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Figure S1: Tensor diagrams of a product of (a) SVDP and (b) STTP of a weight matrix W ∈ Rdout×din and an
input x ∈ Rdin×dx , where dx is a batch or any other second dimension. See legend in Fig. 2 (of the main paper). x̃
is obtained by tensorizing x along the dimension din using the same dimension factorization as the corresponding
dimension of the matrix W . The factorized dimensions of x̃ are connected with the recipient dimensions of
TT-cores V(k). The contraction order of all connected edges defines FLOPs and memory requirements for
computing y = Wx. After the contraction, dimensions of the output ỹ can be flattened to recover y.

S1 Computational Shortcuts of Low-Rank Affine Mappings

Both SVDP and STTP support “decompression” of the weight matrix W ∈ Rdout×din , which can be used for
computing the mapping ω(x) directly as y = Wx for some input x ∈ Rdin×dx . The last dimension of the input x
may correspond to the batch dimension, so its value may be large during neural network training or equal to 1
during inference. The low-rank structure of the proposed parameterizations allows for taking certain computational
shortcuts for computing either W or the mapping output y, as measured in floating-point operations (FLOPs).

SVDP The number of FLOPs required to decompress W given U , Σ, and V is rmin(dout, din) + 2rdoutdin.
Computing y = Wx then takes another 2doutdindx FLOPs. When r � min(din, dout), and dx = 1, computing
y = U(Σ(V >x)) following the order indicated by parentheses is preferred. Indeed, such computation brings the
number of FLOPs down to r(2din + 2dout + 1). Overall, the optimal contraction order of a tensor diagram shown
in Fig. S1a (which corresponds to arranging parentheses in the expression UΣV >x) is defined by the sizes of all
operands involved in the expression and can be precomputed upon the layer initialization.
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Figure S2: Visualization of the Padded Householder parameterization of orthonormal frames: (a) Full parameteri-
zation, (b) Reduced parameterization. Shaded areas with hi,j values represent parameters of reflectors; qi,j values
represent orthonormal frame elements, affected by the parameterization. The padded parameterization allows for
more efficient batching of orthonormal frames of different sizes for better parallelism at the expense of memory.

STTP After computing the TT-cores of matrices U and V from the underlying parameterizations, there are
more than two ways to compute the mapping ω(x). As before, one can contract the tensor diagram of the matrix
W first and then perform the regular computation of y = Wx. A slightly more efficient way is to contract
matrices U and V and then re-use the approach to the low-rank mapping of SVDP.

Finally, the most efficient approach consists of the following steps: (1) factorization of the first dimension of x into
Din factors: din = n1 . . . nDin , (2) tensorization of x into a tensor x̃ according to the dimension factorization, (3)
connecting factorized dimensions of x̃ with the respective dimensions of the TT-cores V , and finally, (4) contracting
the resulting tensor diagram in Fig. S1b according to the optimal contraction order. While finding the optimal
contraction order of a generic tensor diagram is an NP-hard problem, efficient algorithms exist for certain classes
of graphs (Smith and Gray, 2018). This approach gives us the lowest possible FLOPs count of computing ω
directly in the low-rank space, as both simpler approaches belong to the search space of the contraction order. As
in the case of SVDP, the optimal contraction order depends on the topology of the tensor diagram and node sizes.
Since the layer dimensions are known in advance, the mapping complexity is not increased at runtime.

S2 Batch Householder Transformation

Computations involving the proposed parameterizations are dominated by orthogonal transformations (6). In this
section, we discuss some aspects that make our approach feasible as the size and the number of neural network
layers grow. Despite Householder transformation being more amenable to SIMD implementation than Givens
rotations and matrix exponential maps (Shepard et al., 2015), prior works avoid using them altogether due to the
lack of framework support1, complex implementations, and hardness to scale beyond a handful of layers. We
overcome these limitations by utilizing a joint parameterization of orthonormal frames of the same size (Obukhov,
2021). In the context of SVDP, it allows us to generate multiple orthonormal frames of the same size d × r
(potentially belonging to different layers) in a sequence of a total of r batched Householder reflections.

In the context of STTP, all matricized TT-cores are represented as orthonormal frames of a limited set of sizes
and can be computed independently of each other. Specifically, the sizes are of the form Ranb ×Rc, where nb
belongs to the set of all possible factors of weight matrices’ sizes in the whole network, and Ra, Rc belong to the
set of all possible TT-rank values induced by matrix dimensions and rank r. In practice, we can reduce the set of
different sizes of orthonormal frames used in the model by following high-level design recommendations discussed
in Sec. S3. These observations lead to the improvement of TT-cores computation parallelism by having fewer
different orthonormal frame sizes and a higher number of frames in each batch of a fixed size.

