the representative group with certainty.

When only one mixed sample per family is used to
identify the heavily/lightly infected families, the cardi-
nality of the representative subset |rj | is essential, but
the optimal choice of it is not trivial. |rj | affects the
accuracy of regime estimate—hence the performance
of our algorithm in terms of the expected number of
tests that it uses. Unfortunately, choosing the num-
ber of representatives optimally is not easy even in the
symmetric case that is examined in Section 4.1. Ide-
ally, in the symmetric case, we would like to choose
|rj | = R such that the bounds in Lemmas 1 and 2 are
minimized. However, this requires solving equations of
the form yey = x, which is generally possible through
Lambert functions for x ≥ − 1

e , but the latter does
not hold in our case. Fig. 6 demonstrates that there
exists no unique R that is optimal for any infection
probability p in (0, 1) through an example of F = 50
families with M = 60 members each. The figure plots
the bound of Lemma 2 as a function of p and R. As we
can see, there is no single minimizer R?: if p < 0.15,
then R must be picked equal to 0 (which yields tradi-
tional group testing); otherwise, if p > 0.15, then R
must be selected equal to M .

Therefore, in order to optimally choose R, a rough
estimate about p has to be known a priori. If the
latter is not possible, then one may use a few more
tests at the first stage of our algorithm to better detect
whether a family is heavily infected. We provide such
an optimization in the next section.

Function AdaptiveTest(): In both parts of our algo-
rithm, we make use of a classic adaptive-group-testing
algorithm, which we call AdaptiveTest(). This may be
regarded as an abstraction for any existing (or future)
adaptive algorithm in the group-testing literature. In
our analysis, however, we mostly focus on the classic
binary splitting algorithm because of its good perfor-
mance in realistic cases, where the numbers of infected
families and/or members (kf , k j

m) are unknown [Sobel
and Groll, 1959].

In this section, we consider only adaptive algorithms
that offer noiseless (zero-error) reconstruction. Note,
however, the fact that AdaptiveTest() offers exact re-
construction is not enough to guarantee an accurate
detection of any family’s infection regime in Part 1.
For example, consider the following case, where the
true infection rate within a family j is not very low
(say pj = 0.6), yet none of the family representative
in set rj happened to be infected. Intuitively, the er-
ror probability of detection in Part 1 should depend

Group testing for connected communities

on the number of selected representatives |rj | from
each family j and the infection rate among its mem-
bers pj . In our analysis, we examine different scenaria
w.r.t. these parameters and discuss which parametriza-
tion (i.e. value of |rj |) optimizes the expected number
of the tests required by our algorithm.

B.2 Modified/Optimized versions of Alg. 1

• One modification of our algorithm is the following:
In Part 1, instead of selecting only one representative
group for each family, we select ms representative sub-
groups, each of size s, and we treat each of these sub-
groups as a single “(super)-member”. That is, we iden-
tify whether each subgroup is positive (has at least one
positive member) or not, and based on this informa-
tion, using for example majority vote, we can classify
the family as heavily or lightly infected; essentially we
can solve an estimation problem as in [Aldridge et al.,
2019] (see Chapter 5.3), [Walter et al., 1980,Sobel and
Elashoff, 1975]. In this regard, Alg. 1 is just a special
case of this approach, with ms = 1 and s = |rj |.

Intuitively, we expect that such a modification would
increase the estimation accuracy of p̂j and reduce the
error of the related hypothesis test, at the cost of few
more tests. As a result, it could need fewer tests on
expectation than Alg. 1, hence perform better in some
cases. However, the potential improvement would de-
pend on parameters such as the family size - for in-
stance for small size families it is not expected to be
large. To keep things simple, we prefer not to ana-
lyze this algorithm in this paper and defer it to future
work.

• Another modification could be the following: instead
of leveraging the community structure to perform indi-
vidual tests where needed, we could use it to improve
traditional binary splitting algorithm by running it on
multiple testing groups that are related to the com-
munity structure. For example, consider a symmetric
case where: we split all n = FM members into M
groups of F people (one from each family), then run
binary splitting to each of these groups.

This modification is also related to Hwang’s binary
splitting algorithm, but achieves only logarithmic ben-
efits compared to binary splitting, as opposed to our
algorithm that may perform much better in real cases
(see Section 4.1). In fact, the expected number of tests
needed by this modified algorithm would be at most
k log2 (n/M)+O(k): each group g has kg infected mem-
ber and binary splitting needs kg log2 (n/M) + O(kg)
tests to identify all of them. By adding together the
number of tests for each group g, we deduce the result.

