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Abstract

We discuss several novel change of mea-
sure inequalities for two families of diver-
gences:  f-divergences and «-divergences.
We show how the variational representa-
tion for f-divergences leads to novel change
of measure inequalities. ~We also present
a multiplicative change of measure inequal-
ity for a-divergences and a generalized ver-
sion of Hammersley-Chapman-Robbins in-
equality. Finally, we present several applica-
tions of our change of measure inequalities,
including PAC-Bayesian bounds for various
classes of losses and non-asymptotic intervals
for Monte Carlo estimates.

1 Introduction

The Probably Approximate Correct (PAC) Bayesian
inequality was introduced by Shawe-Taylor and
Williamson (1997) and McAllester (1999). This frame-
work allows us to produce PAC performance bounds
(in the sense of a loss function) for Bayesian-flavored
estimators Guedj (2019), and several extensions have
been proposed to date (see e.g., Seeger (2003); Catoni
(2007); McAllester (2003b,a); Seldin et al. (2012); Am-
broladze et al. (2007)). The core of these theoretical
results is summarized by a change of measure inequal-
ity. The change of measure inequality is an expec-
tation inequality involving two probability measures
where the expectation with respect to one measure
is upper-bounded by the divergence between the two
measures and the moments with respect to the other
measure. The change of measure inequality also plays
a major role in information theory. For instance, Kat-
soulakis et al. (2017) derived robust uncertainty quan-
tification bounds for statistical estimators of interest
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with change of measure inequalities. Recent research
efforts have been put into more generic perspectives
to get PAC-Bayes bounds and to get rid of assump-
tions such as boundedness of the loss function (see
e.g., Lever et al. (2013); Tolstikhin and Seldin (2013);
Mhammedi et al. (2019); Holland (2019); Griinwald
and Mehta (2019); Shalaeva et al. (2020)). All PAC-
Bayesian bounds contained in these works massively
rely on one of the most famous change of measure in-
equalities, which are based on the variational repre-
sentation of the KL-divergence (Donsker and Varad-
han (1975); Csiszar (1975)). Several change of mea-
sure inequalities had been proposed along with PAC-
Bayes bounds lately. Bégin et al. (2016) proposed a
proof scheme of PAC-Bayesian bounds based on the
Rényi divergence. Honorio and Jaakkola (2014) pro-
posed an inequality for the x2 divergence and derived a
PAC-Bayesian bound for linear classification. Alquier
and Guedj (2018) proposed a novel change of mea-
sure inequality and PAC-Bayesian bounds based on
the a-divergence. While most works in the PAC-
Bayesian literature propose an analysis based on a
specific change of measure inequality, a comprehen-
sive study of change of measure inequalities has not
been performed, to the best of our knowledge. Our
work proposes several novel and general change of
measure inequalities for two families of divergences:
f-divergences and a-divergences. It is a well-known
fact that the f-divergence can be variationally char-
acterized as the maximum of an optimization prob-
lem rooted in the convexity of the function f. This
variational representation has been recently used in
various applications of information theory, such as f-
divergence estimation Nguyen et al. (2010b) and quan-
tification of the bias in adaptive data analysis Jiao
et al. (2017). On the theoretical side, Ruderman et al.
(2012) showed that the variational representation of
the f-divergence can be tightened when the convex
dual is constrained to the space of probability mea-
sures, as opposed to the space of all measures.

