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Abstract

Self-training is a classical approach in semi-
supervised learning which is successfully
applied to a variety of machine learning
problems. Self-training algorithms generate
pseudo-labels for the unlabeled examples and
progressively refine these pseudo-labels which
hopefully coincides with the actual labels.
This work provides theoretical insights into
self-training algorithms with a focus on linear
classifiers. First, we provide a sample com-
plexity analysis for Gaussian mixture models
with two components. This is established
by sharp non-asymptotic characterization of
the self-training iterations which captures the
evolution of the model accuracy in terms of a
fixed-point iteration. Our analysis reveals the
provable benefits of rejecting samples with low
confidence and demonstrates how self-training
iterations can gracefully improve the model
accuracy. Secondly, we study a generalized
GMM where the component means follow a
distribution. We demonstrate that ridge reg-
ularization and class margin (i.e. separation
between the component means) is crucial for
the success and lack of regularization may
prevent self-training from identifying the core
features in the data.

1 Introduction

The recent widespread success of deep neural networks
rely on the presence of large labeled datasets to a signif-
icant extent. Unfortunately, such good-quality datasets
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may not be readily available for variety of practical
applications. Indeed, a grand challenge in expanding
machine learning to new domains is the cost of ob-
taining good quality labels. This is especially true for
privacy and safety sensitive tasks that are abundant in
critical domains such as healthcare and defense. On
the other hand, unlabeled data can be relatively cheap
to obtain and may be more abundant. This necessi-
tates semi/unsupervised learning algorithms that can
go beyond supervised learning and efficiently utilize
unlabeled data.

Semi-supervised learning (SSL) techniques aim to re-
duce the dependence on the labeled data by making
use of unlabeled data. A large number of approaches
for SSL involve an extra loss term accounting for unla-
beled data which is expected to help the model better
generalize to unseen data. Self-training, consistency
training and entropy minimization are among some of
the core methods (discussed in Section 1.1 in more de-
tail) used for the purpose of SSL. Despite its popularity
and practical success, we still don’t have a fundamental
understanding of when and why self-training algorithms
work. For instance, self-training algorithms gradually
utilize unlabeled data by first incorporating the most
reliable pseudo-labels. Are there setups where rejecting
unreliable examples provably help? Similarly, gener-
ating and overfitting to incorrect pseudo-labels is a
natural concern in SSL. On the other hand, recent
empirical and theory literature suggests that, for super-
vised learning, interpolating to training data performs
surprisingly well even when the model perfectly interpo-
lates and achieves zero training loss (Belkin et al., 2019;
Hastie et al., 2019; Zhang et al., 2016). How crucial
is regularization when it comes to learning with unla-
beled data? Finally, for which datasets, self-training
finds useful models that generalize better and what
structural assumptions on the data are key to success?

Contributions. This paper takes a step towards ad-
dressing the aforementioned questions by studying al-
gorithmic fundamentals of SSL. Specifically, we make
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the following contributions.

e Self-training for Gaussian Mixture Models.
One way to understand the algorithmic performance
is by focusing on fundamental dataset models such as
Gaussian mixtures and conducting a careful analysis
capturing exact algorithmic performance. We study the
problem of learning a linear classifier with self-training
under a Gaussian mixture model (GMM). We precisely
calculate the distributional properties of self-training
iterations. Specifically we capture the evolution of
the correlation between the optimal classifier and the
self-training output in a non-asymptotic fashion. This
reveals asymptotic and non-asymptotic formulae ex-
actly characterizing the performance of self-training
with linear models. We present associated numerical
experiments demonstrating the classification perfor-
mances under various scenarios which also reveals the
provable benefits of rejecting weak examples.

e Algorithmic Insights: The Role of Distribu-
tion and Regularization. Next, we explore the im-
portance of distributional properties by considering a
more general family of mixture models where the means
of mixture components are continuously distributed.
This reveals that as long as there is a margin (i.e. separa-
tion) between the means, unlabeled data improves the
performance, however without margin, un-regularized
algorithm provably gets stuck under least-squares loss.
We then show how ridge regularization and early stop-
ping can mitigate this issue by encouraging self-training
to pick up the principal eigendirections in the data in
a similar fashion to power iteration. We also discuss
similar benefits of regularization for logistic regression.

