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Abstract

We study the computational complexity of
two hard problems on determinantal point
processes (DPPs). One is mazimum a pos-
teriori (MAP) inference, i.e., to find a prin-
cipal submatrix having the maximum deter-
minant. The other is probabilistic inference
on exponentiated DPPs (E-DPPs), which can
sharpen or weaken the diversity preference
of DPPs with an exponent parameter p.
We prove the following complexity-theoretic
hardness results that explain the difficulty in
approximating unconstrained MAP inference
and the normalizing constant for E-DPPs.

e Unconstrained MAP inference for an n x n
matrix is NP-hard to approximate within a
287 _factor, where § = 10710, This result
improves upon a (% — ¢)-factor inapproxima-
bility given by Kulesza and Taskar (2012).

e The normalizing constant for E-DPPs of any
(fixed) constant exponent p > A1 = 1010"
is NP-hard to approximate within a 2°P-
factor. This gives a(nother) negative an-
swer to open questions posed by Kulesza and

Taskar (2012); Ohsaka and Matsuoka (2020).

1 Introduction

Selecting a small set of “diverse” items from large data
is an essential task in machine learning. Determinantal
point processes (DPPs) provide a probabilistic model
on a discrete set that captures the notion of diversity
using the matrix determinant (Macchi, 1975; Borodin
and Rains, 2005). Suppose we are given n items (e.g.,
images or documents) associated with feature vectors
{bi}icn) and an n x n Gram matrix A such that
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A;; = (@i, ¢p;) for all i,j € [n]. The DPP defined
by A is a distribution over the power set 2" such
that the probability of drawing a subset S C [n] is
proportional to det(Ag). Since det(Ag) is equal to
the squared volume of the parallelepiped spanned by
{¢i}ics, dissimilar items are likely to appear in the
selected subsets, which ensures set diversity. DPPs
exhibit fascinating properties that make them suitable
for machine learning applications; e.g., many inference
tasks are computationally tractable, including normal-
ization, marginalization, and sampling, and efficient
learning algorithms have been developed (see, e.g., the
survey of Kulesza and Taskar (2012) for details).

The present study aims at analyzing two exceptionally
hard problems on DPPs through the lens of complexity
theory—unconstrained MAP inference and probabilis-
tic inference on exponentiated DPPs.

Unconstrained MAP Inference. Seeking the
most diverse subset that has the highest probabil-
ity, i.e., mazimum a posteriori (MAP) inference,
is motivated by numerous applications, e.g., docu-
ment summarization (Kulesza and Taskar, 2011; Chao
et al., 2015), YouTube video recommendation (Wil-
helm et al., 2018), active learning (Biyik et al., 2019),
and video summarization (Gong et al., 2014; Han
et al., 2017). In particular, we focus on unconstrained
MAP inference, which is equivalent to finding a prin-
cipal submatrix with the maximum determinant (i.e.,
maxgc[n det(Ag)) and has been challenging despite
its simplicity. Typically, the GREEDY algorithm is
used as a heuristic, whereas the current best approx-
imation factor is ™ (Nikolov, 2015). Indeed, Kulesza
and Taskar (2012) have shown that unconstrained
MAP inference is NP-hard to approximate within a
(2 — €)-factor," which is the current best lower bound.
On the other hand, size-constrained MAP inference
(i.e., |S] = k) is NP-hard to approximate within an
exponential factor of 2¢* for some ¢ > 0 (Civril and
Magdon-Ismail, 2013), which does not, however, di-
rectly apply to the unconstrained case. Closing the

"We define approximation factor p so that p > 1; see §2.
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Table 1: Computational complexity of MAP inference on DPPs, i.e., maxg det(Ag). Our result is 2°"-factor
inapproximability, improving the known lower bound of ~ % and matching the best upper bound of e”.

constrained? ‘ inapproximability (lower bound) ‘approximability (upper bound)
unconstrained M (this paper, Theorem 2.2) e" (Nikolov, 2015)
S C [n] 9 _ ¢ (Kulesza and Taskar, 2012) n!? (Civril and Magdon-Ismail, 2009)

8

size-constrained

SCn)|S| =k

2¢k (¢ > 0) (Koutis, 2006; Civril and Magdon-Ismail, 2013)
(Qﬁ — €)% (Di Summa et al., 2014)

e® (Nikolov, 2015)
k'? (Civril and Magdon-Ismail, 2009)

gap between the lower bound (= %) and upper bound
(= e") is the first question addressed in this study.

Exponentiated DPPs. Given an n X n positive
semi-definite matrix A, an exponentiated DPP (E-
DPP) of exponent p > 0 defines a distribution whose
probability mass for S C [n] is «x det(Ag)? (Mariet
et al., 2018). We can sharpen or weaken the diversity
preference by tuning the value of exponent parame-
ter p: increasing p prefers more diverse subsets than
DPPs, while setting p = 0 results in a uniform distri-
bution. Though computing the normalizing constant,
Le., > gcpn det(Ag)P, lies at the core of efficient prob-
abilistic_inflerence on E-DPPs, it seems not to have a
closed-form expression. Currently, some hardness re-
sults on ezact computation are known only if p is an
even integer (Gurvits, 2005; Ohsaka and Matsuoka,
2020), and the case of p < 1 admits a fully polynomial-
time randomized approximation scheme (FPRAS)?
based on an approximate sampler (Anari et al., 2019;
Robinson et al., 2019). The second question in this
study is to find the value of p such that the normaliz-
ing constant is hard to approximate.

Our research questions can be summarized as follows:

Q1. Is unconstrained MAP inference on DPPs
exponentially inapprozimable?

Q2. For what value of p is the normalizing con-

stant for E-DPPs inapprozimable?

1.1 Owur Contributions

We answer the above questions affirmatively by pre-
senting two complexity-theoretic hardness results.

