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Abstract

We provide a general and easy to imple-
ment method for reducing the number of pa-
rameters of Convolutional Neural Networks
(CNNs) during the training and inference
phases. We introduce a simple trainable
auxiliary neural network which can gener-
ate approximate versions of “slices” of the
sets of convolutional filters of any CNN ar-
chitecture from a low dimensional “code”
space. These slices are then concatenated
to form the sets of filters in the CNN ar-
chitecture. The auxiliary neural network,
which we call “Convolutional Slice Genera-
tor” (CSG), is unique to the network and
provides the association among its convo-
lutional layers. We apply our method to
various CNN architectures including ResNet,
DenseNet, MobileNet and ShuffleNet. Ex-
periments on CIFAR-10 and ImageNet-1000,
without any hyper-parameter tuning, show
that our approach reduces the network pa-
rameters by approximately 2× while the re-
duction in accuracy is confined to within one
percent and sometimes the accuracy even
improves after compression. Interestingly,
through our experiments, we show that even
when the CSG takes random binary values
for its weights that are not learned, still ac-
ceptable performances are achieved. To show
that our approach generalizes to other tasks,
we apply it to an image segmentation ar-
chitecture, Deeplab V3, on the Pascal VOC
2012 dataset. Results show that without
any parameter tuning, there is ≈ 2.3× pa-
rameter reduction and the mean Intersection
over Union (mIoU) drops by ≈ 3%. Fi-
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nally, we provide comparisons with several
related methods showing the superiority of
our method in terms of accuracy. 1

1 Introduction

For the training of large CNNs, where distributed
machine learning approaches are typically used,
communication constraints present a key challenge,
as gradients of the network parameters need to be
communicated among different nodes (Wang et al.,
2018). Similarly, in Federated learning, a neural
network is continuously optimized and customized in
a distributed manner using numerous users’ devices
(Konečnỳ et al., 2016) where the size and implemen-
tation efficiency of these networks are also critical.

A possible solution to these problems is reducing the
number of parameters of the CNN in a way such
that its performance is not tangibly affected. Most
of today’s techniques, however, either focus on the
inference phase and do not reduce the number of
parameters during the training phase (while main-
taining the accuracy of the network), or they reduce
the number of parameters during the training, but
their accuracy loss, computational burden, or imple-
mentation cost is considerable (Cheng et al., 2018).
This paper seeks to overcome these limitations by
introducing a novel plug-and-play approach to reduce
the number of parameters of any CNN architecture.

Our proposed method exploits the inherent redun-
dancy in the parameters of the convolutional filters by
partitioning the set of filters of convolutional layers
and representing these partitions in a low dimensional
latent space. To obtain this low-dimensional represen-
tation of the CNN filters, we introduce an auxiliary

1All our implementations using Pytorch, alongside the
datasets of our results (train accuracy, test accuracy,
train loss, test loss, train time, and test time for all the
epochs), trained models for Pytorch (when possible), and
detailed documentations for our codes are available online:
https://github.com/hamedomidvar/associativeconv
* First and second authors had equal contributions.

https://github.com/hamedomidvar/associativeconv
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neural network, called Convolutional Slice Generator
(CSG), that can be used in conjunction with any CNN
architecture. The CSG, which is a linear network
shared among all the convolutional layers, generates
four dimensional tensors called “slices” that corre-
spond to the above-mentioned cross-filter partitions,
from a low dimensional “code” space. These slices are
then concatenated to form sets of convolutional filters
of all the layers of the original architecture (see Fig. 1).
Thus, by design, this compression approach preserves
the original CNN architecture (while approximating
its set of filters), can be applied in conjunction with
many other methods for additional gains, and can be
used during both the training and inference phases.

During the training of the CNN, the code vectors,
which lie in a space of cardinality ≈ 20× smaller
than the cardinality of their corresponding slice of the
convolutional filters, are trained. We have explained
our method on how this compression ratio is achieved
eliminating the need for tuning this parameter.
The auxiliary neural network (CSG) can either be
trained alongside the code vectors or be provided to
the network in advance with pre-trained and fixed
parameters. Due to the simplicity of our method,
using a recent result (Allen-Zhu et al., 2019) and for
a simplified architecture, we have theoretically shown
the convergence of training in our approach which is
backed by our experimental evaluations.

We apply our proposed technique to several CNN
architectures used for classification and semantic
segmentation tasks and compare it with most of the
state of the art methods that are comparable to our
approach. Our experiments on classification tasks
show that while this approach significantly reduces
the cardinality of the parameter space of the CNN,
the resulting networks, except in extreme compression
cases, still achieve top-1 accuracies that are within one
percent of the accuracies of the original CNNs. Our
approach for some modern wide architectures improves
the original accuracy by a compression ratio of ≈ 2×,
which is compatible with a general trend (Cheng et al.,
2018) that wider networks can tolerate more compres-
sion. In case of narrow networks, when our technique
maintains the accuracy within one percent of the
original ones, other compression methods lead to
higher accuracy degradation with similar compression
ratios. CSG with binary weights (called BCSG) which
helps with simplifying the computations to generate
the CNN parameters by converting multiplications
and additions to only additions is also studied. BCSG
can improve the timing of networks on embedded
devices through reducing off-chip and on-chip memory
accesses. It is observed that even when the BCSG with
fixed random binary (-1,+1) values are used during the

training, the resulting networks still have acceptable
performances. To further confirm the generality of our
approach, experimental results show the possibility of
applying it to architectures that are used for semantic
segmentation tasks without significant performance
degradation (≈ 2.3× parameter reduction leads to
≈ 3% in the mean Intersection over Union (mIoU)).