Our main contributions are as follows:

e We derive several change of measure inequali-
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ties, based on the variational representation for
f-divergences. We perform the analysis for the
constrained regime (to the space of probability
densities) as well as the unconstrained regime (the
space of all integrable functions).

e We present a multiplicative change of measure in-
equality for the family of a-divergences. This gen-
eralizes the previous results Alquier and Gued]j
(2018); Honorio and Jaakkola (2014) for the a-
divergence, which in turns enables PAC-Bayes in-
equalities for types of losses not considered before.

e We also generalize prior results for the
Hammersley-Chapman-Robbins inequality
Lehmann and Casella (1998) from the particular
x? divergence, to the family of a-divergences.

e We provide new PAC-Bayesian bounds with the
a-divergence and the y?-divergence from our
novel change of measure inequalities for bounded,
sub-Gaussian, sub-exponential and bounded-
variance loss functions. Our results are either
novel, or have a tighter complexity term than
existing results in the literature, and pertain to
important machine learning prediction problems,
such as regression, classification and structured
prediction.

e We provide a new scheme for estimation of non-
asymptotic intervals for Monte Carlo estimates.
Our results indicate that the empirical mean over
a sampling distribution concentrates around an
expectation with respect to any arbitrary distri-
bution.

For quick reference, our contributions are summarized
in Tables 1, 3 and 4.

2 Change of Measure Inequalities

In this section, we formalize the definition of f-
divergences and present the constrained representation
(to the space of probability measures) as well as the
unconstrained representation. Then, we provide dif-
ferent change of measure inequalities for several di-
vergences. We also provide multiplicative bounds as
well as a generalized Hammersley-Chapman-Robbins
bound. Table 1 summarizes our results.

2.1 Change of Measure Inequality from the
Variational Representation of
f-divergences

Let f : (0,400) — R be a convex function. The convex
conjugate f* of f is defined by:

[ (y) = igg(fcy — f(=)). (1)

The definition of f* yields the following Young-Fenchel
inequality

f(@) zwy = [ (y)

which holds for any y. Using the notation of convex
conjugates, the f-divergence and its variational repre-
sentation is defined as follows.

Definition 1 (f-divergence). Let H be any arbitrary
domain. Let P and Q) denote the probability mea-
sures over the Borel o-field on H. Additionally, let
f:[0,00) = R be a convex and lower semi-continuous
function that satisfies f(1) = 0.

1%@wﬂ:EPPC§)

For simplicity, we denote Ep[-] = Ej.p[-] in the se-
quel. Many common divergences, such as the KL-
divergence, the y2-divergence and the Hellinger di-
vergence, are members of the family of f-divergences,
coinciding with a particular choice of f(¢). Table 2
presents the definition of each divergence with the cor-
responding generator f(t). It is well known that the
f-divergence can be characterized as the following vari-
ational representation.

Lemma 1 (Variational representation of f-divergence,
Lemma 1 in Nguyen et al. (2010a)). Let H, P, Q and
f be defined as in Definition 1. The f-divergence from
P to Q is characterized as

Dy(Q[IP) = SI;PEQM —Ep[f*(¢)]

where the supremum is over all real-valued functions

¢: H—-R.

Ruderman et al. (2012) shows that this variational rep-
resentation for f-divergences can be tightened.

Theorem 1 (Change of measure
from the constrained variational representation
for f-divergences Ruderman et al. (2012)). Let
H, P, Q and f be as in Definition 1. Let
o: H — R be a real-valued function. Let
Alp) ={g: H = R :g > 0,]g|lL = 1} denote
the space of probability densities with respect to p,
where the norm is defined as ||g|ly := [, lgldu, given
a measure j over H. The general form of the change
of measure inequality for f-divergences is given by

inequality

Eqlé] < Dy(QIIP) + (If p)*(¢)

(17 p)*(¢) = sup Eplép] — Ep[f(p)]
PEA(P)

where p is constrained to be a probability density func-
tion.
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Table 1: Our novel change of measure inequalities. For simplicity, we denote Ep|]

=Epp[] and ¢ = ¢(h).