Padded Householder Although batching orthonormal frames of the same size improves parallelism, batches
of different sizes are still processed in sequence. Here we show how to trade memory for parallelism and perform

1Even though an orthogonal transformation implementing (6) can be found in modern automatic differentiation packages
as LAPACK bindings (?ORGQR), these functions rarely support batching or differentiation with respect to inputs.
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parameterizations of multiple orthonormal frames of different sizes in a single batch. Concretely, given a set of sizes
d1 × r1, . . . , dk × rk, we parameterize the respective orthonormal frames using the proposed Padded Householder
parameterization in a batch of k matrices of size max(d1, . . . , dk)×max(r1, . . . , rk), as shown in Fig. S2a. Indeed,
by zeroing hp,i,j : ∀i > dp,∀j > rp in the p-th matrix of parameters, propagating 1 on the diagonal for j > rp,
and applying the Householder transformation, the resulting leading sub-matrix is in St(dp, rp), p = 1 . . . k.

Householder parameterization padding can also be used together with the Reduced parameterization introduced
in Sec. 3.1 (Fig. S2b) to describe elements in StU(d, r). Indeed, both Reduced and Padded variations employ
the same transformation and differ only in the placement of constants {0, 1}. Thus it is possible to perform
parameterization of all orthonormal frames needed by the model in a single batch of rank-r orthonormal frames.

S3 Neural Architecture Design for Efficient Batching of Orthonormal Frames

Sec. S2 points out the possibility of parallel computation of orthonormal frames, potentially belonging to different
layers (and cores in STTP). The ability to compute most of the orthonormal frames of weight matrices in parallel
is the defining factor of the compute throughput during training. There are a few neural architecture design
traits, which have a direct impact on the effectiveness of such batching with or without padding.

Recall that SVDP of a 2D convolution with the weight matrix W ∈ RCout×CinK
2

requires the computation
of orthonormal frames U ∈ RCout×R and V ∈ RCinK

2×R, where R = min(r, Cout, CinK
2). To ensure that

orthonormal frames from different layers can be batched, one should aim to reduce the amount of variation in the
dimensions of matrices U and V belonging to different layers. For example, this is achieved with most residual
architectures such as He et al. (2016); Zagoruyko and Komodakis (2016), which contain repetitions of residual
blocks. Each unique orthonormal frame size forms a separate batch, which in turn requires a separate function
call during training. Such cases include, for example, components of the preamble layer attaching to RGB inputs
or layers with unique dout or din less than r, causing rank demotion to satisfy the constraint r ≤ min(dout, din).

STTP declares less strict constraints on the overall network architecture and weight matrix sizes than SVDP.
Recall the TT parameterization of an orthonormal frame U ∈ Rd×r requires computing dimension factorization
d = n1 . . . nD for some n1, . . . , nD ∈ N \ {1}, for example, prime factors of d with repetition. Then U can have
a low-rank parameterization through a number of TT-cores (8) with matricized dimensions Rk−1nk × Rk for
k = 1, . . . , D. The ranks Rk are defined as min(r,Rmax

k ) (3). To give a concrete example, consider a convolutional
layer with the weight matrix W ∈ R16×8·3·3, and r = 4. Then matrices U ∈ R16×4 and V > ∈ R8·3·3×4 will be
tensorized into tensors Ũ ∈ R2×2×2×2×4 and Ṽ ∈ R2×2×2×3×3×4 using the prime factors of the first dimensions
of matrices U and V >. The TT-rank and dimensions of W̃ induced by such dimensions factorization (3.3) will be
R = (1, 2, 4, 4, 4, 4, 4, 4, 2, 1), n = (2, 2, 2, 2, 3, 3, 2, 2, 2), and the complete set of matricized core sizes will contain:
{(2× 2)2, (4× 4)2, (8× 4)3, (12× 4)2} (upper index indicates the size of the batch). Thus, the relation of r to the
size of the layer and the ability to factorize dimensions of the weight matrices play crucial roles in reducing the
variation of orthonormal frame sizes involved in the parameterization. With this in mind, here are a few neural
architecture design rules for maximum computation throughput and efficiency with STTP:

• r should be substantially smaller than the maximum dimension of a weight matrix in the whole network
(e.g., r = 64 with 512 features in the largest layer);

• the set of convolutional filter sizes (e.g., {1, 3}) in the entire network should be small;

• usage of large (e.g., greater than 3) prime factors should be avoided in r, channel, and filter sizes;

• best throughput can be achieved with r, channel, and filter sizes being powers of a small factor (e.g., 2 or 3).