(§2) Exponential Inapproximability of
Unconstrained MAP Inference on DPPs.

Our first result is the following (cf. Table 1):

Theorem 2.2 (informal). Unconstrained MAP in-
ference on DPPs for an n Xn matriz is NP—harlaé’ to
approzimate within a 2°™-factor for B =10710".

2An FPRAS is a randomized algorithm that outputs an
e“-approximation with probability at least 3/4 and runs in
polynomial time in the input size and ¢~ *.

This result significantly improves upon the best known
lower bound of Kulesza and Taskar (2012). Though
the universal constant § = 10-10% is extremely small,
Theorem 2.2 justifies why any polynomial-factor ap-
proximation algorithm for unconstrained MAP infer-
ence has not been found. Our lower bound 2°7
matches the best upper bound e” (Nikolov, 2015), up
to a constant in the exponent. The proof is obtained
by carefully extending the proof technique of Civril
and Magdon-Ismail (2013) to the unconstrained case.

(§3) Exponential Inapproximability of
Exponentiated DPPs.

Our second result is the following, which is derived by
applying Theorem 2.2 (cf. Figure 1).

Corollary 3.2 (informal). For every fized num-
ber p > B~1 = 1019,000,000,000,000 st s NP-hard to
approximate the normalizing constant for E-DPPs
of exponent p for an n X n matriz within o factor of
26P7 - Moreover, we cannot generate a sample from
E-DPPs of exponent p.

This is the first inapproximability result regarding E-
DPPs of constant exponent p and gives a new negative
answer to open questions posed by Kulesza and Taskar
(2012, §7.2) and Ohsaka and Matsuoka (2020, §6). The
factor 28P™ is tight up to a constant in the exponent be-
cause 2°®")_factor approximation is possible in poly-
nomial time (Observation 3.4). The latter statement
means that in contrast to the case of p < 1, an ef-
ficient ap}é)roximate sampler does not exist whenever
p > 109", We stress that when applying a (% —€)-
factor inapproximability of Kulesza and Taskar (2012)
instead of Theorem 2.2, we would be able to derive
inapproximability only if p = Q(n) (see Remark 3.3).

1.2 Related Work

MAP Inference on DPPs. In Theoretical Com-
puter Science, unconstrained MAP inference on DPPs
is known as determinant mazimization (DETMAX for
short). The size-constrained version (k-DETMAX for
short), which restricts the output to size k for param-
eter k, finds applications in computational geometry
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Figure 1: Computational complexity1 3of the normalizing constant for exponentiated DPPs. Our result is 2°P7-
factor inapproximability for p > 100", Tractability for p’s on dashed lines and circles remains open.

and discrepancy theory (Nikolov, 2015).

On the inapproximability side, Ko, Lee, and
Queyranne (1995) prove that DETMAX and k-
DETMAX are both NP-hard, and Koutis (2006) shows
NP-hardness of approximating the largest k-simplex in
a V-polytope within a factor of 2°* for some ¢ > 0, im-
plying that k-DETMAX is also exponentially inapprox-
imable in k. Civril and Magdon-Ismail (2013) directly
prove a similar result for k-DETMAX. Di Summa,
Eisenbrand, Faenza, and Moldenhauer (2014) study
the special case of k-DETMAX, where k is fixed to the
rank of an input matrix, which is still NP-hard to ap-
proximate within (250 — €)% for any e > 0. Kulesza
and Taskar (2012) use the reduction technique devel-
oped by Civril and Magdon-Ismail (2009) to show an
inapproximability factor of (2 — €) for DETMAX for

8
any e > 0, which is the current best lower bound.

On the algorithmic side, Civril and Magdon-Ismail
(2009) prove that the GREEDY algorithm for k-
DETMAX achieves an approximation factor of k!?2 =
20(klogk) = Tn their celebrated work, Nikolov (2015)
gives an ef-approximation algorithm for k-DETMAX;
this is the current best approximation factor. Invok-
ing Nikolov’s algorithm for all £ immediately yields an
e"-approximation for DETMAX.

In Machine Learning, unconstrained MAP inference
is preferable if we do not (or cannot) prespecify the
desired size of output, e.g., tweet timeline generation
(Yao et al., 2016), object detection (Lee et al., 2016),
change-point detection (Zhang and Ou, 2016), and
others (Gillenwater et al., 2012; Han et al., 2017; Chen
et al., 2018; Chao et al., 2015). Since the logarithm of
the determinant as a set function f(S) £ logdet(Ag)
for a positive semi-definite matrix A is submodu-
lar,® the GREEDY algorithm for monotone submod-
ular maximization (Nemhauser et al., 1978) is widely
used,* which works pretty well in practice (Yao et al.,

3We say that a set function f : 2[") — R is submodular
if f(S)+ f(T) > f(SUT)+ f(SNT) for all S, T C [n].

1f(S) = logdet(As) is not necessarily monotone,
for which GREEDY has, in fact, a poor approximation
guarantee. The tight approximation factor for uncon-
strained nonmonotone submodular maximization (includ-
ing maxgci,) logdet(As) as a special case) is 2 (Buch-
binder et al., 2015; Buchbinder and Feldman, 2018).

2016; Zhang and Ou, 2016) and guarantees an (%7 )-
factor approximation (with respect to f) under a size
constraint if every eigenvalue of A is greater than 1
(Han and Gillenwater, 2020). Several attempts have
been made to scale up GREEDY (Han et al., 2017; Chen
et al., 2018; Han and Gillenwater, 2020; Gartrell et al.,
2020), whose naive implementation requires quartic
time in n. Other than GREEDY, Gillenwater, Kulesza,
and Taskar (2012) propose a gradient-based efficient
algorithm that has an approximation factor of 4 (with
respect to f). We emphasize that some studies focus
on maximizing the logarithm of the determinant, e.g.,
(Gillenwater et al., 2012; Han and Gillenwater, 2020).
Such results for a different objective f are “incompa-
rable” to our result in the sense that a multiplicative
approximation to maxgciy,) f(S) does not imply a mul-
tiplicative approximation to DETMAX.