We note that one could argue that in this work we
trade computation efficiency for parameter efficiency,
and hence communication and storage efficiency.
However, as discussed and explored experimentally
in the supplementary materials, the added com-
putational cost is negligible in practice and with
customized hardware for edge devices, our approach
is also expected to improve timing performance.

1.1 Related Works

In this section we briefly review some of the techniques
used for reducing the number of parameters of deep
neural networks (DNN) and CNNs.

Pruning: To improve the inference time of DNN
models, pruning the network parameters and network
connections have been proposed (Han et al., 2015;
Li et al., 2016; Anwar et al., 2017). These methods,
however, are only applicable to the networks after the
training phase of the original network with original
number of parameters. Extra training and fine tuning
are also required to recover the accuracy degradation.
Other pruning-based techniques that modify the
training phase such as (Yu et al., 2019; Frankle and
Carbin, 2019) are also available, however, they either
do not reduce the number of parameters during
the training phase or they significantly add to the
computational burden and hence are not desired for
distributed training.

Knowledge Distillation (KD): These methods
(Chen et al., 2017a) focus on reducing the number
of network parameters, both during the training and
inference phases. However, these techniques assume
that the parameters of the original network are readily
available.

Quantization-Based Methods: These methods
are among the very successful methods for reducing
the computational burden of DNNs that can be used
during both training and inference phases (Hubara
et al., 2017; Köster et al., 2017; Rastegari et al.,
2016). Excessive quantization of gradients in the
training phase, however, can lead to significant
reduction in the model’s accuracy (Rastegari et al.,
2016). In addition, most of these methods require
elaborate modifications to the model and its training
and inference processes, and sometimes specialized
hardware, to achieve acceptable results, and hence
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Figure 1: Generation of a regular-shaped but approximate set of filters from the concatenation of slices. Each
slice of a set of convolutional filters is generated from a code vector using a shared CSG. The generated filters
are then used by the corresponding convolutional layer as in regular CNNs. The proposed method can be
applied to any filter shape. In this example there are nf filters with k channels and h × w kernels. Each slice,

generated by the CSG, is assumed to be n̂f × k̂ × ĥ× ŵ. The figure shows one slice in darker color, that spans
across multiple channels and multiple filters, and its corresponding code vector (see Sections 2 and 3).

are not always easy to implement.

Efficient Fast-Fourier-Transform (FFT): These
approaches exploit the computational efficiency of
FFT-based multiplications (Abtahi et al., 2018; Ding
et al., 2017). To be useful, these schemes require com-
plex multiplications and efficient implementations of
FFT. There are also methods based on the Wino-
grad algorithm (Winograd, 1980) for performing effi-
cient convolutions in the real domain (Lavin and Gray,
2016). We note that these approaches to compress and
accelerate operations in the fully connected layers or
to accelerate the convolution operations can yield ad-
ditional gains when combined with our method.

Parallel Training and Gradient Compression:
These techniques are concerned with performing dif-
ferent stages of the training in parallel, or to reduce the
amount of information that needs to be communicated
between different nodes of the distributed computa-
tion network using compression, or quantization of the
gradients (Wang et al., 2018; Lin et al., 2018; Ye and
Abbe, 2018; Li et al., 2014; Recht et al., 2011; Wangni
et al., 2018). However, these works are not concerned
with the architecture of the network nor on how the
filters are designed, and can be applied to any archi-
tecture including our CSG-augmented CNNs. While
some of these methods provide lossless compression for
the gradients, others lead to significant accuracy loss
or need elaborate modifications.

Neural Architecture Search (NAS): These meth-
ods (Ghiasi et al., 2019) and methods like (Wang et al.,
2017) require the training of many architectures to find
a well performing architecture. Custom designed net-
works such as (Howard et al., 2017; Zhang et al., 2018)

are tiny networks for mobile devices and focus on re-
ducing the complexity of 1× 1 convolutions and hence
they do not provide general plug-and-play methods for
reducing the number of parameters during the training
of a given full architecture.

Structured Convolutional Filters & Steerable
Filters: Structured convolutional filters have been ex-
plored at the intersection of signal processing and com-
puter vision. In (Jacobsen et al., 2016) the authors, in-
spired by scattering networks (Sifre and Mallat, 2013;
Bruna and Mallat, 2013; Mallat, 2012), introduce a
structured method based on the family of Gaussian
filters and its smooth derivatives, to produce the CNN
filters from basis functions that are learned during the
training phase. Steerable filter design has been studied
for about three decades (Freeman and Adelson, 1991).