• A last modification occurred to us after a related
comment of one of our reviewers, who we thank. As
discussed in Section 4.1, when a sparse regime holds
for families (i.e. kf = Θ(Fαf) for αf ∈ [0, 1)) and
a heavily linear regime holds within each family (i.e.
km ≈ M), the benefits of Lemma 1 with regard to
Hwang’s binary splitting (HBSA) cannot be more than
1/ log(n/k). This is because, in Eq. (4), we get the
additive term kf M > FM = k , which comes from the
second stage of Algorithm 1.

Nevertheless, if km > M − km (i.e., the infection rate
inside each family is more than 0.5), then at the second
stage of our algorithm it makes more sense to look for
not-infected members and stop testing once we find
them. In that case, we need at least kf ∗ (M − km)
tests, which can be less than k, and therefore could
lead to more benefits on average.

For example, consider the case where km = M − 1.
Then the expected number of individual tests needed
to find the 1 not-infected member inside each in-
fected family can be computed as follows: Without
loss of generality, suppose that we test the members
at some fixed ordering without replacement and the
not-infected member has a uniformly random posi-
tion in that ordering. Then, the probability of the
not-infected item being at a given position i in the
ordering is equal to 1/M and we need i tests to
find it. As a result, the expected number of tests is∑M
i=1 i ∗ 1/M = (M + 1)/2. From linearity of expec-

tation, the expected number of tests for all infected
families at the second stage of our algorithm (if we
further assume that all infected families are identified
without error at the first stage—i.e., φc = 1) will be:
kf ∗ (M + 1)/2 < kf ∗ (M − 1) = kf ∗ km = k . Hence,
is this particular regime, the modification of our algo-
rithm can achieve benefits more than 1/ log(n/k).

In the more general case, where M − km > 1, the rele-
vant probabilities for the computation of the expected
number of tests can be obtained from the negative hy-
pergeometric distribution (since sampling is without
replacement).

In the extreme case, where for each infected family km
is known and equal to M , all we need to do is to iden-
tify the infected families and label all their members as
infected. In that case the benefit would be kf /k . Note,
that to achieve these higher benefits described above,
the knowledge of the number of infected members per
family is required, but this is also the case for HBSA.

3The symmetric example is only used here only to better
illustrate the advantages of the modification proposed. The
idea is similar for the asymmetric case.

Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi

B.3 Proof of Lemma 1

Proof. Let φc be the expected fraction of infected
families whose mixed sample is positive. Since
SelectRepresentatives() is uniform random sampling
without replacement, we can compute φc when 1 ≤
R ≤ M − km using the hypergeometric distribution
Hyper(M , km , R), as follows: the probability of a
random mixed sample x (rj) being negative (i.e. all
members of rj are negative) is given by the PMF of
Hyper(M , km , R) evaluated at 0, and it is therefore
equal to

(M−km
R

)
/
(M
R

)
, which yields φc = 1− (M−km

R

)
/
(M
R

)
.

We also define the following for completeness: φc = 0
when R = 0 and φc = 1 when M − km < R ≤ M .

Fixing the number of positive mixed samples in Part 1
of Alg. 1 to its expected value: kf ·φc , we now compute
the maximum number of tests needed by the algorithm
to succeed.

Alg. 1 performs testing at lines 4, 8, 13.

• At line 4, it identifies the positive mixed samples
to mark the corresponding families as heavily infected
and all others as lightly infected. If HGBSA is used for
AdaptiveTest(), then Alg. 1 is expected to succeed at
this step using kf φc log2

F
kf φc

+ kf φc tests. Similarly,

if BSA is used for AdaptiveTest(), then then Alg. 1
is guaranteed to succeed at this step using at most
kf φc log2 F + kf φc [Aldridge et al., 2019, Baldassini
et al., 2013].

• At line 8, the expected number of individual tests is
equal to: M kf φc . This is the same irrespectively from
whether AdaptiveTest() is binary splitting or Hwang’s
algorithm as it only depends on φc .

• At line 13, the expected number of items that
are tested is: n − kf φcM , and the expected number
of infected members is: k − kf φckm = k (1− φc).
So, if HGBSA is used for AdaptiveTest(), then
Alg. 1 is guaranteed to succeed at this step using

k (1− φc) log2
(n−kf φcM)
k(1−φc) + k (1− φc) tests. Similarly,

if BSA is used, then Alg. 1 is expected to succeed
in at most: k (1− φc) log2 (n − kf φcM) + k (1− φc)
tests [Aldridge et al., 2019,Baldassini et al., 2013].

We add together all the above terms that are related
to HGBSA or BSA, and the result follows.

B.4 Proof of Lemma 2

Proof. Let φp be the expected fraction of infected fam-
ilies whose mixed sample is positive. Then, because of
the probabilistic setting, φp = 1− (1− p)

R
.

Alg. 1 performs testing at lines 4, 8, 13.