Exponentiated DPPs. We review known results
on the computational complexity of the normaliz-
ing constant of E-DPPs, ie., > g, det(Ag)? for
A € Q""" briefly appearing in (Zou and Adams,
2012; Gillenwater, 2014). The case of p = 1 enjoys a
simple closed-form expression that }_gc(,; det(As) =
det(A +1) (Kulesza and Taskar, 2012). Such a closed-
form is unknown if p < 1, but a Markov chain
Monte Carlo algorithm mixes in polynomially many
steps thanks to their log-concavity (Anari et al., 2019;
Robinson et al., 2019), implying an FPRAS.

On the other hand, the case of p > 1 seems a little more
difficult. Kulesza and Taskar (2012) posed efficient
computation of the normalizing constant for E-DPPs
as an open question. Surprisingly, Gurvits (2005,
2009) has proven that computing > gcp,) det(As)?
for a P-matrix A is #P-hard, but it is approximable
within an e”-factor (Anari and Gharan, 2017). Mariet,
Sra, and Jegelka (2018) derive an upper bound on the
mixing time of sampling algorithms parameterized by
p and eigenvalues of A. Ohsaka and Matsuoka (2020)
derive UP-hardness and Mod3P-hardness for every pos-
itive even integer p = 2,4,6,.... On the positive side,
Ohsaka and Matsuoka (2020) develop r©®")n®M)_time
algorithms for integer exponent p, where r is the rank
or the treewidth of A. Our study strengthens previ-
ous work by giving the first inapproximability result
for every (fixed) constant exponent p > 1010
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1.3 Notations

For a positive integer n, let [n] £ {1,2,...,n}.
The Euclidean norm is denoted || - [|; i.e., |[v|] =
Yica(v(i))? for a vector v in R We use
AN

(-,-) for the standard inner product; i.e., (v,w) =
Yicq v(Ww(i) for two vectors v,w in R<.  For
an n x n matrix A and subset S C [n] of in-
dices, we use Ag to denote the principal subma-
trix of A whose rows and columns are indexed by
S. For a matrix A in R™*" its determinant is de-
fined as det(A) = >oes, 581(0) [ 1 Aio(i), where
S, is the symmetric group on [n]. For a set V =
{v1,..., v} of n vectors in RY the wolume of the
parallelepiped spanned by V is defined as vol(V) =

Vil Tazicn|[Projge,... v, 1y (vi)||, where proj (- is

an operator of orthogonal projection onto the subspace
spanned by vectors in P.

2 Exponential Inapproximability of
Unconstrained MAP Inference

We prove an exponential-factor inapproximability re-
sult for unconstrained MAP inference on DPPs, which
is identical to the following determinant maximization
problem:

Definition 2.1. Given a positive semi-definite matrix
A in Q™™ determinant mazximization (DETMAX)
asks to find a subset S C [n] such that the deter-
minant det(Ag) of a principal submatrix is maxi-
mized. The optimal value of DETMAX is denoted
maxdet(A) £ maxgc[, det(Ag).

We say a polynomial-time algorithm ALG is a p-
approximation algorithm for p > 1 if for all A € Q**",

det(ALG(A)) > (1/p) - maxdet(A),

where ALG(A) is the output of ALG on A. The factor
p can be a function in the input size n, e.g., p(n) = 27,
and (asymptotically) smaller p is a better approxima-
tion factor. We also define [s(n), ¢(n)]-GAP-DETMAX
for two functions ¢(n) and s(n) as a problem of decid-
ing whether maxdet(A) > ¢(n) or maxdet(A) < s(n).”
If [s(n), ¢(n)]-GAP-DETMAX is NP-hard, then so is ap-

proximating DETMAX within a EEZ;—factor.

We are now ready to state our result formally.

Theorem 2.2. There exist urg’versal constants \. and
As such that A\. — Ay > 107197 and [22s7 22<"]-GaP-
DETMAX is NP-hard, where n is the order of an input

SPrecisely, A is “promised” to satisfy either
maxdet(A) > c(n) (yes instance) or maxdet(A) < s(n)
(no instance). Such a problem is called a promise problem.

matriz. In particular, it is NP-hard to appromin}gzte
DETMAX within a factor of 2°™, where f = 10710,

Remark 2.3. The universal constant f = 107107 s

so extremely small that 2°™ ~ 1 for real-world matri-
ces, whose possible size n is limited inherently. The
significance of Theorem 2.2 is that it can rule out the
existence of any polynomial-factor approximation algo-
rithm (unless P = NP). As a corollary, we also show
inapproximability for E-DPPs of constant exponent p.

The input for DETMAX is often given by a Gram ma-
trix A € Q"*", where A; ; = (v;,v;) for all 4,5 € [n]
for n vectors vi,...,v, in Q% In such a case, we
have a simple relation that det(Ag) = vol({v;}ics)?
for every subset S C [n]. DETMAX is thus essentially
equivalent to the following optimization problem:

Definition 2.4. Given a set V = {vy,...,v,} of n
vectors in Q%, volume mawimization (VOLMAX) asks
to find a subset S of V such that the volume vol(S) is
maximized. The optimal value of VOLMAX is denoted
maxvol(V) £ maxgc,) vol({Vi}ics).

Observe that there exists a p(n)-approximation algo-
rithm for DETMAX if and only if there exists a \/p(n)-
approximation algorithm for VOLMAX.

Outline of the Remainder of §2. §2.1 introduces
projection games to be reduced to VOLMAX and Raz’s
parallel repetition theorem. §2.2 reviews the indistin-
guishability of projection games. §2.3 describes Main
Lemma, which is crucial in proving Theorem 2.2, and
62.4 is devoted to the proof of Main Lemma.