Low-Rank Decomposition: Methods based on low-
rank tensor decomposition such as Canonical Polyadic
decomposition (Lebedev et al., 2015), Singular Value
Decomposition based methods (Tai et al., 2015), and
other related method such as (Jaderberg et al., 2014),
focus on finding a low-rank decomposition of the filters
in order to achieve a network with improved inference
time. However, these methods require training on the
full set of parameters. In addition, compute-heavy de-
composition methods such as (Tai et al., 2015), signif-
icantly slow down the training of CNNs. Therefore,
due to their inability to reduce the number of train-
able parameters and significantly slower training time
for some of them, they are not comparable with our
approach and are not included in our comparisons.

Separable & Transferred Convolutional Filters:
Methods such as separable (Mamalet and Garcia,



Associative Convolutional Layers

2012) and transferred convolutional filters (Shang
et al., 2016; Cohen and Welling, 2016), exploit the
equivariant group theory. They reduce the number of
trainable parameters and accelerate the training. For
instance, (Rigamonti et al., 2013) show that multiple
image filters can be approximated by a shared set of
separable (rank-1) filters, and the authors in (Shang
et al., 2016; Cohen and Welling, 2016) reuse the
filters, allowing large speedups with minimal loss in
accuracy. (Ha et al., 2017) provides an approach
that is close to ours, however, they use a multi-layer
network to generate the filters of the network and
their approach is only studied and achieves acceptable
results on wider networks.

In Section 4 we provide extensive experimental com-
parisons with a range of related methods. (Cheng
et al., 2018) provides a comprehensive introduction
and comparisons of most of the above-mentioned
methods. The difference between our approach and
these methods is two folds. First, we use a single linear
network (CSG) to generate the convolutional filters of
the entire neural network. Second, we reproduce these
filters by concatenating approximate slices that can ex-
pand across multiple dimensions.

1.2 Our Contributions

We present three distinct contributions:

• An easy-to-implement kernel compression
method. We provide a general method for re-
ducing the number of parameters that are needed
to represent the sets of filters of convolutional
layers during both the training and inference
phases, through the use of a linear auxiliary
neural network which transforms a set of code
vectors in a low dimensional space to slices of sets
of convolutional filters. Accompanying repository
mentioned before shows how this method can be
easily implemented in software.

• Analytic bounds. Using a simple CSG-
augmented CNN as an example, we show that
the training time for this network is polynomial
in the number of data points, number of input
features (e.g., pixels), and inverse of the mini-
mum distance between data points. Further, we
provide an estimate on the relationship between
the size of the slices and the cardinality of the
code vector space that eliminates the need for
tuning for these parameters. This analysis also
suggests that our approach can be applied to at
least a large set of architectures.

• Experimental validation. We apply our
method to ResNet, DenseNet, ShuffleNet, Mo-
bileNet, and Deeplab architectures, and show

that significant parameter reductions, without
noticeably compromising the accuracy, are pos-
sible. In addition, we show that even when the
parameters of the CSG take fixed but random
binary values, the performances of the networks
especially on CIFAR-10 dataset are still accept-
able. Furthermore, when running on a single
GPU, we observe that the training time and
the inference time of the augmented networks
remain almost unaltered (as detailed in the sup-
plementary materials). In addition, we compare
our method with several related compression
methods in the category of low rank matrix
factorization and transferred convolutional filters
and show that our method achieves improved
performance over all the studied CNN models.

The paper is organized as follows. In Section 2, we
provide the preliminaries and set the stage for intro-
ducing our method. In Section 3, we formally intro-
duce the CSG, provide a rough estimate on the cardi-
nality of the code vector space, and theoretically in-
vestigate its effect on the convergence of the training
phase. In Section 4, we provide the results of our ex-
periments on ResNet, DenseNet, and Deeplab archi-
tectures and comparison with other related methods.
Section 5 contains our concluding remarks and future
directions. Furthermore, interested readers can find a
more detailed argument regarding the compression ra-
tio of the kernels, experiments and discussions regard-
ing the end-to-end timing of our method as well as con-
vergence plots, and more details of experiments in the
Appendix provided in the supplementary materials.
The supplementary materials also include our carefully
documented implementations and our results datasets.

2 Preliminaries

2.1 Convolutional Neural Network (CNN)

In a typical classification task, a CNN is composed of
several convolutional layers and one or more fully con-
nected layers, at the very end of the network, respon-
sible for the classification. Each convolutional layer
consists of a set of filters and perhaps is followed by
some batch normalization layers and activation layers.
Our goal is to reduce the number of these trainable
parameters by providing a compact representation for
the parameters of the sets of filters of the convolutional
layers.

Let l ∈ Rnf×k×h×w, for nf , k, h, w ∈ N, denote a set of
nf filters in the CNN, where k is the number of input
channels and h and w are the height and width of the
kernel, respectively. Let denote the collection of all the
sets of filters in a CNN, namely the main parameters
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of the convolutional layers, by L and the set of all
the other parameters in the CNN by O. Then, we
represent the set of all the parameters by P := L∪O.