• At line 4, the expected number of mixed samples that
are positive is Fqφp . So, if BSA is used in the place

of AdaptiveTest(), then the maximum number of tests
needed to identify all mixed samples is on expectation
Fqφp log2 F + Fqφp [Aldridge et al., 2019, Baldassini
et al., 2013].

• At line 8, the expected number of individual tests is
equal to: FqφpM .

• At line 13, the expected number of items that
are tested is: n − FqφpM , and the expected num-
ber of infected members is equal to the expected
number of all infected members minus the expected
number of the ones that are identified though indi-
vidual testing at line 8: i.e., FqMp − FqφpMp =
FqMp (1− φp) = nqp (1− φp). So, if BSA is used
in the place of AdaptiveTest(), it is expected to suc-
ceed using at most nqp (1− φp) log2 (n − FqφpM) +
nqp (1− φp) tests [Aldridge et al., 2019, Baldassini
et al., 2013].

We add together all the above terms and the result
follows.

C Appendix for Section 4.3: The
Noiseless Non-adaptive case

C.1 Zero error requirements

For our design of G2, we have the following lemma
and observation.

Lemma 7. To achieve zero-error w.r.t. G2, we need
T2 ≥ n.

Proof. A trivial implementation for G2 is to use an
identity matrix of size n; since each member is tested
individually, we can identify all the infected members
correctly. We next argue that T2 ≥ n for the zero-error
case. We prove this through contradiction. Assume
that T2 < n. Then, from the pigeonhole principle,
there exists one member, say m1 that does not partic-
ipate in any test alone -it always participates together
with one or more members from a set S1. Assume that
all members in S1 are infected, while m1 belongs in an
infected family but is not infected -our decoding will
result in a FP.

Observation: G2 leads to zero error if and only if it
has the following property:
Zero Error Property: Any subset of {1, 2, · · · ,n} of
size (F −kf)M + kf (M −km) equals the union of some
testing rows of G2. Namely, the members of the not-
infected families together with the not-infected mem-
bers of the infected families, need to be the only partic-
ipants in some rows of G2, for all possible not-infected
families and not-infected members. This requirement
can lead to an alternative proof of Lemma 7.

Group testing for connected communities

C.2 Rationale for the structure of G2

Our goal is to design a non-trivial matrix G2 that
can identify almost all the infected members with
high probability and a small number of tests. We
next discuss two intuitive properties we would like
our designs to have to minimize the error probability.

Desirable Property 1: Use identity matrices as build-
ing blocks.
Intuition: ideally, after removing the (F − kf)M
columns corresponding to the members in non-
infected families, we would like the remaining columns
to form an identity matrix so that we can identify all
the infected members correctly. To reduce the number
of tests, there should be more than one members
included in each test. Thus we use overlapping
identity matrices, one corresponding to each family.
We assume the index for the n members is family-by-
family, i.e., the indexes for the members in the same
family are consecutive. Then each family corresponds
to an identity sub-matrix IM in G2. Now the prob-
lem becomes how to arrange the identity sub-matrices.

Desirable Property 2: The identity matrices corre-
sponding to different families either appear in the same
set of M rows in G2 or they do not appear in any
shared rows.
Intuition: otherwise, a family would share tests with
more other families. Then the probability that this
family shares tests with infected families becomes
larger. This would increase the probability that two
infected families share tests after removing all the non-
infected family columns, which in turn would increase
the FP probability.

C.3 Proof of Lemma 3

Proof. The probabilities can be explained as follows:

(i) For PIjoint in (9), the numerator gives the num-
ber of possibilities that each block row contains
at most one infected family, which is obtained by
randomly choosing kf block rows (the summa-
tion) and then from each chosen block row choos-
ing one family to be infected (ci possible choices
for i-th block row). The denominator is the to-
tal number of infection possibilities, and then the
fraction denotes the probability that each block
row contains at most one infected family. Thus,
PIjoint is obtained as the probability that there
is some block row that contains two or more in-
fected families.

(ii) For PIIjoint in (10), (1 − q)ci is the probability

that there is no infected family in the i-th block
row, and ciq(1 − q)ci−1 is the probability that
there is only one infected family in the i-th block
row. The multiplication

∏
denotes the proba-

bility that any one block row contains at most
one infected family. Thus, PIIjoint is obtained as
the probability that there is some block row that
contains two or more infected families.

C.4 Proof of Lemma 4

Proof. Consider ci > cj + 1, let c′i = ci − 1 and c′j =
cj + 1. For the combinatorial model, we can verify the
difference of the probability for c′i and ci by∑
|B|=kf :

B⊆{1,2,··· ,b}

∏
`∈B

c′` −
∑
|B|=kf :

B⊆{1,2,··· ,b}

∏
`∈B

c` = (c′ic
′
j − cicj) ·X

= (ci − cj − 1) ·X
> 0,

where X is a positive value independent of ci and cj .