2.1 Projection Game and Parallel Repetition
Theorem

We introduce projection games followed by the parallel
repetition theorem.

Definition 2.5. A 2-player 1-round projection game
is specified by a tuple ® = (X,Y, E, 3, II) such that

e (X,Y, E) is a bipartite graph with vertex sets X and
Y and an edge set F between X and Y,

e 3 is an alphabet, and

o II = {7 }eecr is a constraint set, where 7, for each
edge e € F is a function ¥ — X.

A labeling o is defined as a label assignment of each
vertex in the bipartite graph, ie., o : (X WY) — X.
An edge e = (z,y) € F is said to be satisfied by o if
7e(o(z)) = o(y). The value of a projection game &,
denoted val(®), is defined as the maximum fraction of
edges satisfied over all possible labelings o, i.e.,

‘—; S Irlo() = o))

e=(z,y)EE

val(®) £ max
o:(XWY)—=X
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The LABELCOVER problem is defined as finding a la-
beling that satisfies the maximum fraction of edges in
the bipartite graph of a (projection) game.

We then define the product of two games followed by
the parallel repetition of a game.

Definition 2.6. Let Q51 = (Xl, Yl, El, 21, {Wl,e}eGEl)
and &y = (Xs,Ys, Eo, 3g, {m2.c ecr,) be two projec-
tion games. The product of ; and &5, denoted &, ®
s, is defined as a new game (X7 X Xo,Y] xYs, E, 3 X
EQ,H = {ﬂe}eéE)v where E £ {((I17I2)7(y13y2)) |
(x1,11) € E1,(z2,y2) € Es}, and for each edge e =
(($1,$2)7 (yl,yg)) EFE, e : Y1 X Mg — X1 X Mg is de-
fined as m.((i1,i2)) = (71, (@1,90) (1), T2, (20,y0) (12)) for
labels i1 € ¥ and iy € Xs.

The ¢-hold parallel repetition of & for any positive in-
teger £ is defined as 8% £ 3 ® .- ® &. Raz (1998)
k times

proved the parallel repetition theorem, which states
that for every (not necessarily projection) game & with
val(®) = 1 — ¢, it holds that val(&®*) < (1 —E)Wg\zl,
where € is a constant depending only on e. The use
of the parallel repetition theorem has led to inap-
proximability results for many (NP-hard) optimization
problems, such as SETCOVER (Feige, 1998) and MAX-
CLIQUE (Hastad, 1999). We refer a tighter, explicit
bound derived by Dinur and Steurer (2014).

Theorem 2.7 (Corollary 1 in Dinur and Steurer

(2014)). For any projection game & with val(®) < 1—e
2

¢
@ « (1 &
for some € > 0, val(&®*) < (1 16) )

2.2 Indistinguishability of Projection Games

We review the indistinguishability of (the value of)
projection games, in other words, inapproximability
of LABELCOVER. The following theorem shows that
we cannot decide whether a projection game has value
1 or has value less than 1 — € for some € > 0. Though
its proof is widely known, we include it in Appendix A
to describe the value of such e explicitly.

Theorem 2.8 (See, e.g., (Feige, 1998; Hastad, 2001;
Trevisan, 2004; Vazirani, 2013; Tamaki, 2015)). Let
6 = (X,Y,E, X 1I) be a projection game such that
(X,Y, E) is a 15-regular bipartite graph (i.e., each ver-
tex of X WY is incident to exactly 15 edges), where
|X| = |Y] = 5n and |E| = 75n for some posi-
tive integer n divisible by 3, and |X| = 7. Then,
it is NP-hard to distinguish between val(®) = 1 and
val(®) < 1 — 2061%.

A projection game satisfying the conditions in Theo-
rem 2.8 is called special in this paper. Owing to The-
orems 2.7 and 2.8, for any ¢, it is NP-hard to decide
whether the ¢-fold parallel repetition &®¢ of a special

projection game satisfies val(&®¢) = 1 or

1 )e < 9-2107 ¢

®fL - -
val(®2) < (1 (206,401)2 - 16

Hereafter, we let v £ 210712,

2.3 Main Lemma and Proof of Theorem 2.2

The proof of Theorem 2.2 relies on a reduction from
the ¢-fold parallel repetition of a special projection
game to VOLMAX. Throughout the remainder of this

= 1.5-10"2.
8]

Our main lemma in the following can be thought of as
an extension of Civril and Magdon-Ismail (2013). The
proof is deferred to the next subsection.

3
section, we fix the value of £ as £ £ {

Lemma 2.9 (Main Lemma). There is a polynomial-
time reduction from the (-fold parallel repetition &®*
of a special projection game to an instance V =
{vi,...,vN} of VOLMAX such that N = 2 - (35n)*
for some integer n, each vector of V is normalized,
and the following is satisfied:

o (Completeness) If val(&®¢) = 1, then there exists a
set S of K wectors from V with volume vol(S) = 1,
where K = N/7°.

e (Soundness) If val(&®¢) < 27%¢ then any set S of
k wvectors from 'V satisfies the following properties:
1. 0< k< IK:vol(S)<1.

2. TK <k < N:vol(S) < 277°F for g° = 107107,

By Lemma 2.9, we can prove Theorem 2.2 as follows.

Proof of Theorem 2.2. Let V. = {v1,...,vn} be an
instance of VOLMAX reduced from the ¢-fold parallel
repetition ® by Lemma 2.9. Create a new instance
of VOLMAX W = {wy,...,wy}, where w; = 25° . v,
for each ¢ € [N] (which is a polynomial-time reduc-
tion as 27° is constant). If val(&®) = 1, then there
is a set S of K = N/7° vectors from W such that
vol(S) = 2°°K. On the other hand, if val(®®¢) <
27 maxvol(W) is (strictly) bounded from above by
2§8°K through the following case analysis on S C W:

e 1.0< S| < IK: vol(S) < 25°°K,
o 2. IK < [S| < N: vol(8) < 28" =A7ISI < 1.