Bound Type Divergence Uppper-Bound for Every Q and a Fixed P Reference
Constrained KL Egl¢] < KL(Q||P) + log(Ep[e®]) McAllester (1999)
Variational Pearson x? Eqld] < x*(Q||P) +Ep[¢] + tVarp[¢] Lemma 2 [New]
Representation  Total Variation — Eg[¢] < TV(Q||P)+ Ep[¢] for ¢ € [0,1] Lemma 4
Unconstrained KL Eq[p] < KL(Q|P) + (Eple?] — 1) McAllester (1999)
Variational Pearson x? Eqld] < x*(Q||P) + Ep[¢] + 1Ep[¢?] Lemma 3 [New]
Representation Total Variation Egl¢] < TV(Q|P) + Ep[¢] for ¢ € [0,1]
a MMSD@W)Aﬁﬁﬁwwﬁ+ﬁﬁ;meﬁmw]
Squared Eql¢] < H*(Q|P) —‘rEp[%] for ¢ <1 Lemma 6 [New]
Hellinger
Reverse KL Eql¢] < KL(Q|/P) + Ep[log(X5 )] for ¢ <1 Lemma 7 [New]
Neyman y> Eql¢] < x2(Q|P) +2 —2Ep[y/I— ¢ for ¢ <1 Lemma 8 [New]
Multiplicative ~ Pearson x? Eglo] < v/ (X?(Q|IP) + 1)Ep[¢?] Honorio and
Jaakkola (2014)
a Eql¢] < (a(a—1)Da(Q[P)+1)7 (Ep[|¢|=7]) "5 Alquier and Guedj
(2018)
Generalized Pearson x? 2(Q|P) > % Lehmann and
HCR Casella (1998)
e 1 _a a—1
Pseudo Eql8]~Ep[d]| < Da(QIP) (Ep(lo—up|7=T]) % TLemma 12 [New]
Table 2: Some common f-divergences with corresponding generator.
Divergence Formula with probability measures P Corresponding
and @ defined on a common space H Generator f(t)
KL KL(Q|P) = [, log 22dQ tlogt —t + 1
Reverse KL KL (Q||P) = f?—t log deP —log t
Pearson x? X2(Q|P) = [,,(%2 —1)2dP (t—1)2
JE— 2
Neyman y? 2(Q||P) fn )2dQ) (17)
Total Variation TV (QIP) =3 f?—t —1|dP 2t —1]
Squared Hellinger HQ(QHP) = fﬁ’,_[(q/ )QdP (Vt—1)?
& (QHP> aa— 1) f?—[ - 1)dP at(ootc_fll)
Pseudo « «(@QIP) = [,,1%2 l\adP |t —1]@
®p (Alquier and Guedj, 2018) D¢,p_1 Q|P) = f?—t |p —1)dP P —1

The famous Donsker-Varadhan representation for the
KL-divergence, which is used in most PAC-Bayesian
bounds, can be actually derived from this tighter rep-
resentation by setting f(t) = tlog(t). However, it is
not always easy to find a closed-form solution for The-
orem 1, as it requires to resort to variational calculus,
and in some cases, there is no closed-form solution. In
such a case, we can use the following corollary to ob-
tain looser bounds, but only requires to find a convex
conjugate.

Corollary 1 (Change of measure inequality from
the wunconstrained variational representation for
f-divergences). Let P, Q, f and ¢ be as in Theorem
1. By Definition 1, we have

VQ on H: Eq¢] < D(QIIP) +Ep[f*(¢)]

Detailed proofs can be found in Appendix A. By
choosing a right function f and deriving the con-
strained maximization term (]I;c2 p)*(¢) with the help
of variational calculus, we can create an upper-bound
based on the corresponding divergence Dy(Q|P).
Next, we discuss the case of the x? divergence.

Lemma 2 (Change of measure inequality from the
constrained representation of the x2-divergence). Let
P, Q and ¢ be as in Theorem 1, we have

YQ on M Bqlé] < *(QIP) +Epld] + 1 Varplg]

The bound in Lemma 2 is slightly tighter than the
one without the constraint. The change of measure
inequality without the constraint is given as follows.
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Lemma 3 (Change of measure inequality from
the unconstrained representation of the Pearson
x2-divergence). Let P, Q and ¢ be as in Theorem 1,
we have

YQ on M Bqlé] < *(QIIP) +Epld] + Erlo?