This implies that the minimum of the probability PIjoint

in (10) achieves its minimum roughly at the symmetric
case where all ci’s are equal, i.e., ci = c for all i ∈
{1, 2, · · · , b}.

Similarly, for the probabilistic model, consider the
probability in (10), we can calculate that

b∏
`=1

[
(1− q)c

′
` + c′`q(1− q)c

′
`−1
]

−
b∏
`=1

[
(1− q)c` + c`q(1− q)c`−1

]
(C.1)

= [(ci − cj)− (1− q)2]q2(1− q)ci+cj−2 · Y
> 0, (C.2)

where Y =
∏
` 6=i,j

[
(1− q)c` + c`q(1− q)c`−1

]
> 0 is

independent of ci and cj . This implies that the mini-
mum of the probability in (10) achieves its minimum
roughly at the symmetric case where all ci’s are equal,
i.e., ci = c for all i ∈ {1, 2, · · · , b}.

C.5 Proof of Lemma 5

The lemma is obtained under the assumption that the
number of families F is a multiple of b and c. If F can-
not be factorized, the error probabilities in Lemma 5
can be viewed as an upper bound for the correspond-
ing error probabilities. This can be seen by simply
adding F ′ auxiliary families so that F + F ′ = bc.

Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi

Proof. In the symmetric case, i.e., ci = c for all i ∈
{1, 2, · · · , b}, the probabilities in (9) and (10) become

PIjoint = 1−

(
b
kf

)
ckf(

F
kf

) , (C.3)

PIIjoint = 1−
(
(1− q)c−1(1− q + cq)

)b
. (C.4)

For the symmetric combinatorial model, the number
of infected members in an infected family k j

m = km for
all infected families j. If two families appear in the
same set of M tests, the probability that all infected
members in one family share the same km tests as the
other family is simply

P(no FP|joint) =
1(
M
km

) . (C.5)

Thus the probability that FPs happen is

Pe = P(FP|joint) · PIjoint =

[
1− 1(

M
km

)] [1−

(
b
kf

)
ckf(

F
kf

)]
.

(C.6)

For the symmetric probabilistic model, the infection
probability in an infected family pj = p for all infected
families j. If two families appear in the same set of M
tests, then there is no false positives only when the two
families have the same number of infected members
and the infected (non-infected) members in one family
must appear in the same set of tests as infected (non-
infected) members of the other family. The probabil-
ity that two families both have i infected members is[
pi(1− p)M−i

]2
, and the probability that all infected

members in one family share tests with only infected
members in the other family is simply 1

(M
i)

. Thus, the

probability that there is no false positives is given as
follows,

P(no FP|joint) =

M∑
i=1

[
pi(1− p)M−i

]2 1(
M
i

) . (C.7)

Thus the probability that a false positive happens can
be obtained as

Pe = P(FP|joint) · PIIjoint

=

[
M∑
i=1

[
pi(1− p)M−i

]2 1(
M
i

)]
·
[
1−

(
(1− q)c−1(1− q + cq)

)b]
. (C.8)

Replacing b by T2/M and c by FM /T2 completes the
result.

C.6 Proof of Lemma 6 and Discussions

Proof. For the combinatorial model (I), it is hard to
explicitly calculate the expected error rate. The upper

bound in (12) is obtained by assuming that if there
exist errors (FPs), then all non-infected members in
infected families are misidentified as infected in the
decoding of G2. (Note that all non-infected members
in non-infected families are correctly identified by de-
coding of G1.)

For the probabilistic model (II), the upper bound for
the expected error rate in (13) is obtained by

RII(error) =
1

n
· b ·

 c∑
j=2

(
c

j

)
qj(1− q)c−j

·

(
j∑
i=1

(
j

i

)
pi(1− p)j−i(j − i)

)
·M

]
(C.9)

=
bM

n
·

[
c∑
j=2

(
c

j

)
qj(1− q)c−j

·
(
j(1− p)− j(1− p)j

)]
(C.10)

<
(1− p)T2

n
·

 c∑
j=2

(
c

j

)
qj(1− q)c−j · j


=

(1− p)T2

n
·
[
cq − cq(1− q)c−1

]
,

= (1− p)q
[
1− (1− q)c−1

]
, (C.11)

where the expression in the bracket in (C.9) for each j
denotes the expected number of FPs in one block row
if there are j families infected in this block row, (C.10)
is obtained from the expected value of binomial distri-
bution, and (C.11) follows by substituting c = n

T2
.