2.1.1 Slices

Instead of focusing on direct compression of filters, in
this paper we focus on slices. We define a slice as a

tensor s ∈ Rn̂f×k̂×ĥ×ŵ, for n̂f , k̂, ĥ, ŵ ∈ N. We parti-
tion each set of filters l ∈ L \ {l0}, where l0 denotes
the set of filters of the first convolutional layer, into
dnf/n̂fedk/k̂edh/ĥedw/ŵe slices starting from the first

slice l(0 : n̂f , 0 : k̂, 0 : ĥ, 0 : ŵ). In Fig. 1, one slice of a
set of filters of a convolutional layer is shown in darker
color. We denote the set of all such slices for all layers
by S. The ordering of these partitions is arbitrary and
does not affect the final results. Without loss of gener-
ality we assume that this partitioning is possible. 2 To
reduce the trainable parameters, we produce same size
but approximate versions of these slices denoted by ŝ ∈
Ŝ from a compact low dimensional space (codes) using
the CSG as explained in detail in the next section.

2.1.2 Code Vectors

To approximate each slice of each set of filters s ∈ S
by ŝ ∈ Ŝ using the CSG, we use a code vector c ∈
Rnc , where nc ∈ N. The relationship between slices
and their corresponding code vectors is detailed in the
following section.

3 The Convolutional Slice Generator

The Convolutional Slice Generator (CSG) provides
a linear approximation for the slices of a convolu-
tional filter. This means that each slice of a set of
convolutional filters is represented by a code vector
that has around 20× fewer elements. Multiplying
the CSG matrix by this code vector, followed by an
appropriate reshaping, produces an approximation
for this slice. Several slices are then concatenated
to produce a regular but approximate version of the
set of convolutional filters. The shared CSG matrix
used by all layers provides the association among
the convolutional layers. In the following sections we
make these statements precise.

3.1 The CSG Network

To generate an approximate version of each slice si,
for i ∈ {1, ..., |S|} denoted by ŝi, we have

ŝi = Reshape(ACSGci), for i ∈ {1, ..., |Ŝ|}, (1)

2In practice we consider additional slices for fractional
partitions and only use part of the final slice(s) to recon-
struct the set of convolutional filters.

where ACSG denotes an n̂f k̂ĥŵ by nc matrix repre-
senting the weights of the CSG network, ci denotes
the code vector corresponding to the i’th slice where
i ∈ {1, 2, ..., |Ŝ|}, and the Reshape(.) operator re-
shapes the input vector to a tensor of dimensions
n̂f , k̂, ĥ, ŵ in an arbitrary but consistent order. In our
experiments we also use fixed binary values (-1,+1)
for the weights of the CSG network. We refer to this
network as Binary CSG (BCSG). The binary values
in BCSG are set to the signs of the initial weights
(with normal distribution) and fixed throughout the
training. See Fig. 1 for an example of how a single slice
of a set of filters for a convolutional layer is generated.

3.2 Training the CSG-Augmented Network

Let Ĝ denote the parameters of the CSG, i.e., the
elements of the matrix ACSG, Ĉ denote the set of
all the code vectors, and let Ô = O denote all the
other parameters of the CNN, e.g., biases, batch
normalization parameters, fully connected layer(s),
and the first convolutional layer filters. Hence, we can
denote the set of all the parameters of the network
by P̂ := Ĉ ∪ Ĝ ∪ Ô. Let D denote the set of the input
data. A general objective function to train the CNN
in our approach can be written as

f(D, P̂) = f(D, Ĉ, Ĝ, Ô).

Hence, to train the CSG-augmented CNN, instead
of taking the gradients with respect to the kernels’
weights (L), they are taken with respect to the set of
code vectors and the CSG parameters (Ĉ, Ĝ).

3.3 Cardinality of the Code Vector Space

In this section, we discuss our method for providing a
rough estimate on the cardinality of the code vector
space nc. First, we need to choose a shape for the
slices. In order to decide about this shape, we con-
sidered several widely used CNNs including VGG16,
VGG19, ResNet, etc. A 3 × 3 filter size is the most
common size for the filters. Also, these architectures
suggests that a slice with channel size of 16 and the
depth of 16 would divide most of these filters. Hence,
we chose ŝ1 = 16, ŝ2 = 16, ŝ3 = 3, ŝ4 = 3 for this part
of our work. In order to determine the cardinality
of the code vector space, we need an estimate of the
number of the elements of the slice in its possible
latent domain, namely an estimate for nc. Inspired by
the fact that these filters are responsible for detecting
visual features and knowing that usage of DCT leads
to a very good encoding of visual representations
(Watson, 1994), we looked at the four-dimensional
Type-II DCTs (4-D DCT-II) of about 29000 slices of
pre-trained filters extracted from VGG-16, VGG-19,



Associative Convolutional Layers

ResNet-50, InceptionV3, DenseNet-169, DenseNet-
201, InceptionResNetV2 (available in Tensorflow).
We then computed the 4-D DCT-II representation
of these slices and removed the elements of this
representation in such a way that the remaining
elements would result in an inverse transform which is
not very different from the original slice. Our analysis,
presented in the Appendix in the supplementary ma-
terials, suggests that a code vector that has close to
20× fewer number of elements would be sufficient. In
our experiments, we chose code vectors that have 18×
fewer elements than the slices, and our experiments
on the neural networks confirm this choice.