As might be apparent, the bound in Lemma 2 is
tighter than the one in Lemma 3 by (Ep[¢])? because
Varpl¢] < Ep[¢?]. Next, we discuss the case of the
total variation divergence.

Lemma 4 (Change of measure inequality from the
constrained representation of the total variation di-
vergence). Let ¢: H — [0, 1] be a real-valued function.
Let P and Q be as in Theorem 1, we have

VQ on H: Eqlo] <TV(Q|P) +Ep[g]

Interestingly, we can obtain the same bound on the
total variation divergence even if we use the uncon-
strained variational representation. Next, we state our
result for a-divergences.

Lemma 5 (Change of measure inequality from the
unconstrained representation of the a-divergence). Let
P, @ and ¢ be as in Theorem 1. For o > 1, we have

YQ on H :

(—1)a-T o 1

Eql¢] < Da(QP) + Ep[p=—1] +

We can obtain the bounds based on the squared
Hellinger divergence HZ?(Q||P), the reverse KL-
divergence KL(Q||P) and the Neyman y?-divergence
X2(Q||P) in a similar fashion.

Lemma 6 (Change of measure inequality from the un-
constrained representation of the squared Hellinger di-
vergence). Let ¢p: H — (—o0,1) be a real-valued func-
tion. Let P and @Q be as in Theorem 1, we have

VQ on H : Eql¢] < H*(Q||P) +Ep L i) (,J

Similarly, we obtain the following bound for the
reverse-KL divergence.

Lemma 7 (Change of measure inequality from the
unconstrained representation of the reverse KL-diver-
gence). Let ¢: H — (—o0, 1) be a real-valued function.
Let P and Q be as in Theorem 1, we have

VQ onH: Eql¢] < KL(Q||P)+Ep [1og <1i¢>}

Finally, we prove our result for the Neyman x? diver-
gence based on a similar approach.

ala—1)

Lemma 8 (Change of measure inequality from
the unconstrained representation of the Neyman
x2-divergence). Let ¢: H — (—o0,1) be a real-valued
function. Let P and @Q be as in Theorem 1, we have

VQ on H: Eql¢] < x2(Q||P) +2 —2Ep[y/1 -~ g]

2.2 Multiplicative Change of Measure
Inequality for a-divergences

First, we state a known result for the y? divergence.

Lemma 9 (Multiplicative change of measure in-
equality for the y2-divergence (Honorio and Jaakkola,
2014)). Let P, @ and ¢ be as in Theorem 1, we have

¥Q on M Eqlg] < v (*(QIP) + 1)Ep[¢?]

First, we note that the x? divergence is an a-
divergence for @ = 2. Next, we generalize the above
bound for any a-divergence.

Lemma 10 (Multiplicative change of measure in-
equality for the a-divergence). Let P, Q and ¢ be as
in Theorem 1. For any o > 1, we have

VQ on H :

Eqlé] < (ala — )Da(@IIP) + 1) (Ep[lgl7T])

Our bound is stated in the form of a-divergence. By
choosing @ = 2, we have the same bound as Lemma
9 where x2(Q||P) = 2D, (Q|P). We will later apply
the above a-divergence change of measure to obtain
PAC-Bayes inequalities for types of losses not consid-
ered before (Alquier and Guedj, 2018; Honorio and
Jaakkola, 2014).

2.3 A Generalized
Hammersley-Chapman-Robbins (HCR)
Inequality

The HCR inequality is a famous information theoretic
inequality for the x2-divergence.

Lemma 11 (HCR inequality (Lehmann and Casella,
1998)). Let P, Q and ¢ be as in Theorem 1, we have

(Eq[¢] — Ep[¢])?

vQ on H: *(Q|IP) > Varp[¢]

Next, we generalize the above bound for a-divergence.