It is thus NP-hard to decide whether maxvol(W) >
27N or maxvol(W) < 9srr N by Theorems 2.7
and 2.8. Owing to the relation between VOLMAX and
DETMAX, 257", 2777 "]-GAP-DETMAX is also NP-
hard, where n is the order of an input matrix. In par-

ticular, it is NP-hard to approximate DETMAX within
a factor of 2(>‘°_>‘5)", where A\, = 267 and As = mz,
S

77 1.7
Observing that 8 = 107107 < 107107 < A, — A,
suffices to complete the proof.
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Remark 2.10. The above proof implies that it is

NP-hard to decide whether logo maxdet(A) > A.n or

log, maxdet(A) < Agn, i.e., to approximately mazi-
A 8

mize the “logarithm” of determinant within 3 2.

2.4 Proof of Main Lemma

We now prove Main Lemma. We first introduce the
tools from Civril and Magdon-Ismail (2013).

Lemma 2.11 (Union Lemma (Civril and Magdon-Ts-
mail, 2013, Lemma 6)). Let P and Q be two (finite)
sets of vectors in RY. Then, we have the following:

vol(PUQ) <vol(Q) - [] d(v. Q),

veP

where d(v, Q) denotes the distance of v to the subspace
spanned by Q; i.e., d(v,Q) £ ||v — projg (v)|.
Lemma 2.12 ((Civril and Magdon-Ismail, 2013,
Lemma 13)). For any positive integer £, there exists
a set of 2¢ vectors BY) = {by,..., by} of dimension
2641 such that the following conditions are satisfied:

Each element of vectors is either O or 273,

|bi|| = 1 for all i € [24].

(bi,b;) =L for alli,j € [2°] with i # j.

(bi,b;) = L for all i,j € [2°] with i # j, where
b, =272 -1—b;. Note that (b;,b;) = 0.

Moreover, BY) can be constructed in time O(4%).

Our Reduction. We explain how to reduce from
special projection games to VOLMAX. Let &®¢ =
(X,Y,E,3, 1) be the (-fold parallel repetition of a
special projection game. By definition, (X,Y, E) is a
15%-regular bipartite graph, where |X| = |Y| = (5n)°
and |E| = (75n)¢, and [S| = 7 for some integer n.
Assume that ¥ = [7*] for notational convenience.

For each pair of a vertex of X WY and a label of X,
we define a vector as follows. Each vector consists
of |E| blocks, each of which is 23*1-dimensional and
is either a vector in the set BGY = {by,... b}
or the zero vector 0. Let v, ; (resp. vy ;) denote the
vector for a pair (x,7) € X x ¥ (resp. (y,7) € Y x X),
and let v, ;(e) (resp. vy ;(e)) denote the block of v, ;
(resp. vy ;) corresponding to edge e € E. Each block
is defined as follows:

bﬂg(i) if e is incident to x
vai(e) = q 1542 ’
0 otherwise,
b; F o is incident t
if e is incident to v,
vyile) = { 15072 Y
0 otherwise.

Since each vector contains exactly 15° blocks chosen
from B it is normalized; i.e., ||[vy || = [|[vyill = 1

for all z € X,y € Y,i € . Note that v,, ;, and
Va,is (T€SP. Vy, 4, and vy, ;,) are orthogonal for any
x1,x2 € X (resp. y1,y2 € Y) and 41,40 € X if 21 # o
(resp. y1 # y2), and vy ,; and v, ; for x € X,y €
Y,i,j € ¥ are orthogonal if (z,y) € E and 7(, (i) = j

as <Vm,ia vy,j> = ﬁa)ﬂ(z,y)(i)a b]> = 07 or if (l‘, y) ¢ E.
We then define an instance V of VoLMAX as follows:

Vai{v,,|lreXieX}w{v,;|yeY,icX}.
Here, V contains N = 2 - (35n)¢ vectors. Define
K 2 |X|+1|Y| = 2-(5n)% it holds that K = N/7°.
Construction of V from &®¢ can be done in polynomial
time in n. In what follows, we show that V satisfies
the conditions listed in Main Lemma.

Completeness.

Lemma 2.13. Ifval(&®¢) = 1, then there erists a set
S of K wvectors from V such that vol(S) > 1.

We first prove the completeness.

Proof. Let 0 : (X WY) — X be an (optimal) labeling
satisfying all the edges of E. For each edge e = (z,y) €
E, we have (V, 5(2), Vyo(y)) = 0 since m(o(x)) =
o(y). Furthermore, (Vi o(21)s Vas,o(xs)) = 0 for
r1,22 € X whenever x1 # 2, (Vy, o(y1)> Vys,o(ys)) =
0 for vy1,y2 € Y whenever y; # y2, and
(Va,o(@) Vyo(y)) = 0 for x € X,y € Y whenever
(z,y) ¢ E. Hence, K vectors in the set defined as
SE Voo | 7€ XIW{v, s | y €Y} are orthogo-
nal to each other, implying vol(S) = 1. O

Soundness. We then prove the soundness. Differ-
ent from Civril and Magdon-Ismail (2013), we need to
bound the volume of every subset S C V. We consider
two cases: 1. 0 < |S| < IK and 2. K <[S| < N.

Soundness 1. 0 < [S| < ZK.

Lemma 2.14. Suppose val(&®) < 27, For any set
S of less than %K vectors from 'V, vol(S) < 1.