3.4 Training Convergence

While convergence is always observed in all our exper-
iments, in this section, we provide a proof of conver-
gence for a simple CSG-augmented CNN with only one
convolutional layer based on the recent work (Allen-
Zhu et al., 2019). Let m denote the number of channels
of the convolutional layer, and d denote the number of
its features (e.g., pixels) as defined in Allen-Zhu et al.
(2019). For simplicity, let us assume that the number
of channels remains m after the convolutional layer.
Let n denote the number of data points, and d′ denote
the number of labels. We assume that the data-set is
non-degenerate meaning that there does not exist sim-
ilar inputs with dissimilar labels. We denote by δ the
minimum distance between two training points. We
restate the following theorem from (Allen-Zhu et al.,
2019) for the CNN defined in Appendix B of this ref-
erence.

Theorem 1 (CNN (Allen-Zhu et al., 2019)) As
long as m ≥ Ω̃(poly(n, d, δ−1)d′), with a probability
that approaches one as m → ∞, Stochastic Gradi-
ent Decent (SGD) finds an ε-error solution for l2

regression in T = Ω̃
(
poly(n,d)

δ2 log ε−1
)

iterations for a

CNN.

The above theorem as discussed in (Allen-Zhu et al.,
2019) can be easily extended for other convergence
criteria including the cross-entropy. Now let us
consider our CSG-augmented CNN which we de-
note by CNN-CSG. For simplicity, in the following
theorem, we consider the case when only a single
hidden convolutional layer is present (after the initial
convolution with the input).

Theorem 2 (CNN-CSG) If |Ĉ| ≥
Ω̃(poly(n, d, δ−1)d′), with a probability that ap-
proaches one as |Ĉ| → ∞, then SGD finds an ε-error

solution for l2 regression in T = Ω̃
(
poly(n,d)

δ2 log ε−1
)

iterations for a CNN-CSG.

Table 1: Training results on CIFAR-10 dataset with
similar hyperparameters. When CSG is used, the slice
shape and the code vector size are indicated as CSG-
[n̂f , k̂, ĥ, ŵ]-nc (shape of slice followed by the size of
the vectors) following the name of the original net-
work. On the “Top-1 Err.” column the average and
standard deviations of test errors at the last epoch for
three non-selective trainings and on the “Ratio” col-
umn the compression ratios with respect to the original
networks are reported. For details see Appendix in the
supplementary materials.

Network Architecture # Param. Top-1 Err. Ratio

DenseNet-BC-40-48 (Original) 2,733,130 4.97 ± 0.26 1.00×
DenseNet-BC-40-48-CSG-[12,12,3,3]-72 1,416,394 4.83 ± 0.24 1.92×
DenseNet-BC-40-48-CSG-[12,12,3,3]-72

w/ Pre-trained CSG on DenseNet-BC-40-48 1,323,082 5.07 ± 0.11 2.06×
DenseNet-BC-40-48-CSG-[12,12,3,3]-72

w/ Pre-trained CSG on DenseNet-BC-40-36 1,323,082 5.14 ± 0.23 2.06×
DenseNet-BC-40-48-CSG-[12,12,3,3]-72

w/ Compressed 1x1 Kernels 904,906 5.62 ± 0.28 3.02×
DenseNet-BC-40-48-BCSG-[12,12,3,3]-72 1,323,082 5.06 ± 0.10 2.06×
DenseNet-BC-40-36 (Original) 1,542,682 5.38 ± 0.27 1.00×
DenseNet-BC-40-36-CSG-[12,12,3,3]-72 842,842 5.12 ± 0.09 1.83×
DenseNet-BC-40-36-CSG-[12,12,3,3]-72

w/ Pre-trained CSG on DenseNet-BC-40-48 749,530 5.61 ± 0.21 2.05×

ResNet-56 (Original) 853,018 6.28 ± 0.20 1.00×
ResNet-56-CSG-[16,16,3,3]-128 347,162 7.24 ± 0.11 2.45×
ResNet-56-CSG-[12,12,3,3]-72 160,450 8.01 ± 0.27 5.31×
ResNet-56-CSG-[16,16,3,3]-128

w/ Pre-trained CSG on ResNet-20 52,250 11.98 ± 0.28 16.3×
ResNet-56-BCSG-[16,16,3,3]-1024 381,978 8.11 ± 0.02 2.23×

ShuffleNet-(0.5×) (Original) 352,042 9.81 ± 0.28 1.00×
ShuffleNet-(0.5×)-CSG-[16,16,1,1]-16 171,818 10.15 ± 0.20 2.04×
ShuffleNet-(0.5×)-BCSG-[16,16,1,1]-16 167,722 9.96 ± 0.36 2.10×

MobileNetV2 (Original) 2,296,922 6.64 ± 0.18 1.00×
MobileNetV2-CSG-[16,16,1,1]-16 1,595,322 7.65 ± 0.18 1.44×
MobileNetV2-BCSG-[16,16,1,1]-16 1,591,226 7.72 ± 0.08 1.44×

The proof of the above theorem, which follows from
the fact that the code vectors following the CSG layer
can simply be viewed as an additional fully connected
layer, can be found in the Appendix in the supple-
mentary materials. Similar to Theorem 1, Theorem 2
can be easily extended for other convergence criteria
including the cross-entropy.