Lemma 12 (The generalization of HCR inequality.).
Let P, Q and ¢ be as in Theorem 1. For any o > 1,
we have

V@ on H :

[Eq[g] — Ep[¢]| < Da(Q|P)= (Epll¢ — ppls=1]) ©
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where

— d
DL(QIP) = | |55 =114 and jup = Eplo]

We call ZS;(QHP) a pseudo a-divergence, which is a
member of the family of f-divergences with f(t) =
[t — 1]* for & > 1. See Appendix B for the formal
proof. Straightforwardly, we can obtain Lemma 11 by
choosing a = 2.

3 Application to PAC-Bayesian
Theory

In this section, we will explore the applications of our
change of measure inequalities. We consider an ar-
bitrary input space X and a output space ) . The
samples (z,y) € X x ) are input-output pairs. Each
example (z,y) is drawn according to a fixed, but un-
known, distribution D on X x Y. Let £: Y x Y — R
denote a generic loss function. The risk Rp(h) of any
predictor A : X — ) is defined as the expected loss
induced by samples drawn according to D. Given a
training set S of m samples, the empirical risk Rg(h)
of any predictor h is defined by the empirical average
of the loss. That is

Rp(h)= E ((h(x).y)
(z,y)~D
Rs(h) = = 3 t(h(z),y)
|S| (z,y)eS

In the PAC-Bayesian framework, we consider a hy-
pothesis space ‘H of predictors, a prior distribution P
on H, and a posterior distribution ¢ on H. In the
classical PAC-Bayes framework, the prior is specified
before exploiting the information contained in .S, while
the posterior is obtained by running a learning algo-
rithm on S. There are advances on extending the clas-
sical framework to data-dependent P, e.g., Rivasplata
et al. (2020). The PAC-Bayesian theory usually stud-
ies the stochastic Gibbs predictor Gg. Given a distri-
bution ) on H, G predicts an example x by drawing
a predictor h according to @, and returning h(z). The
risk of G is then defined as follows. For any proba-
bility distribution ) on a set of predictors, the Gibbs
risk Rp(Ggq) is the expected risk of the Gibbs predic-
tor G relative to D. Hence,

Rp(Gq) B E, ((h(z), y) (2)
Usual PAC-Bayesian bounds give guarantees on the
generalization risk Rp(Ggq). Typically, these bounds
rely on the empirical risk Rg(Gg) defined as follows.

Rs(Go) = 5 PIRRUCTING

Due to space constraints, we fully present PAC-Bayes
generalization bounds for losses with bounded vari-
ance. Other results for bounded losses, sub-Gaussian
losses and sub-exponential losses are included in Ap-
pendix C. Still, we briefly discuss our new results in
Section 3.2.

3.1 Loss Function with Bounded Variance

In this section, we present our PAC-Bayesian bounds
for the loss functions with bounded variance, i.e., any
arbitrary distribution with bounded variance on the
loss function ¢ (i.e., Var, ,)p[l(h(z),y)] < o2 for
any h € H). The assumption of bounded variance is
similar to the assumption of bounded second moment
used by Holland (2019).

Suppose that we have a convex function A : R x R —
R, that measures the discrepancy between the ob-
served empirical Gibbs risk Rs(Gg) and the true
Gibbs risk Rp(Gg) on distribution Q. Given that,
the purpose of the PAC-Bayesian theorem is to upper-
bound the discrepancy tA(Rp(Gg), Rs(Gq)) for any
t > 0. Let ¢p(h) := tA(Rp(h), Rs(h)), where the
subscript of ¢p shows the dependency on the data
distribution D. Let A(g,p) = (¢ — p)>.

Proposition 1 (The PAC-Bayesian bounds for loss
function with bounded variance). Let P be a fized
prior distribution over a hypothesis space any h € H.
For a given posterior distribution @ over an infinite
hypothesis space H, let Rp(Gg) and Rs(Gg) be the
Gibbs risk and the empirical Gibbs risk as in Equation
(2) and (3) respectively. For the sample size m and
a > 1, with probability at least 1 — 0, simultaneously
for all posterior distributions Q, we have

Rp(Gq) < Rs(Gq) + \/:(;(Oé(a —1)Da(Q[|P) +1)

Q=

Rp(Gq) < Rs(Gg)+

(o i) - (%)

(4)

Proofs are given in Appendix. By setting o = 2 in
Proposition 2, we have the following claim.