1.1 Prior Art

The benefits of using unlabeled data for learning mod-
els is subject of a rich literature since 70s which con-
sider a variety of settings such as generative mod-
els (Castelli and Cover, 1995; Nigam et al., 2000),
semi-supervised support vector machines (Vapnik,
1998; Joachims, 1999), graph-based models (Blum and
Chawla, 2001; Belkin et al., 2006; Zhu et al., 2003), or
co-training (Blum and Mitchell, 1998) and multiview
models(Sindhwani et al., 2005). The relative value of la-
beled and unlabeled samples in a detection-estimation
theoretical framework is examined in (Castelli and
Cover, 1996). A line of work is related to how the pres-
ence of unlabeled data be useful to limit Radamacher
complexity(Bartlett and Mendelson, 2002). For exam-
ple, the compatibility of a target function with respect
to a data distribution is considered by (Balcan and
Blum, 2010), where the authors illustrate how enough
unlabeled data can be useful to reduce the size of the
search space. It is demonstrated by several papers
(Oneto et al., 2011, 2015, 2016) that the additional un-

labeled data can be used to improve the tightness of the
Radamacher complexity (RC) based bounds. A sharper
generalization error bound for multi-class learning with
the help of additional unlabeled data is presented by
(Li et al., 2019), along with an efficient multi-class
classification algorithm using local Radamacher com-
plexity and unlabeled samples. Apart from that, semi
supervised learning (SSL) is a versatile approach for
training models without using a large amount of data.
SSL algorithms can achieve performance improvement
with low cost, and there are a large number of SSL
methods (Miyato et al., 2018; Sajjadi et al., 2016b;
Laine and Aila, 2016; Tarvainen and Valpola, 2017;
Berthelot et al., 2019; Xie et al., 2019; Berthelot et al.,
2020; Lee, 2013; Sajjadi et al., 2016a) available in the
literature.

A large portion of SSL methods relies on generating
an artificial label for unlabeled data and training the
model to predict those artificial labels when the unla-
beled data is used as the input. Pseudo-labeling (Lee,
2013) is one of such methods where the class prediction
of the model is used for training purposes. Consis-
tency regularization is also an important component
of many SSL algorithms. Consistency regularization
(Tarvainen and Valpola, 2017; Sajjadi et al., 2016b;
Laine and Aila, 2016) is based on the approach that
the model is supposed to generate similar outputs when
perturbed version of the same data is applied as the
input. Adversarial transformation is used by (Miyato
et al., 2018) in the loss function of consistency training,
and cross-entropy loss instead of squared loss function
appears in the works (Miyato et al., 2018; Xie et al.,
2019). There are also hybrid algorithms combining
diverse mechanisms. For example, Fix-Match (Sohn
et al., 2020) combines pseudo-labeling and consistency
training to generate artificial labels. Mix-Match (Berth-
elot et al., 2019), ReMixMatch (Berthelot et al., 2020),
unsupervised data augmentation (Xie et al., 2019) are
among other composite approaches. Self training in the
setting of domain adaptation is covered by the papers
(Long et al., 2013; Inoue et al., 2018). Class balance
(Zou et al., 2018) and confidence regularization (Zou
et al., 2019) for self-training are among other lines of
works. Gradual domain adaptation in regularized mod-
els is analyzed by (Kumar et al., 2020). The papers
(Carmon et al., 2019; Zhai et al., 2019; Najafi et al.,
2019; Stanforth et al., 2019) show theoretically and em-
pirically how semi-supervised learning procedure can
achieve high robust accuracy and improve adversarial
robustness.

2 Problem Setup

Let us first fix the notation. Given an event F, let
1(E) be the indicator function of F which is 1 if E
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happens and 0 otherwise. We use X | FE to denote
the conditional random variable induced by a random
variable X given an event E. We will refer the vectors
with unit Fuclidean norm as unit norm. Given two

vectors a, b, their correlation is denoted by p(a,b) =
(a,b)

lalle, [ble,

of the angle between two vectors to be

p(a,b)

V1-p(a,b)>

which will be useful for cleaner notation. As cot(a,b) —
oo, the two vectors become perfectly correlated
ie. p(a,b) - 1. Let Q(:) be the tail of a standard
normal variable and QQx be the tail of the distribu-

. Related to correlation, we define co-tangent

cot(a,b) =

. . P
tion of a random variable X. — denotes convergence
in probability. a A b and a v b returns minimum and
maximum of two scalars. Finally, (a), returns a v 0.