4 Experiments

We evaluated our approach on five different CNN
models (ResNet-56, DenseNet-BC-40-48, DenseNet-
BC-40-36, ShuffleNet V2, MobileNet V2) on CIFAR-10
dataset, two CNN models (ResNet-50 and ResNet-
101) on ImageNet-1000 dataset, and two Deeplab
models on Pascal VOC dataset. The CSGs are
integrated into the models implemented in PyTorch.
Our implementations along with detailed documenta-
tions of our codes are available in the supplementary
materials. For training the models on the CIFAR-10
dataset, we used a machine with a single GPU (Nvidia
Geforce 2080 Ti) and for the training on the two
other datasets we used four (Nvidia Geforce 1080
Ti) GPUs. Note that we did not do any parameter
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Table 2: Training results on ImageNet-1000 (ILSVRC2012) dataset. When CSG is used, the slice shape and the
code vector size are indicated as CSG-[ŝ1, ŝ2, ŝ3, ŝ4]-nc following the name of the original network. In the “Top-1
Error” column the validation error for the center cropped images at the last epoch of the training and on the
“Ratio” column the compression ratios with respect to the original networks are reported. The results indicated
with a ”*” are reported from (TorchVision, Accessed: 2020-01-30)

Network Architecture # Param. Top-1 Err. (%) Ratio

ResNet-50 (Original) 25,557,032 23.9*% 1.00×
ResNet-50-CSG-[16,16,3,3]-128 15,163,432 24.9% 1.68×
ResNet-50-BCSG-[16,16,3,3]-128 14,868,520 26.5% 1.72×
ResNet-101 (Original) 44,654,504 22.6*% 1.00×
ResNet-101-CSG-[16,16,3,3]-128 24,685,608 23.1% 1.81×
ResNet-101-BCSG-[16,16,3,3]-128 24,390,696 24.2% 1.83×
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Figure 2: Train and validation errors of ResNet-50-
CSG-[16,16,3,3]-128, and ResNet-101-CSG-[16,16,3,3]-
128 on ImageNet dataset.

tuning for any of our CSG-augmented networks and
the experiments are all done using the same settings
that were used for the original networks. Also, as it is
clear from the previous sections, we did not apply our
method to the very first convolutional layer.

4.1 CIFAR-10 Dataset

CIFAR-10 dataset includes 50K training images and
10K test images from 10 different classes. See Table 1
for a summary of all the results. As we can see, when
we use [16, 16, 3, 3] slices and code vectors of size 128
for ResNet-56 (He et al., 2016b), we achieve ≈ 2.5×
reduction with less than 1% increase in top-1 error. If
we allow a higher accuracy degradation of ≈ 1.5%, we
can achieve over 5.3× parameter reduction by using
[12, 12, 3, 3] slices and code vectors of size 72. In case
of DenseNet (Huang et al., 2017), we considered the
most challenging cases, namely, when bottlenecks are
used and the network has a 50% compression factor
(i.e., θ = 0.5), which is abbreviated as DenseNet-BC.
In the first case we only consider 3 × 3 kernels and
do not compress the bottleneck or transition layers in
these implementations. Since the number of filters is

a multiple of 12, we choose slices of shape [12, 12, 3, 3]
and code size of 72 to keep the ratio between the num-
ber of elements in the slice and code vector size nc the
same. We consider two cases when L = 40,K = 48,
and L = 40,K = 36, where L is the number of layers
and K is the growth rate. For the first case, we could
achieve ≈ 2× reduction with a slight improvement
in accuracy. For the second case, the use of CSG
had little effect on the accuracy of the network while
reducing its parameters by over 1.8×. The results
for compressing 1 kernels and when we use BCSG
are also found in Table 1. We also apply CSG on a
narrow model, ResNet-56, where ≈ 1% increase in
error is seen with 2.4× compression ratio. In addition,
binarizing CSG in this model achieves significant
reduction in the number of trainable parameters, i.e.,
16.3×, with only 2% accuracy drop. To show that the
choices of the slice shape and the cardinality of the
code vectors based on our approach in Section 3.3 are
appropriate we have done additional experiments with
various slice shapes. The results, that confirm our
choices, can be found in the supplementary materials
of this paper. For ShuffleNet V2 (CIFAR version) we
have compressed the last convolutional layer of the
networks which is again a 1x1 kernel and constitutes a
large portion of the network weights resulting in ≈ 2×
compression while the accuracy loss is within 0.5%.
For the case of MobileNetV2 (CIFAR version) we have
compressed the first 1x1 kernel in each block (namely
kernels w/ largest number of parameters) resulting in
1.44× reduction with an accuracy loss of 1%.

4.2 ImageNet-1000 (ILSVRC2012) Dataset

We trained the CSG-augmented versions of ResNet-50
and ResNet-101 on the ImageNet-1000 (ILSVRC2012)
dataset which consists of ≈1.3 million images for train-
ing and 50K images for validation. We used the same
hyperparameters as the ones mentioned in the original
paper (He et al., 2016a), namely we used batch sizes of
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256 images, and started from the learning rate of 0.1
and divided the learning rate by 10 every 30 epochs.
We continued the training for 100 epochs (which is 20
epochs less than the original paper). While ResNet-50-
CSG-[16,16,3,3]-128 has a compression ratio of 1.68×,
it achieves a top-1 error of 24.9% which is within 1% of
the error of the original ResNet-50 implemented in Py-
Torch and reported by TorchVision (TorchVision, Ac-
cessed: 2020-01-30). ResNet-101-CSG-[16,16,3,3]-128
achieves 23.1% top-1 error with a compression ratio of
1.81×. While this model now has around one million
parameters less than original ResNet-50, its error-rate
is still ≈ 0.8% smaller. The above results as well as
results for BCSG-augmented networks are summa-
rized in Fig. 2. More details of training and validation
errors over the course of 100 epochs are shown in
Table 2 and Fig. 2 and in the supplementary materials.