Corollary 2 (The PAC-Bayesian bounds with
x2-divergence for bounded variance loss function). Let
P be any prior distribution over an infinite hypothesis
space ‘H. For a given posterior distribution QQ over an
infinite hypothesis space H, let Rp(Gg) and Rs(Gg)
be the Gibbs risk and the empirical Gibbs risk as in
Equation (2) and (3) respectively. For the sample size
m > 0, with probability at least 1 — ¢, simultaneously
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Table 3: Our novel PAC-Bayesian bounds

with a-divergence and y2-divergence.

Loss & Divergence Upper bound for Rp(Gg) — Rs(Gg) Reference
Bounded Loss o O(R[E log( )2 Do (Q]|P) 2a) Proposition 5 [New]
a  O((£)3[Da(Q|P) + (R?log(3))+"7]%) Proposition 5 [New]

There are no bounds to compare with

? O(R[l log( 12X (QIP)3)

X
(s )[ *(QIIP) + (R*log(3))
0-1 loss e O((m5)2X (QIIP)= )

2]%)

in the literature
Corollary 3 [New
Corollary 3 [New]

Honorio and Jaakkola
(2014); Bégin et al. (2016)

]

Our multiplicative bound is O((x*)'/*) and O((log(1/6))'/?)

while the compam’son bound is O((x?)'/?) and O((1/6)'/?)
Sub-Gaussian a  O(o[Xlog(5 )]zD (QHP)%) Proposition 6 [New]
a O((% )%[ (QHP) (o 2log(%))a 1]%) Proposition 6 [New]
a O (%)%( )= Du(Q||P)%) Theorem 1 & Proposition 6

Our multiplicative bound is O((Dg)"

while the comparison bound is O((
1 1
2 0ol log(3)]2x*(QIIP)7)

X
X O(() P (QIIP) + (07 og(3))?
X2 0(o(:5%)5x2(Q|P)?)

in Alquier and Guedj (2018)
>®) and O((log(1/6))"/?)

Do)V and O((1/8)*/(@=1)

Corollary 4 [New]
Corollary 4 [New]

Theorem 1 & Proposition 6
in Alquier and Guedj (2018)

%)

Our multiplicative bound is O((x? )1/4) and O((log(1/6))'/?)

while the comparison bound is O((x

%)

'/2) and O(((1/9))"/?)

Sub-exponential  « O(% log(5)D (Q||P)ﬁ) Proposition 7 [New]
For « O((%) [Du(Q||P) +m==1(3 log(%))aal]%) Proposition 7 [New]
m < % e O(ﬁ lo (%) 2Q|P)t ) Corollary 5 [New]
X O(GAHOG@IP) + 7= (Blog(3))]?) Corollary 5 [New]
There are no bounds to compare with in the literature
Bounded a O (mé)% «(Q||P) 2a) Proposition 1 [New]
Variance a  O((L): [Da (QIP) + (5 Sk Proposition 1 [New]
« ((%)% (%) = (D (QHP))é) Proposition 4 in Alquier and

Our multiplicative bound is O((Dgy)"

while the comparison bound is O((

> 0 (W;)%XQ(QIIPV)

X
X2 O((5)20@QIP) +(2)2)2)
¥ 0(0(5)52(Q|P)?)

Our multiplicative bound is O((x?

Y/4Y while the comparison bound is O((x

Guedj (2018)
20) and O((1/8)'/?)