S4 Training Considerations

Optimizer weight decay, L2 regularization The role of regularization with SVDP and STTP is fundamen-
tally different from the regularization of the regular affine layers. Whereas the latter results in simpler models due
to the reduction of the Frobenius norm of weight matrices, the former will reduce individual reflectors’ magnitudes,
which promotes a truncated diagonal structure in weight matrices. This may or may not be the desired effect,
depending on higher-level design decisions, such as the presence of skip connections; this topic is well beyond the



Spectral Tensor Train Parameterization of Deep Learning Layers

scope of the current work. Frobenius regularization of the parameterized weight matrices can still be implemented
by simply imposing an L2 penalty or performing weight decay of the learned singular values.

Initialization Most weight matrix initialization schemes in deep learning are motivated by norm preservation
of the layer mapping (He et al., 2015). While SVDP and STTP achieve the same goal through the embedded
spectral properties, a good initialization still plays an important role in the convergence speed. We experimented
with three different ways of initializing orthonormal frames in both SVDP and STTP: (1) truncated identity
matrix Id×r; (2) orthogonal initialization with QR decomposition of a random normal matrix (Saxe et al., 2014):
QR(Nd×r), where elements of Nd×r are i.i.d. sampled from N (0, 1); (3) orthogonal initialization with a noisy
identity matrix QR(Id×r + αNd×r). All initialization schemes resulted in a good model performance at the end
of the training; however, the noisy identity scheme with α = 1e−4 exhibited faster convergence in the considered
experiments with SNGAN. We conjecture that the best value of α depends on the dimensions d and r.

S5 Proof of Proposition 1

The fact that M(U (k)) ∈ St(Rk−1nk, Rk) implies IRk
=M(U (k))>M(U (k)), or in the index notation,

δµν =

Rk−1∑
βk−1=1

nk∑
ik=1

M(U (k))βk−1ik,µ
M(U (k))βk−1ik,ν

=

Rk−1∑
βk−1=1

nk∑
ik=1

U (k)
βk−1,ik,µ

U (k)
βk−1,ik,ν

, (S1)

where δµν is the Kronecker delta. To show that T (U (1), . . . ,U (D)) ∈ St(n1 · · ·nD, r), let us write the orthogonality
condition in index notation (for the ease of notation, we omit ranges in which indices vary):∑

i1,...,iD

T (U (1), . . . ,U (D))i1...,iD,µ T (U (1), . . . ,U (D))i1...,iD,ν

=
∑

i1,...,iD

 ∑
β0,...,βD−1

U (1)
β0,i1,β1

U (2)
β1,i2,β2

· · · U (D)
βD-1,iD,µ

 ∑
β0,...,βD−1

U (1)
β0,i1,β1

U (2)
β1,i2,β2

· · · U (D)
βD-1,iD,ν


=

∑
i1,...,iD

∑
β0,...,βD−1

∑
β̃0,...,β̃D−1

U (1)
β0,i1,β1

U (1)

β̃0,i1,β̃1
· · · U (D)

βD-1,iD,µ
U (D)

β̃D-1,iD,ν
,

(S2)

and note that β0 and β̃0 vary from 1 to 1, so with (S1) for k = 1, we get∑
i1

U (1)
1,i1,β1

U (1)

1,i1,β̃1
= δβ1β̃1

.

The latter expression implies that in the last line of (S2), after summing over i1, only the terms with β̃1 = β1
remain. We can now apply (S1) for k = 2:∑

β1,i2

U (2)
β1,i2,β2

U (2)

β1,i2,β̃2
= δβ2β̃2

.

Proceeding recursively, we obtain that (S2) equals δµν , which completes the proof.

S6 Proof of Proposition 2

Let us first show that T
(
U (1),U (2), . . . ,U (D)

)
= T

(
Ũ (1), Ũ (2), . . . , Ũ (D)

)
.

Since Ũ (k)
:,ik,:

= Q>k−1U
(k)
:,ik,:

Qk, Q>k Qk = I, and Q0, QD are identity matrices of appropriate sizes, we have:

T
(
Ũ (1), Ũ (2), . . . , Ũ (D)

)
i1...iD,:

=
(
Q>0 U

(1)
:,i1,:

Q1

)(
Q>1 U

(2)
:,i2,:

Q2

)
. . .
(
Q>D−1U

(D)
:,iD,:

QD

)
= U (1)

:,i1,:
U (2)
:,i2,:

. . .U (D)
:,iD,:

= T
(
U (1),U (2), . . . ,U (D)

)
i1...iD,:

.
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Next, let us finally show that M(Ũ (k)) ∈ St(Rk−1nk, Rk). Indeed, M(Ũ (k)) = (Q>k-1 ⊗ Ink
)M(U (k))Qk since

(
M(Ũ (k))

)
αk−1ik,αk

=

Rk-1,Rk∑
αk-1,αk=1

(Qk-1)αk-1,βk-1
U (k)
αk-1,ik,αk

(Qk)αk,βk

=

Rk-1,Rk∑
αk-1,αk=1

nk∑
jk=1

(Qk-1)αk-1,βk-1
δikjkU

(k)
αk-1,jk,αk

(Qk)αk,βk

=

Rk-1,Rk∑
αk-1,αk=1

nk∑
jk=1

(Qk-1)αk-1,βk-1
δikjk

(
M(U (k))

)
αk−1jk,αk

(Qk)αk,βk

=
(

(Q>k-1 ⊗ Ink
)M(U (k))Qk

)
αk−1ik,αk

.

Hence,

M(Ũ (k))>M(Ũ (k)) =
(

(Q>k-1 ⊗ Ink
)M(U (k))Qk

)> (
(Q>k-1 ⊗ Ink

)M(U (k))Qk

)
= Q>kM(U (k))>(Qk-1

(
Q>k-1)⊗ Ink

)
M(U (k))Qk = Q>kM(U (k))>M(U (k))Qk = Q>k Qk = IRk

,

which completes the proof.

S7 STTP Degrees of Freedom

We consider a tensor diagram from Fig. 2b made compatible with the TT decomposition introduced in Sec. 2
(consisting only of TT-cores) by contracting the matrix Σ into either left or right adjacent TT-core and recovering
size-1 legs on the outer-most TT-cores. Such tensor diagram will have the following TT-rank and dimensions (3.3):

R = (1, Rout
1 , . . . , Rout

Dout−1, r, R
in
Din−1, . . . , R

in
1 , 1),

n = (nout1 , . . . , nout
Dout

, ninDin
, . . . , nin

1 ).
(S3)

Recall that R and n are indexed in the ranges [0, Dout +Din] and [1, Dout +Din] respectively (Sec. 2) and that
STTP is obtained by parameterizing its Σ and TT-cores as follows (left to right in Fig. 2b, Sec. 3.3):

• M(U (k)) ∈ StU(Rout
k−1n

out
k ×Rout

k ), 1 ≤ k < Dout, or equivalently StU(Rk−1nk ×Rk), 1 ≤ k < Dout (TT-cores
of U excluding the last one) in the notation (S3), parameterized by Rk−1nkRk −R2

k parameters,

• M(U (k)) ∈ St(Rout
k−1n

out
k ×Rout

k ), k = Dout, or equivalently St(Rk−1nk ×Rk), k = Dout (the last TT-core of
U) in the notation (S3), parameterized by Rk−1nkRk −Rk(Rk + 1) / 2 parameters,

• Σ = diag(σ1, . . . , σr) is a matrix of singular values, parameterized by r parameters,

• M(V(k)) ∈ St(Rin
k−1n

in
k ×Rin

k ), k = Din, or equivalently St(Rknk ×Rk−1), k = Dout + 1 (the last TT-core of
V ) in the notation (S3), parameterized by RknkRk−1 −Rk−1(Rk−1 + 1) / 2 parameters,

• M(V(k)) ∈ StU(Rin
k−1n

in
k ×Rin

k ), Din > k ≥ 1, or equivalently StU(Rknk ×Rk−1), Dout + 1 < k ≤ Dout +Din

(TT-cores of V excluding the last one) in the notation (S3), parameterized by RknkRk−1 −R2
k−1 parameters.
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Summing up the degrees of freedom of STTP components listed above, and keeping in mind that RDout ≡ r,

DOF(W ) =

[
Dout−1∑
k=1

Rk−1nkRk −R2
k

]
+

[
Rk−1nkRk −

Rk(Rk + 1)

2

∣∣∣ k = Dout

]
+ r +

+

[
RknkRk−1 −

Rk−1(Rk−1 + 1)

2

∣∣∣ k = Dout + 1

]
+

[
Dout+Din∑
k=Dout+2

RknkRk−1 −R2
k−1

]
=

=

[
r − r(r + 1)

2
− r(r + 1)

2

]
+

Dout+Din∑
k=1

Rk−1nkRk −
∑

k∈[1,Dout−1]∪
[Dout+1,Dout+Din−1]

R2
k

=

Dout+Din∑
k=1

Rk−1nkRk −
Dout+Din−1∑

k=1

R2
k,

we arrive at the same dimensionality of the fixed TT-rank tensor manifold as Holtz et al. (2012).
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