4.3 Training CSG/Pre-trained CSG/BCSG

In this set of experiments we train all the models from
scratch. We initialize the parameters of CSG Ĝ with
random initial values and train it alongside the code
vectors Ĉ as well as other parameters of the network
Ô. We refer the reader to the supplamentary mate-
rial for a detail account of the datasets and imple-
mentation as well as convergence figures. When using
pre-trained CSG parameters during the training of the
CSG-augmented CNNs, the number of parameters to
be trained reduces to |Ĉ| + |Ô|. Similarly for BCSG
networks, the parameters are chosen randomly from
(-1,+1) and are fixed throughout the training. These
can result in significant reduction in the number of
the parameters of the network depending on its ar-
chitecture. The summary of our results are provided
in Table 1 and 2. More details can be found in the
Appendix in the supplementary materials.

4.4 Semantic Segmentation Tasks

To explore the possibility of applying our approach
to tasks other than image classification, in these ex-
periments we applied it to Deeplab V3 (Chen et al.,
2017b) for semantic segmentation on the Pascal VOC
2012 (Everingham et al., 2010) dataset without any
hyper-parameter tuning. We considered the Deeplab
V3 architecture alongside Resnet-50 and Resnet-101
for feature extraction. For each case, two scenarios
were studied against two baseline scenarios where no
modification to the models were done. The baseline
scenarios in our implementation achieve mean Inter-
section Over Unions (mIOUs) of 73.38% and 74.73%
respectively.

In the first scenario, we used Resnet-50-CSG-
[16,16,3,3]-128 and Resnet-101-CSG-[16,16,3,3]-128 for

the feature extraction with pretrained parameters and
did not modify the rest of the architecture. In
this settings our approach achieves mIoUs of 71.41%
and 72.98% with 1.35× and 1.5× compression ratios.
In the second scenario, in addition to using CSG-
augmented versions of Resnet-50 and Resnet-101 for
the feature extraction with pretrained parameters, we
also considered a second CSG for the Atrous Spatial
Pyramid Pooling (ASPP) modules. In these settings,
we achieve mIoUs of 70.28% and 71.63% respectively
with 2.39× and 2.24× compression ratios. The results
are summarized in Table 3. Details of the implemen-
tation can be found in the supplementary materials.

4.5 Comparison with Related Methods

In this section, we provide a detailed comparison of
our proposed technique with the relevant methods, as
discussed in more detail in Section 1.1: Kernel decom-
position (separable filters) (Jaderberg et al., 2014) and
two transferred convolutional filters methods, CRELU
(Shang et al., 2016), G-CNN (Cohen and Welling,
2016), and Hypernetworks (Ha et al., 2017). We
applied these techniques on both wide and narrow
CNN models DenseNet-BC-40-48 and ResNet-56 for
CIFAR-10 dataset. Each modified model is trained
three times with similar hyper parameters as in Section
4 and the results are summarized in Table 4. As shown
in the table, for wide CNN models such as DenseNet-
BC-40-48, the compression ratio of all methods is simi-
lar (≈ 2×). While the error of the model modified with
other methods is increased, the CSG-augmented model
improves the error slightly. For ResNet-56 which is a
narrow model, when half of the convolutional layers
are replaced by separable filters or when we compress
the model using the CRELU we achieve ≈ 2× reduc-
tion. In both cases compared to our CSG-augmented
model with even a slightly higher compression ratio,
the top-1 errors are higher. The accuracy of G-CNN
based model achieving compression ratio of 3.92× is
still lower than the one in CSG-augmented one with
5.31× ratio. We also applied separable filters to all the
layers of ResNet-56 that achieves significant parameter
reduction ≈ 7× at the cost of high accuracy degra-
dation. It should be noted that BCSG augmented
ResNet-56 compared to low rank decomposition meth-
ods and transferred convolutions achieves the high-
est compression ratio and the lowest error. Finally,
it is observed that the performance of ResNet56 aug-
mented by a Hypernetwork has the worst performance
on ResNet-56 which is a narrow network. In sum-
mary, the results show that for narrow models, the
other techniques degrade accuracy which is compati-
ble with their mentioned drawbacks in (Cheng et al.,
2018), while our proposed technique does not degrade
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Table 3: Results of semantic segmentation on Pascal VOC 2012 validation dataset after training for 50 epochs
with batch size of 4. With CSG, the slice shape and the code vector size are indicated as CSG-[n̂f , k̂, ĥ, ŵ]-nc
following the name of the original network.