Do)V and O((1/8)%/(@=1)

Corollary 2 [New]
Corollary 2 [New]

Corollary 1 in Alquier and

Guedj (2018)
2)1/2)

for all posterior distributions Q, we have

Ro(Ga) < Rs(Ga) + | e T@IP 71 9

)
Please see Table 3 for detailed comparisons with exist-
ing results.

2

! (x?(QIIP) +1+ (U

Rp(Gq) < Rs(Gq) + \/Qm 5

3.2 Discussion

Table 3 presents various PAC-Bayesian bounds based
on our change of measure inequalities depending on
different assumptions on the loss function ¢, and
compares them with existing results in the litera-
ture. The importance of the various types of PAC-
Bayes bounds is justified by the connection between
PAC-Bayes bounds and regularization in a learning
problem. PAC-Bayesian theory provides a guaran-
tee that upper-bounds the risk of Gibbs predictors si-
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Figure 1: Bound comparisons for different values of o and 4.

multaneously for all posterior distributions Q. PAC-
Bayes bounds enjoy this property due to change of
measure inequalities. It is a well-known fact that
KL-regularized objective functions are obtained from
PAC-Bayes risk bounds, in which we can find the best
posterior among all the possible posteriors Q). The
complexity term, partially controlled by the diver-
gence, serves as a regularizer (Germain et al., 2009,
2007; Bousquet and Elisseeff, 2002). Additionally, the
link between Bayesian inference techniques and PAC-
Bayesian risk bounds was shown by Germain et al.
(2016), that is, the minimization of PAC-Bayesian risk
bounds maximizes the Bayesian marginal likelihood
when the loss is the negative log-likelihood. Our re-
sults pertain to important machine learning predic-
tion problems, such as regression, classification and
structured prediction and indicate which regularizer
to use. All PAC-Bayes bounds presented here are ei-
ther novel, or have a tighter complexity term than
existing results in the literature. Since our bounds
are based on either y2-divergence or a-divergence, we
excluded the comparison with the bounds based on
the KL-divergence (Seeger, 2003; Catoni, 2007; Hol-
land, 2019; Mhammedi et al., 2019; Germain et al.,
2016; Griinwald and Mehta, 2019; Sheth and Khardon,
2017). Our results for sub-exponential losses are en-
tirely novel. For the other cases, our bounds are
tighter than exisiting bounds in terms of the complex-
ity term. For instance, our bound for bounded losses
is tighter than those of Honorio and Jaakkola (2014);
Bégin et al. (2016) since our bound has the complex-

ity term x2(Q||P)'/* and log(1/6), while Honorio and
Jaakkola (2014); Bégin et al. (2016) have x?(Q|P)'/?
and 1/§. For sub-Gaussian loss functions, our bound
has the complexity term D (Q||P)*/?* and log(1/4),
whereas Alquier and Guedj (2018) has D, (Q|P)*/«
and 1/6 respectively. In addition, our additive bounds,
such as Equation (4), have better rates than the exist-
ing bounds in Alquier and Guedj (2018), since in our
bound, D, (Q||P) and 1/¢ are added, while in Alquier
and Guedj (2018), D, (Q||P) and 1/§ are multiplied.

Figure 3 compares the convergence rate of the addi-
tive bound in Proposition 1 with respect to a and §.
We consider Gaussian distributions for the prior and
posterior distribution with different mean. The upper
panels portray the comparisons of the bounds with
the prior N(0,1) and the optimal posterior distribu-
tion N(1,1). The lower panels depict those with the
optimal posterior N(2,1). As might be readily appar-
ent, our additive bound works better with large a. We
can also see that the additive bound is robust since it
works similarly regardless of the choice of prior distri-
bution, o and §. Even when we choose a “bad” prior
distribution as in the lower panels in which the prior is
far way from the optimal posterior, the bounds behave
nicely.
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Table 4: Our novel non-asymptotic interval for Monte Carlo estimates

Divergence Non-asymptotic interval for Monte Carlo estimates
4L? log

[Eq[¢(X)] — £ 30, o(Xy)| <

Reference
+ K

Pseudo « K=2

— 1
LD (QIP) = a—2 o=t
Nai F(zg(’aj)) ¢

Proposition 2 [New]