We here make the following observation about the sys-
tem FP probability P(any-FP): As we explore fur-
ther in Section 6 non-adaptive group testing requires
more tests than adaptive. Assume that kf = Θ(Fαf)
for αf ∈ [0, 1) and choose R = M − 1 in Algo-
rithm 1. Adaptive testing allows to achieve zero er-
ror with kf log2 F + kf M tests; if we use the same
(order) number of tests with a non-adaptive strat-
egy, i.e., T1 = kf log2

F
kf

and T2 = kf (log2 kf + M),

we get P(any-FP) in Lemma 5 approximately equal

to
(
1− 1

M

) [
1−

(T2/M
kf

)(
T2/M

kf

)kf

(F/kf)
kf

(F
kf

)

]
which is bounded

away from 0. The latter can be seen as follows: i)

T2/M ≈ kf � F ; ii)
(nk)

(nk)
k

/ (n+m
k)

(n+m
k)

k =
(

n
n+m

)k
·∏m

i=1
n+i−k
n+i is decreasing withm and can be very small

when m� n.

Fig. 7 depicts P(any-FP) and R(error) for parameters
F = 64, kf = 6, km = 4, M = 5, q = 1/8, and p = 0.8.

Group testing for connected communities

Figure 7: System FP probability and FP error rate.

D Appendix for Section 5: Loopy
Belief Propagation algorithm

We here describe our loopy belief propagation algo-
rithm (LBP) and update rules for our probabilistic
model (II). We use the factor graph framework of
[Kschischang et al., 2001] and derive closed-form ex-
pressions for the sum-product update rules (see equa-
tions (5) and (6) in [Kschischang et al., 2001]).

The LBP algorithm on a factor graph iteratively ex-
changes messages across the variable and factor nodes.
The messages to and from a variable node Vj or Ui

are beliefs about the variable or distributions (a local
estimate of P(Vj |observations) or P(Ui |observations)).
Since all the random variables are binary, in our case
each message would be a 2-dimensional vector [a, b]
where a, b ≥ 0. Suppose the result of each test
is yτ , i.e., Yτ = yτ and we wish to compute the
marginals P(Vj = v |Y1 = y1,Y2 = y2, ...,YT = yT)
and P(Ui = u|Y1 = y1,Y2 = y2, ...,YT = yT) for
v , u ∈ {0, 1}. The LBP algorithm proceeds as follows:

1. Initialization: The variable nodes Vj and Ui

transmit the message [0.5, 0.5] on each of their
incident edges. Each variable node Yτ transmits
the message [1− yτ , yτ], where yτ is the observed
test result, on its incident edge.

2. Factor node messages: Each factor node receives
the messages from the neighboring variable nodes
and computes a new set of messages to send on
each incident edge. The rules on how to compute
these messages are described next.

3. Iteration and completion. The algorithm alter-
nates between steps 2 and 3 above a fixed number
of times (in practice 10 or 20 times works well) and
computes an estimate of the posterior marginals
as follows – for each variable node Vj and Ui , we
take the coordinatewise product of the incoming

factor messages and normalize to obtain an esti-
mate of P(Vj = v |y1...yT) and P(Ui = u|y1...yT)
for v , u ∈ {0, 1}.

Next we describe the simplified variable and factor
node message update rules. We use equations (5) and
(6) of [Kschischang et al., 2001] to compute the mes-
sages.

Leaf node messages: At every iteration, the variable
node Yτ continually transmits the message [0, 1] if
Yτ = 1 and [1, 0] if Yτ = 0 on its incident edge. The
factor node P(Vj) continually transmits [1 − q , q] on
its incident edge; see Fig. 8 (a) and (b).

Variable node messages: The other variable nodes Vj
and Ui use the following rule to transmit messages
along the incident edges: for incident each edge e,
a variable node takes the elementwise product of the
messages from every other incident edge e′ and trans-
mits this along e; see Fig. 8 (c).

Factor node messages: For the factor node messages,
we calculate closed form expressions for the sum-
product update rule (equation (6) in [Kschischang
et al., 2001]). The simplified expressions are summa-
rized in Fig. 8 (d) and (e). Next we briefly describe
these calculations.

Firstly, we note that each message represents a prob-
ability distribution. One could, without loss of gen-
erality, normalize each message before transmission.
Therefore, we assume that each message µ = [a, b] is
such that a + b = 1. Now, the the leaf nodes labeled
P(Vj) perennially transmit the prior distribution cor-
responding to Vj .

Next, consider the factor node P(Ui|Vj) as shown in
Fig. 8 (d). The message sent to Ui is calculated as

µu =
∑

v∈{0,1}

P(Ui = u|Vj = v)wv

= w0(1− u) + w1p
u
j (1− pj)1−u.