Let S = (yi,x;); € {-1,1} x RP? be independent
and identically distributed (i.i.d) labeled sampled dis-
tributed as D = Dy, x Dz and let U = (x;)i, be
i.i.d. unlabeled samples distributed with the marginal
distribution D,,. Let f : R? - R be a prediction function
(e.g. a neural network) and let () be the hard-label
(-1,1) assigned to f(x) defined as

1) = {11 it f(x)20
-1 else

The standard self-training approach is sufficiently gen-
eral to operate on a generic algorithm. The algorithm
can self-train by using its own labels g7 (&) which are
also known as pseudo-labels. Self-training is often grad-
ual, it first utilizes examples where predictions are
confident and only later moves to examples which are
less certain. Thus, it is a common strategy to reject
weak pseudo-labels and use the more confident ones.
Given a loss function ¢, function class F, and accep-
tance threshold I' > 0, self-training with pseudo-labels
typically solves an empirical risk minimization problem
of the form

f= argl}lei}:l % gﬁ(yi,f(sci))

Ls(f)
e ”2“1 1(f (@] 2 D) (o), f(2)) . (2.1)

Lu(f)

where Ls and Ly are the supervised and unsupervised
empirical risks respectively. Let us also introduce our
iterative learning setup. Suppose we have an algorithm
A that takes a labeled dataset and builds a prediction

model f. An obvious example for A is (2.1). Denote
the initial model by fy and let I' > 0 be the acceptance
threshold. Given a stopping time 7', the self-training
algorithm we consider operates in two steps.

e Step 1: Create Pseudo-labels: From U/ and cur-
rent iterate f,, determine a subset U, = (&;,y;) where
&; € U are the acceptable inputs that satisfy |f,(&;)| > T
and g; are the pseudo-labels g; = g7 (&;).

e Step 2: Refine the model: Obtain the new clas-
sifier via fr11 = A(S,U;). If 7 < T, go to Step 1.

We remark that A can treat the datasets S and U;
differently in a similar fashion to (2.1), e.g. by weight-
ing labeled S higher than pseudo-labeled . In our
analysis of iterative algorithms in Sections 3 and 4, we
consider a slightly different version where we only use
the unlabeled data for refinement in Step 2. While our
approach does extend to jointly learning over (S,U),
as we shall see, learning only over U results in cleaner
and more insightful bounds.

Before moving to our main results, we remark that
proof of all of the technical results are deferred to the
extended manuscript (Oymak and Gulcu, 2020).

3 Understanding Self-Training for
Mixtures of Two Gaussians

We start with a definition of the distribution we will
study.

Definition 3.1 (Binary Gaussian Mizture Model
(GMM)) The distribution (x,y) ~ D is given as follows.
Fiz a unit vector p € RP? and scalar 0 > 0. Let y be a
Rademacher random variable (P(y=1) =P(y=-1) =
1/2) and x|y ~ N (yp, 02L,).

Note that the component mean g is also the optimal
linear classifier. If we have labeled data S = (z;, y;)7q,
1 can be estimated via the averaging estimator

1 n
Binit = — Zyzwz (3-1)
=1

This estimator also coincide with the ridge regularized
least-squares (e.g. argming Y1, (y; — ] 8)* + A|B]7,)
when the regularization parameter A — oo. Perhaps
surprisingly, this estimator is known to be the Bayes
optimal classifier for GMM if we have access to the
labeled data alone (Mignacco et al., 2020; Lelarge and
Miolane, 2019). This motivates us to investigate the
analytical properties of the averaging estimator by
adapting it to self-training as explained earlier. Given
an initial supervised model B, (such as (3.1)) and the
unlabeled dataset U = (x;)77"; sampled from GMM,



A Theoretical Characterization of Semi-supervised Learning for Gaussian Mixture Models

we consider the pseudo-label estimator

~

3 = self-train(Bini, ) where (3.2)
Yis 118l 2 D)sgn(Bi i)

self-train(Binit, U) = m 3
’ i W8 @il = T)

Here T" > 0 is the acceptance threshold eliminating low-
confidence predictions and Binit = Binit/| Binit | ¢, is the
normalized initial model so that the choice of I' can be
invariant to the norm of Binjt. Acceptance threshold is
commonly used in practical semi-supervised learning
approaches (Xie et al., 2019; McClosky et al., 2006;
Yarowsky, 1995). The impact of acceptance threshold
is illustrated in Figure 1 where points are projected
on two dimensions. Here the mixture center p is the
[1 00 ... 0] direction. When I" = 0, we accept all
points which corresponds to a Binary GMM distribu-
tion. When T is non-zero, the conditional distribution
of the accepted examples depend on the quality of the
initial model Bii;. Figure 1b and 1c chooses I' = 1 for
different Bin;;. In Figure 1b, By, is aligned with p
(correlation is 1) which results in a clean separation
between the two classes (the red and blue dots) while
rejecting 50% of the samples that lie between the mix-
ture centers +1. In Figure lc, correlation coefficient
between Bini and p is 1/2 and Biyit has a higher clas-
sification error. As a result, the two classes are not as
cleanly separated despite using rejection.