X2 IC_

QP S 02w + 122

1 2 . 2
log £} if log(%) <n
nlog 5} &(5) < Proposition 3 [New]

VQIPHE Y, 62(x) +
KL K=KLQ|P)+ L

ny

16L2

log 2} if n < log(2)
Proposition 4 [New]

There are no bounds to compare with in the literature

4 Non-Asymptotic Interval for Monte
Carlo Estimates

We now turn to another application of change of mea-
sure inequalities. We will introduce a methodology
that enables us to find a non-asymptotic interval for
Monte Calro (MC) estimate. All results shown in this
section are entirely novel and summarized in Table 4.
Under some circumstances, our methodology could be
a promising alternative to existing MC methods, e.g.,
Importance Sampling and Rejection Sampling (Robert
and Casella, 2005) because their non-asymptotic inter-
vals are hard to analyze. In this section, we consider
a problem to estimate an expectation of an Lipschitz
function ¢ : R — R with respect to a complicated
distribution @, namely Eqg[¢(X)] by the sample mean
L3 1 #(X;) over a distribution P, where Q is any
distribution we are not able to sample from. For a
motivating application, consider @) being a probabilis-
tic graphical model (see e.g., Honorio (2011)). As-
sume that we have a strongly log-concave distribution
P with a parameter « for a sampling distribution (see
Appendix D for definition). Under the above condi-
tions, we claim the following proposition.

Proposition 2 (A general expression of non-asymp-
totic interval for Monte Carlo estimates). Let X be
a d-dimensional random vector. Let P and @ be the
probability measures over R%. Assume P is strongly
log-concave with parameter v > 0. Let ¢ : R? —
R be any L-Lipschitz function with respect to the
FEuclidean norm. Suppose we draw i.i.d. samples
X1, X9,.... Xy, ~ P. For o > 1, with probability at
least 1 — 0, we have

n

Eqlo(X)] ~ - > 6(X)

i=1

2 2 20—1 1 a—1

4L%log(5) 27 & LD, (Q||P)= < 3a — 2 > g
< + r
ny VY 2(a—1)

The second term on the right hand side indicates a bias
of an empirical mean 13" | ¢(X;) under the sam-

pling distribution P. Next, we present a more infor-
mative bound.

Proposition 3 (y%-based expression of non-asymp-
totic interval for Monte Carlo estimates). Let
X,P,Q,L,v and ¢ be as in Proposition 2 . Suppose
we have i.i.d. samples X1, Xs, ..., Xp ~ P. Then, with
probability at least (1 — )2, we have

olo0] - &3 otxi)| < 28

ny
where

+K

@RI S, 200 + 22 Tog )
K= if log(3) <
VQIP){E Xy 02(X5) + 162% 10g 2}

if n <log(%)

This result provides an insight into how good a pro-
posal distribution P is, meaning that the effect of
the deviation between P and @, namely x*(Q|P), is
inflated by the empirical variance. This implication
might support some results in the literature (Cornebise
et al. (2008); Dieng et al. (2017)). So far we have con-
sidered the pseudo a-divergence as well as x2 diver-
gence. Duembgen et al. (2010) presented an approxi-
mation for an arbitrary distribution @ by distributions
with log-concave density with respect to the KL diver-
gence, which motivates the following result.

Proposition 4 (KL-based expression of non-asymp-
totic interval for Monte Carlo estimates). Let
X,P,Q,L,v and ¢ be as in Proposition 2 . Suppose
we have i.i.d. samples X1, X3, ..., X, ~ P. Then, with
probability at least 1 — 0, we have

2 2
ols Z o| < D e 2

This result shows that, under the assumption of
Proposition 4, the empirical mean 37" | ¢(X;) over
the sampling distribution P aymptotlcally differs from
Eqlo(X)] by KL(Q|P) at most.
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