Similarly, the message sent to Vi is

νv =
∑

u∈{0,1}

P(Ui = u|Vj = v)su

= s0(v(1− pj) + 1− v) + s1vpj .

Finally for the factor nodes P(Yτ |Uδτ) as shown in
Fig. 8 (e), note that the messages to Yτ play no role
since they are never used to recompute the variable

Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi

𝑋௝ 𝑌ఛ Pr 𝑌ఛ|𝑈ఋഓ

ሾ1 െ ,ݍ ሿݍ ሾ1 െ ,ఛݕ ఛሿݕ

Pr 𝑌ఛ|𝑈ఋഓ
𝑌ఛ

𝑈௜

𝑈ఋഓ

ሾ1 െ ,ఛݕ ఛሿݕ ሾ1 െ ,ఛݕ ఛሿݕ

ሺ𝑒ሻ Messages from Pr 𝑌ఛ|𝑈ఋഓ factor nodes

𝑋௝ሺ𝑜ݎ 𝑈௜ሻ

ሺ𝑐ሻ Messages from 𝑋௝ and 𝑈௜ variable nodes

ሺ𝑎ሻ Messages from Pr 𝑋௝ factor nodes ሺ𝑏ሻ Messages from 𝑌ఛ variable nodes

𝑋௝

Pr 𝑈௜|𝑋௝𝑈௜

ሾݏ௢, ଵሿݏ ሾݓ௢ ൅ ଵݓ 1 െ ௝݌ ௝ሿ݌ଵݓ,

ሺ𝑑ሻ Messages from Pr 𝑈௜|𝑋௝ factor nodes

Prሺ𝑋௝ሻ

𝑓

𝑓′

௢ݓ
௙ᇲ , ଵݓ

௙ᇲ -- incoming message from
factor node 𝑓′

,௢ݏ ଵݏ -- incoming message from node 𝑈௜

ሾݓ଴,ݓଵሿ -- incoming message from node 𝑋௝

ሾݏ௢
ሺ௜ሻ, ଵݏ

ሺ௜ሻሿ – incoming message from node 𝑈௜
ሾߤ଴, ଵߤ ሿ – outgoing message to node 𝑈௜

V!

V!

V!

V!

V!

V!

V!

(Vj)

Vj

Figure 8: The update rules for the factor and variable node messages.

messages. The messages to Ui nodes are expressed as

µu =
∑

y∈{0,1},
{ui′∈{0,1}:i

′∈δτ\{i}}

(
P(Yτ = y|Uδτ = uδτ)

(1− yτ)1−yyyτ
∏

i′∈δτ\{i}}

s(i′)
ui′

)
= (1− yτ)

∑
{ui′∈{0,1}:
i′∈δτ\{i}}

(
P(Yτ = 0|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i′)
ui′

)
+ yτ

∑
{ui′∈{0,1}:
i′∈δτ\{i}}

(
P(Yτ = 1|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i′)
ui′

)
.

From our Z-channel model, recall that P(Yτ = 0|Uδτ =
uδτ) = 1 if ui = 0 ∀ i ∈ δτ and P(Yτ = 0|Uδτ = uδτ) =
z otherwise. Thus we split the summation terms into
2 cases – one where ui′ = 0 for all i′ and the other its
complement. Also combining this with the assumption

that the messages are normalized, i.e., s
(i)
0 + s

(i)
1 = 1,

we get∑
{ui′∈{0,1}:
i′∈δτ\{i}}

(
P(Yτ = 0|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i′)
ui′

)

= 1u=1z + 1u=0

{
1− (1− z)(1−

∏
i′∈δτ
i′ 6=i

s
(i′)
0)

}
,

and∑
{ui′∈{0,1}:
i′∈δτ\{i}}

(
P(Yτ = 1|Uδτ = uδτ)

∏
i′∈δτ\{i}}

s(i′)
ui′

)

= 1u=1(1− z) + 1u=0

(
(1− z)(1−

∏
i′∈δτ
i′ 6=i

s
(i′)
0)

)
.

Substituting u = 0, and u = 1 we obtain the messages

µ0 = (1− yτ)
{

1− (1− z)(1−
∏
i′∈δτ
i′ 6=i

s
(i′)
0)

}

+ yτ (1− z)(1−
∏
i′∈δτ
i′ 6=i

s
(i′)
0),

Group testing for connected communities

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

p

0

100

200

300

400

500

600

av
er

ag
e

#o
f t

es
ts

Alg.1: R = 1

Alg.1: R = M

binary splitting

lower bound

non-adaptive

counting bound

(a) Community 1—sparse regime.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

p

0

200

400

600

800

1000

1200

av
er

ag
e

#o
f t

es
ts

Alg.1: R = 1

Alg.1: R = M

binary splitting

lower bound

non-adaptive

counting bound

(b) Community 1—linear regime.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

p

0

50

100

150

200

250

300

350

400

450

500

av
er

ag
e

#o
f t

es
ts

Alg.1: R = 1

Alg.1: R = M

binary splitting

lower bound

non-adaptive

counting bound

(c) Community 2—sparse regime.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

p

0

100

200

300

400

500

600

700

800

900

1000

av
er

ag
e

#o
f t

es
ts

Alg.1: R = 1

Alg.1: R = M

binary splitting

lower bound

non-adaptive

counting bound

(d) Community 2—linear regime.