Network Architecture # Param. mIoU (%) Ratio

DeeplabV3-ResNet-50 (Original) 40,352,181 73.38% 1.00×
DeeplabV3-ResNet-50-CSG-[16,16,3,3]-128 29,958,581 71.41% 1.35×
DeeplabV3-CSG-[16,16,3,3]-128

-ResNet-50-CSG-[16,16,3,3]-128 16,884,149 70.28% 2.39×
DeeplabV3-ResNet-101 (Original) 59,344,309 74.73% 1.00×
DeeplabV3-ResNet-101-CSG-[16,16,3,3]-128 39,480,757 72.98% 1.50×
DeeplabV3-CSG-[16,16,3,3]-128

-ResNet-101-CSG-[16,16,3,3]-128 26,406,325 71.63% 2.24×

Table 4: Comparison of various compression techniques with our method on CIFAR-10 dataset. The “Top-1 Err.”
column shows the test errors at the last epoch ± standard deviation in three runs and the “Ratio” column shows
the compression ratios with respect to the original networks. Ratios decorated with a “*” denote bit-wise ratios.

Compression Method Network Architecture # Param. Top-1 Err. Ratio

Original Architecture DenseNet-BC-40-48 2,733,130 4.97 ± 0.26 1.00×

CSG/BCSG
DenseNet-BC-40-48-CSG-[12,12,3,3]-72 1,416,394 4.83 ± 0.24 1.92×
DenseNet-BC-40-48-BCSG-[12,12,3,3]-72 1,323,082 5.06 ± 0.10 2.06×

Low Rank Decomposition DenseNet-BC-Separable Filters 1,441,450 5.13 ± 0.05 1.90×

Transferred Convolutions
DenseNet-BC-CReLU 1,369,210 5.39 ± 0.28 2.00×
DenseNet-BC-GCNN (p4) 1,613,602 5.25 ± 0.29 1.60×

Quantization DenseNet-BC-40-48-FP16 2,733,130 5.15 ± 0.05 2.00*×
CSG+Quantization DenseNet-40-48-CSG-[12,12,3,3]-72-FP16 1,416,394 5.43 ± 0.08 3.84*×

Hypernetworks DenseNet-BC-Hypernetworks 1,435,530 5.31 ± 0.15 1.90×
Original Architecture ResNet-56 853,018 6.28 ± 0.20 1.00×

CSG/BCSG
ResNet-56-CSG-[16,16,3,3]-128 347,162 7.24 ± 0.11 2.45×
ResNet-56-CSG-[12,12,3,3]-72 160,450 8.01 ± 0.27 5.31×
ResNet-56-BCSG-[16,16,3,3]-1024 381,978 8.11 ± 0.02 2.23×

Low Rank Decomposition
ResNet-56-Separable Filters (1/2 Layers) 494,709 7.56 ± 0.45 1.72×
ResNet-56-Separable Filters (All Layers) 117,066 8.41 ± 0.05 7.29×

Transferred Convolutions
ResNet-56-CReLU 427,066 8.27 ± 0.10 2.00×
ResNet-56-GCNN (p4) 217,618 8.79 ± 0.31 3.92×

Quantization ResNet-56-FP16 853,018 6.64 ± 0.35 2.00*×
CSG+Quantization ResNet-56-CSG-[16,16,3,3]-128-FP16 347,162 7.54 ± 0.01 4.90*×

Hypernetworks ResNet-56-Hypernetworks 182,618 9.19 ± 0.06 4.67×

the accuracy significantly in both narrow and wide
CNNs.

5 Conclusion and Future Directions

We presented a novel and easy to implement method to
reduce the number of unnecessary parameters of con-
volutional layers during both training and inference by
representing them in a low dimensional space through
the use of a simple auxiliary neural network without
significantly compromising the accuracy or tangibly
adding to the processing burden. There are still sev-
eral directions that can be pursued in future. The use
of this method for other tasks, especially other than
vision related tasks, such as natural language process-
ing, etc. needs to be assessed. The extension of the

theoretical analysis to more complicated architectures
is an attractive future direction. The combination of
this method with efficient computation and compres-
sion methods mentioned in this paper for distributed
machine learning and machine learning acceleration for
edge devices need to be explored further. Additionally,
the use of more than one CSG for different classes
of filters or the use of non-linear and/or multi-layer
CSGs remains to be investigated. Finally, as men-
tioned throughout the paper, we did not do any param-
eter tuning after applying our method. Hence, there
is the possibility of improving the results when the pa-
rameters are further tuned after applying our method.
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.
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Stéphane Mallat. Group invariant scattering. Com-
munications on Pure and Applied Mathematics, 65
(10):1331–1398, 2012.

Franck Mamalet and Christophe Garcia. Simplifying
convnets for fast learning. In International Con-
ference on Artificial Neural Networks, pages 58–65.
Springer, 2012.

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classifi-

cation using binary convolutional neural networks.
CoRR, abs/1603.05279, 2016. URL http://arxiv.

org/abs/1603.05279.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–
701, 2011.

Roberto Rigamonti, Amos Sironi, Vincent Lepetit,
and Pascal Fua. Learning separable filters. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 2754–2761, 2013.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and
Honglak Lee. Understanding and improving convo-
lutional neural networks via concatenated rectified
linear units. In international conference on machine
learning, pages 2217–2225, 2016.
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