Proof. The proof is a direct consequence of the fact
that every vector of V is normalized. O

Soundness 2. gK <|S| < N. For S CV, define

Sx £{v.; €S|z € X,ieX}
XS)2{zxeX|Fen v, ; €8},
rep(Sx) £ [Sx| - [X(S)I.
Analogous notations are used for Sy, Y(S), and
rep(Sy ). Here, rep(Sx) and rep(Sy) mean how many

times the same vertex appears (i.e., the number of rep-
etitions) in the vectors of Sx and Sy, respectively.
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The following lemma given by Civril and Magdon-
Ismail (2013) bounds the volume of Sy and Sy in
terms of rep(Sx) and rep(Sy), respectively, which is
proved in Appendix B for the sake of completeness.

Lemma 2.15 (Lemma 16 of Civril and Magdon-Ismail
(2013)). For any set S of vectors from V,

vol(Sx) < (V3/2)"P3x) and vol(Sy) <
We first show that both X (S) and Y (S) contain (k)
vertices if its volume is sufficiently large.

Clalm 2.16. For any set S of k > 7K vectors from

V, if vol(S) > 27 for some number c > 0, then

1X(S)| > (% - 1()c>k and [Y (S)| > (% - lOc)k.

Proof. Observe first that vol(Sx) > vol(S) > 27k,
By Lemma 2.15, we have (1/3/2)P( (8x) > vol(S ) >
2=k implying that rep(Sx) < ck/log,(2/v/3) < 5ck.
Similarly, rep(Sy) < 5ck. Using the facts that |Sx| =

|X(S)[ + rep(Sx), |Sy| = [Y(S)| + rep(Sy), and k =
[Sx |+ |Sy|, we bound | X (S)| from below as follows:

IX(S)| = k — |Sy| —rep(Sx) > k — |Y| — 10ck
(5n)° 3
=(1- "2 — > (= — .
(1 - 10c)k > (7 lOc)k
Similarly, [Y'(S)| > (2 — 10¢)k. O

‘We now show that no vector set has a volume close to
1 if val(®®?) is small.

Lemma 2.17. Suppose val(®®*) < 27, For any
set S of k vectors from V with k > %K, it holds that

vol(S) < 278°k where 8° = 107107,

Proof. The proof is by contradiction. Suppose there
exists a set S of & > %K vectors from V such that

vol(S) > 2-F%F,
Consider a labeling o : (XWY') — ¥ defined as follows:

any ¢ s.t. v, ; € Sy if 2z € X(8S),
o(z) =qanyist.v,; €Sy ifzeY(S),
any element of 3 otherwise.
The choice of i’s can be arbitrary. Define P £

(Voo | © € X(S)} and Q £ {vy () | ¥ € Y(S)}.
Our aim is to show that the volume of PW Q C S
is sufficiently small. To use Lemma 2.11, we bound
the distance of the vectors of P to Q. Since Q forms
an orthonormal basis by construction and for each x €
X(S)a ||v:1:,0'(:z:)||2 = || prOjQ(V:c,o'(z))||2+d(va:,a(a:)7 Q)2a
we have the following:

d(vw,o(x)7 Q) = 1- Z

Vy,o(y) EQ

Va,o(2)s Vo)) -

(\/g/g)rep(sy).

and
have
<w ba<y>> 1

15¢/2 ) 15¢/2 - 2150
Consequently, d(vy o), Q) = (1 — 4[.]1(512)2)%, where
U(zx) is the number of unsatisfied edges between x
and Y(S). Using Lemma 2.11 and the fact that
vol(Q) < 1, we have

(x,y) € E between X(S)
satisfied by o, then we

If an edge
Y(S) is mnot

<V:Jc,a(z) ) Vy,o'(y)>

(I (- 5)

zeX(S)

: (|Xzs>| l,e;(s)(l B

vol(PUQ) <

[X(S)]

ZE)E W

where the last inequality is by the AM-GM inequality.

Now consider bounding }_ ¢y U(z) from below,
which is equal to the total number of unsatisfied edges
between X (S) and Y (S) by o. Substituting 5° for
¢ in Claim 2.16 derives |X(S)| > (2 — 108°)k and
[V (S)| > (£ —108°)k. Because less than 2~*‘~fraction
of edges in E can be satisfied by any labeling (includ-
ing o) by assumption, and more than (£ —103°)k-15°
edges are incident to X (S) (resp. Y (S )), the number
of unsatisfied edges incident to X(S) (resp. Y (S)) is

at least
3 O K
[(7 — 108 ) (5n)*

Consequently, the number of unsatisfied edges between
X(S) and Y(S) is at least twice Eq. (2) minus “the
number of unsatisfied edges incident to X (S) or Y (S)”
(which is at most (75n)¢); namely,

Y U@ > {( 106 )(2:)4

zeX(S)
where we have used the fact that k& > %K . With this
inequality, we further expand Eq. (1) as follows:

af} (75n)". 2)

o 2a5+1:| (7577/)[,

vol(P U Q) < (1 B Zwe;(((ss))U(@ - 15% x|
<exp | - (=103 2 — 27 (mn) | x(s)
[ X(S)] ].152¢
< exp(— {(% — 1050) y .115z _ g-attl - _11541@)
= exp(— 1- 702»@0;;—&“2 k)
)12 1_g—abt2

Since ﬂo = 1071( W (recall that ¢ =
[27) and B8° > 0, we finally have vol(S) < vol(PUQ) <
2-F°k 4 contradiction. O
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Proof of Main Lemma. Let &®¢ be the (-fold parallel
repetition of a special projection game, and let V be
an instance of VOLMAX reduced by §Our Reduction.
Then, the completeness follows from Lemma 2.13 and
the soundness follows from Lemmas 2.14 and 2.17. O

3 Exponential Inapproximability for
Exponentiated DPPs

We derive the exponential inapproximability of expo-
nentiated DPPs. Given an n X n positive semi-definite
matrix A, the ezponentiated DPP (E-DPP) of expo-
nent p > 0 defines a distribution over the power set
2["] whose probability mass for each subset S C [n] is
x det(Ag)P. We use ZP(A) to denote the normalizing
constant; namely,

2 )" det(Ag)”

SCln]

ZP(A) must be at least 1 by the positive semi-
definiteness of A. We say that an estimate Z? is a
p-approximation to ZP for p > 1if ZP < ZP < p - ZP,
For two probability distributions g and i on €, the
total variation distance is defined as £ > ¢ [pa —1a]-

We first present the following theorem stating that
assuming exponential inapproximability of DETMAX,
we can neither estimate ZP and thus the probability
mass for any subset accurately nor generate a random
sample from E-DPPs in polynomial time for a suffi-
ciently large p.