Figure 9: Experiment (i):
Noiseless case—Average number of tests.

and

µ1 = (1− yτ)z + yτ (1− z).

For our probabilistic model, the complexity of com-
puting the factor node messages increases only linearly
with the factor node degree.

E Appendix for Section 6: Other
Results

We next provide additional experimental results to the
ones provided in Section 6.

(i) Noiseless testing – Average number of tests: In Fig-
ure 9, we reproduce additional numerics akin to the
ones in Section 6 for number of tests in the noiseless-
testing case. As earlier, we measure the average num-
ber of tests needed by 3 algorithms that achieve zero-
error reconstruction (Alg. 1 with R = 1, Alg. 1 with
R = M , and classic BSA), and a version of our non-
adaptive algorithm (Section 4.3) that uses T1 = F
tests for submatrix G1 and has an overall FP rate
around 0.5%. Alg. 1 assumes no prior knowledge
of the number of infected families/classes or mem-
bers/students, hence uses BSA as group-testing algo-
rithm for the AdaptiveTest() function.

Fig. 9 depicts our results: We observe that both ver-
sions of Alg. 1 (black and magenta lines) need sig-
nificantly fewer tests compared to classic BSA (green
line), while staying below the counting bound. This
indicates the potential benefits from the community
structure, even when the number of infected members
is unknown. More interestingly, when R = M , Alg. 1
performs close to the lower bound in most realistic
scenarios p ∈ [0.5, 0.8] (as also shown in Section 4.1).
The grey line shows number of tests needed by our
nonadaptive algorithm; we observe that even that al-
gorithm needs fewer tests than BSA when p gets larger
than 0.5, of course at the cost of a (FP) error rate of
0.5%.

(ii) Noiseless testing – Average error rate: In Fig. 10,
we reproduce additional numerics akin to the ones in
Section 6 for average error rates in the noiseless-testing
case. As earlier, we quantify the additional cost in
terms of error rate, when one goes from a two-stage
adaptive algorithm that achieves zero-error identifi-
cation to much faster single-stage nonadaptive algo-
rithms.

Fig. 10a is a reproduction of Fig. 3 for p = 0.8, and as
can be seen its behavior is very similar to Fig. 3.

Fig. 10b depicts the FP and FN error rates (aver-
aged over 500 runs) as a function of p ∈ [0.3, 0.8]
for Community 1 for the linear regime. We ob-
serve that any community-aware nonadaptive algo-
rithm performs better than traditional nonadaptive
group testing (red line) when p > 0.5 – the absolute
performance gap ranges from 0.2% (when p = 0.5) to
8.5% (when p = 0.8). “COMP with C-encoder” has a
stable FP rate across for all p values that was close to
2%, and a zero FN rate by construction. Unlike the

Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi

150 200 250 300 350 400 450
Number of tests T

0

2

4

6

8

10

12

Er
ror

 ra
te

(%
)

FP for COMP with C-encoder
FP for COMP with NC-encoder
FP for C-LBP with NC-encoder
FN for C-LBP with NC-encoder

(a) Noiseless case: Average error rate p = 0.8
for sparse regime.

0.3 0.4 0.5 0.6 0.7
Probability of infection p

0

2

4

6

8

Er
ror

 ra
te

(%
)

FP for COMP with C-encoder
FP for COMP with NC-encoder
FP for C-LBP with NC-encoder
FN for C-LBP with NC-encoder

(b) Noiseless case: Average error rate with
few tests for linear regime.

300 350 400 450 500 550
Number of tests T

0

5

10

15

20

Er
ror

 ra
te

(%
)

FP for COMP with C-encoder
FP for COMP with NC-encoder
FP for C-LBP with NC-encoder
FN for C-LBP with NC-encoder

(c) Noiseless case: Average error rate p = 0.6
for linear regime.

300 350 400 450 500 550
Number of tests T

0

5

10

15

20

Er
ror

 ra
te

(%
)

FP for COMP with C-encoder
FP for COMP with NC-encoder
FP for C-LBP with NC-encoder
FN for C-LBP with NC-encoder

(d) Noiseless case: Average error rate p = 0.8
for linear regime.