Theorem 3.1. Suppose there exist universal constants
A and g such that [2*s™, 22<"]-GAP-DETMAX is NP-
hard.  Then, for every fixed number p > ﬁ,
it is NP-hard to approximate ZP(A) for a positive
semi-definite matriz A in Q"*"™ within a factor of
2((Ae=2)p=1n  Moreover, unless RP = NP, no
polynomial-time algorithm can draw a sample from
a distribution whose total variation distance from E-
DPPs of exponent p > 5 i)\q 18 at most %

As a corollary of Theorems 2.2 and 3.1, we have the
following inapproximability result on E-DPPs, whose
proof is deferred to Appendix B.

Corollary 3.2. For every fized number p > 71 =
101013, it is NP-hard to approximate ZP(A) for an
n X n positive semi-definite matrix A within a factor
of 26P™ - Moreover, no polynomial-time algorithm can
draw a sample whose total variation distance from the

E-DPP of exponent p is at most + 3, unless RP = NP.

SRP is the class of decision problems for which there
exists a probabilistic polynomial-time Turing machine that
accepts a yes instance with probability > % and always
rejects a no instance. It is believed that RP % NP.

Proof of Themem 3.1. Consider the E-DPP of expo-

nent p > 5— defined by a posmve semi-definite
matrix A € Q"X” Suppose p = 51— for some
q > 1. We prove the first argument. If there ex-

ists a set S C [n] such that det(Ag) > 2*" then
ZP(A) is at least 2*<P". On the other hand, if ev-
ery set S C [n] satisfies det(Ag) < 2*+™, then ZP(A)
is less than 2*Pnt7  If a 2(¢=D7_gpproximation to
ZP(A) is given, we can distinguish the two cases
(i.e., we can solve [2*™ 22<"]-GAP-DETMAX) because
2(a=1)n — 9Acpn /9XsPntn  We then prove the second
argument. Assume that maxdet(A) > 2*<". Sampling
S from the E-DPP, we have “det(Ag) > 2*"” (which
is a certificate of the case) with probability at least

%, and we have “det(Ag) < 2*+"” with probabil-
t 2 spn+n

ity at most % Zra) Hence, provided a polynomial-
time algorithm to generate a random sample whose
total variation distance from the E-DPP is at most %,
we can use it to find the certificate with probability at

2Aspntn 1 2 1 1
least (1 — gxwrngorern) — 3 2 5 — T9aen = 3 (88
long as n > q_il), implying that RP = NP. O

Remark 3.3. Theorem 3.1 holds even when \. and
As are functions in n. If we apply a (% — ¢)-factor
inapprozimability by Kulesza and Taskar (2012), then
we would obtain )\7 = O(n); thus, p must be Q(n),
which is weaker than Corollary 3.2. Theorem 2.2 is

crucial for ruling out approximability for constant p.

We finally observe that a 2°(®")_approximation to Z?
can be derived using a 2€(™)-approximation algorithm
for DETMAX (Nikolov, 2015), whose proof is deferred
to Appendix B. This means that Corollary 3.2 is tlght
up to a constant in the exponent (when p > 1010 ).

Observation 3.4. There exists a polynomial-time al-
gorithm that approzimates ZP(A) for an nxn positive
semi-definite matriz A within a factor of (2 - eP)™.

4 Open Questions

We have established exponential inapproximability re-
sults for unconstrained MAP inference on DPPs and
the normalizing constant for E-DPPs. We conclude
this paper with two open questions.

e Optimal bound for unconstrained M AP infer-
ence. The universal constant 3 = 1071°" in Theo-
rem 2.2 seems extremely small despite e"-factor ap-
proximability (Nikolov, 2015); improving the value
of B is a potential research direction.

e Smallest exponent p for which Z? is inapprox-
imable. Our upper bound 10'9:000,000,000,000 oy 4,
in Corollary 3.2 is surprisingly large. Can we find
a (smaller) “threshold” p. such that Z? is approx-
imable if p < p. and inapproximable otherwise?
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A Proof of Theorem 2.8

The proof of Theorem 2.8 is based on a series of gap-preserving reductions from MAX-3SAT to LABELCOVER.
In MAX-3SAT, given a 3-conjunctive normal form (3-CNF) Boolean formula ¢, of which each clause contains
at most three variables (e.g., ¢ = (x1 VT3V 23) A (22 VT3V ay) A (T V 23 V T1)), we are asked to find a truth
assignment that satisfies the maximum fraction of the clauses of ¢. The decision version of MAX-3SAT is known
to be NP-hard; indeed, Hastad (2001) established the following indistinguishability:

Theorem A.1 ((Hastad, 2001, Theorem 6.5)). Given a 3-CNF Boolean formula ¢, it is NP-hard to distinguish
between the following two cases for any constant € > 0:

o (Completeness) ¢ is satisfiable.
e (Soundness) No truth assignment can satisfy at least (g + €)-fraction of the clauses of ¢.

We first reduce from MAX-3SAT to MAX-3SAT(29), which is a special case of MAX-3SAT where every variable
appears in at most 29 clauses of a 3-CNF Boolean formula.

Theorem A.2 ((Trevisan, 2004, Theorem 7); (Vazirani, 2013, Theorem 29.11); (Tamaki, 2015, Theorem 4.7)).
There is a polynomial-time gap-preserving reduction that transforms an instance ¢ of MAX-3SAT to an instance
¥ of MAX-3SAT(29) such that the following is satisfied:

o (Completeness) If ¢ is satisfiable, then so is 1.
o (Soundness) If no truth assignment satisfies at least (1 — €) faction of the clauses of ¢, then no truth
assignment satisfies at least (1 — 45)-fraction of the clauses of 1.

We next reduce from MAX-3SAT(29) to MAX-E3SAT(5), which is a special case of MAX-3SAT where an
input 3-CNF formula contains n variables and 5n/3 clauses for some positive integer divisible by 3, each clause
contains exactly 3 literals, and each variable appears in exactly 5 clauses but never appears twice in the same
clause.

Theorem A.3 ((Feige, 1998, Proposition 2.1.2); (Tamaki, 2015, Theorem 4.11)). There is a polynomial-time
gap-preserving reduction that transforms an instance ¢ of MAX-3SAT(29) to an instance ¥ of MAX-E3SAT(5)
such that the following is satisfied:

o (Completeness) If ¢ is satisfiable, then so is 1.
o (Soundness) If no truth assignment satisfies at least (1 — €)-fraction of the clauses of &, then no truth
assignment satisfies at least (1 — 555)-fraction of the clauses of 1.

We further reduce from MAX-E3SAT(5) to LABELCOVER (i.e., a projection game) as follows.

Theorem A.4 ((Tamaki, 2015, Proof of Theorem 4.2)). There is a polynomial-time reduction that transforms
an instance ¢ of MAX-E3SAT(5) with n variables and 5n/3 clauses to a projection game & = (X,Y, E, X, 1I)
such that the following is satisfied:

o | X|=n,Y|=5n/3,|E|=5n,|3| =7, and each vertex of X andY has exactly degree 5 and 3, respectively.
o (Completeness) If ¢ is satisfiable, then val(®) = 1.
o (Soundness) If no truth assignment satisfies at least (1 — ¢)-fraction of the clauses of ¢, then val(®) < 1— <.

We finally reduce from the above-mentioned projection game to a special projection game (see §2.2) as follows.

Lemma A.5. Let & = (XY E' Y 1T = {rl}ecr) be a projection game satisfying the conditions in
Theorem A.4, i.e., |X'| = n, |Y'| = 5n/3, |E'| = bn, and |¥'| = 7 for some positive integer n divisi-
ble by 3. There is a polynomial-time gap-preserving reduction that transforms &' to a new projection game
6 =(X,Y,E, 511 ={n.}ecr) such that the following is satisfied:

o (X,Y,E) is a 15-reqular bipartite graph (i.e., each vertex of X WY is incident to exactly 15 edges), where

|X| = Y| =5n and |E| = 75n,
e |X| =7, and
e val(®) = val(®').

Proof. We can construct &’ from & as follows. We first create X £ UmeX,{x(l),x(Q),x(3),x(4),m(5)} and Y £
Uyey,{y(l),y(2),y(3)}, where each z( for i € [5] and y9) for j € [3] is a copy of z € X and y € Y, respectively.
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We then build an edge set as £ £ Ui€[5]7j€[3]{(x(i),y(j)) € XxY | (z,y) € E'}, and 7 & T(s, for each
e = (z®,y9)) € E. Then, val(®) is easily verified to be val(&’). O

Proof of Theorem 2.8. By Theorems A.1 to A.4 and Lemma A.5, we can reduce a 3-CNF Boolean formula ¢ to
a projection game & such that the following is satisfied:

e & is special (i.e., ® satisfies the conditions in Theorem 2.8).
o If ¢ is satisfiable, then val(®) = 1.
e If no truth assignment satisfy at most (I -+ €)-fraction of the clauses of ¢, then val(®) < 1

1 €
" 206,400 + 25,800
for any € > 0.

We can specify € > 0 so that 1 — <1-— which completes the proof. O

1 + € 1
206,400 25,800 206,401°

B Missing Proofs in §2 and §3

Proof of Lemma 2.15. Fix S C V. Let Q be a set of | X(S)| vectors from Sx with no repetitions, i.e., Q C Sx
such that |Q| = | X (S)| and rep(Q) = 0, and let P = S\ Q. For each vector v, ; in P, there is exactly one vector
vy in Q with ¢ # /5 hence, d(vy, Q) < d(Vais {Veir}) = Ve — (Vaiy Vair ) Ve i || < V3/2. By Lemma 2.11,
we have that

vol(Sx) < vol(Q) - H d(v2i, Q) < (\/3/2)|P\ — (\/§/2)rep(sx).

Vz,iep

The proof for vol(Sy ) is similar. O

Proof of Corollary 3.2. The proof of Theorem 2.2 implies that A\, = 27%0 and \g = % satisfy the conditions in

Theorem 3.1 and that 109" > /\ci/\ . Observe then that (A, — A\y)p — 1 > Bp for B =101 and p > 100",
which suffices to complete the proof. O

Proof of Observation 3.4. Fix an n x n positive semi-definite matrix A in Q"*". Let S C [n] be an e"-
approximation to DETMAX obtained by running Nikolov (2015)’s algorithm for every k € [n]; i.e.,

e " maxdet(A) < det(Ag) < maxdet(A).

Thanks to the positive semi-definiteness of A, it is easily verified that

1
Q—an(A) < maxdet(A)? < ZP(A).

Combining two inequalities, we have that
L ZP(A) < det(As)” < Z7(A),

where p £ 2"eP™. Hence, p - det(Ag)P is a p-approximation of ZP(A), completing the proof. O
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