Figure 10: Experiment (ii):
Noiseless case—Average error rate.

sparse regime, the LBP consistently produces better
error rates compared to the COMP decoder. However,
for low values of p, LBP produces more FN errors. For
p > 0.6, both the FN and FP error rates are close to

0 for LBP.

Fig. 10c and Fig. 10d examine the effect of the num-
ber of tests in the linear regime. For p = 0.6, “C-
LBP with NC-encoder” performs better than “COMP
with C-encoder” for T > 450 until which both have
high error rates. On the other hand, for p = 0.8, “C-
LBP with NC-encoder” performs better than “COMP
with C-encoder” for all values of T . More importantly,
“COMP with C-encoder” seems to saturate to a non-
zero FP error rate, while “C-LBP with NC-encoder”
is able to attain close to zero error FP and FN rates.
These results contrast with the results for the sparse
regime.

(iii) Noisy testing:

In Figure 11, we reproduce additional numerics akin
to the ones in Section 6 for average error rates in the
noisy-testing case. As earlier, we assuming the Z-
channel noise of Section 2.3 with parameter z = 0.15,
and we evaluate the performance of our community-
based LBP decoder of Section 5 against a LBP that
does not account for community—namely its factor
graph has no Vj nodes.

Fig. 11a is a reproduction of Fig. 4 for p = 0.6, and as
can be seen its behavior is very similar to it.

Fig. 11b and Fig. 11c depict our results for Community
1 and for p = 0.6 and p = 0.8 in the linear infection
regime. We observe that the knowledge of the commu-
nity structure reduces the FN rates achieved by LBP.
The FP error rates are always close to 0 while the, FN
error rates drop significantly (up to 60% when tests
are few), which is important in our context since FN
errors lead to further infections.

(iv) Asymmetric case—Linear regime:

Here we offer the results about an asymmetric setup
that parallels the one of Section 6. Infections follow
again the probabilistic model (II), and the size of each
family is randomly selected from the interval [5, 50]
and the infection rate of each infected family is ran-
domly selected from the range [0.4, 0.8]. But, this time
q = 5%.

Figure 5 depicts our results. BSA needs on average
6.19× (that can reach up to 13.87×) more tests com-
pared to the probabilistic bound, while the two ver-
sions of Algorithm 1 with R = 1 and R = M need
only 2.74× and 1.19× (that can reach up to 9.7× and
2.03×) more tests, respectively. Also, similarly to the
sparse regime, there is a significantly smaller range
between the 25-th and 75-th percentiles of the box-
plots related to Algorithm 1 that indicates its more
predictable performance compared to BSA.

Group testing for connected communities

150 200 250 300 350 400 450
Number of tests T

0

20

40

60

80
Err

or
rat

e (
%)

FP for NC-LBP with NC-encoder
FP for C-LBP with NC-encoder
FN for NC-LBP with NC-encoder
FN for C-LBP with NC-encoder

(a) Noisy case: Average error rate p = 0.6 for
sparse regime.

300 350 400 450 500 550 600 650
Number of tests T

0

20

40

60

80

Err
or

rat
e (

%)

FP for NC-LBP with NC-encoder
FP for C-LBP with NC-encoder
FN for NC-LBP with NC-encoder
FN for C-LBP with NC-encoder

(b) Noisy case: Average error rate p = 0.6 for
linear regime.

300 350 400 450 500 550 600 650
Number of tests T

0

20

40

60

80

Err
or

rat
e (

%)

FP for NC-LBP with NC-encoder
FP for C-LBP with NC-encoder
FN for NC-LBP with NC-encoder
FN for C-LBP with NC-encoder

(c) Noisy case: Average error rate p = 0.8 for
linear regime.

Figure 11: Experiment (iii):
Noisy case—Average error rate.

Alg.1: R=1 Alg.1: R=M BSA
0

2

4

6

8

10

12

14

Figure 12: Asymmetric case—Linear regime: Cost
efficiency for number of tests.

	Appendix for sec:lower-bounds: The lower bounds
	Proof of thm:combinatorialBound
	Proof of thm:probabilisticBound

	Appendix for sec:adapt: The noiseless adaptive case
	Rationale for Alg. 1
	Modified/Optimized versions of Alg. 1
	Proof of lem:expectedTests:combinatorial
	Proof of lem:expectedTests:probabilistic

	Appendix for sec:nonadapt: The Noiseless Non-adaptive case
	Zero error requirements
	Rationale for the structure of G2
	Proof of lem:blockRowProb
	Proof of lemmasymmetricc
	Proof of lemmaFP-prob
	Proof of lemma-ErrorRate and Discussions

	Appendix for sec:LBP: Loopy Belief Propagation algorithm
	Appendix for section-experiments: Other Results