(b) r= 17 p(IBinit,H) =1

(C) r= 17 p(ﬂinit,u) =0.5

Figure 1: Visualization of a Binary GMM with noise vari-
ance o> = 1. Sample size is 4000. The large dots at -1 and 1
are the mixture centers +p = [+1,0]. Acceptance threshold
I" removes the examples with low-correlation to the initial
model Binit-

Our main theorem provides a sharp non-asymptotic
bound for the pseudo-label estimator (3.2). Given an
acceptance threshold I' > 0, we define the normalized

thresholds T'_ = F?’T"‘ and T, = % and the quantities

p=QE)+QE) , v=QF)p and
1 (e—fi/Q +>effg/2).

A =
\V2mp

Interpretation: Here the p term captures the fraction
of the examples that overcome the acceptance threshold
and the v term captures the fraction of the incorrect
pseudo-labels within these examples. In terms of these,
our theorem below perfectly captures the self-training
evolution for GMMs with two components.

(3.3)

Theorem 3.2 (Non-asymptotic Bound for GMM) Let
€ RP be a unit norm vector from Def. 3.1 and suppose
Binit € RP has correlation p(Binit, ) = a > 0. Draw u
i.i.d. unlabeled samples (x;)i, from GMM. Let B be

defined as B = self-train(Binit, (:)i,). Let p>3 and
fix resolution 1/2 > > 0. There exists a constant ¢ >0
such that with probability at least 1 — 108""52((1”3“”“),
we have
1+oal-2v

o/ (1-a2)A% + (p-2)/up
1+ocalA-2v

/(L= a®)A% + (p-3)Jup

Thus, fizing @ =wu/p and letting p — oo, we have that

(1-¢) < cot(B, p) <

(1+¢). (3.4)

1+oalA-2v
o/(1-a2)A2 +1]ap

(3.5)

lim cot(B, i) IR
p—>o00

Theorem 3.2 shows that pseudo-label optimization as
defined by (3.2) can be useful to obtain a higher corre-
lation and thus can improve the quality of the initial
direction Binjt. To find the optimal acceptance thresh-
old T that maximizes the correlation cot(3, ), one
can differentiate (3.5) with respect to I' and equate the
result to 0. This does not give a closed form solution,
but it is possible to find the optimal I' numerically.

Let f denote the transformation that is applied to
p(Binit, ) as a result of pseudo-label optimization.
Theorem 3.2 provides matching upper and lower bounds
for the evolution of the co-tangent. Specifically, using
the relation between correlation and co-tangent, as
p — oo, we have that

cot(B.p) ~Fa(cot (B, 1) where  (3.6)
Ax
F*(l’) - 1 * U\/W
’ o)A+ L
1+z2 " ap

We remark that (Castelli and Cover, 1996; Lelarge and
Miolane, 2019) studies mixture models and provides
information theoretical bounds. Our bound comple-
ments these works by characterizing the performance
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of self-training which is a widely-used practical algo-
rithm. We also characterize the benefit of using the
acceptance threshold I which is again a critical heuris-
tic for the success of self-training. We suspect that
one can analyze self-training performance for more
general distributions and other base classifiers, going
beyond the averaging estimator, by using tools from
high-dimensional statistics and random matrix theory
such as Gaussian min-max Theorem (Oymak et al.,
2013; Thrampoulidis et al., 2015; Stojnic, 2013) and ap-
proximate message passing (Donoho et al., 2009; Bayati
and Montanari, 2011).

3.1 [Iterative self-training

Theorem 3.2 also allows us to analyze self-training in
an iterative fashion to show further improvement with
more unlabeled data. Specifically, suppose we have n
labeled samples S = (x;)}-; and 7xu unlabeled samples
U = (x;)*7% . We first create the initial supervised
model via (3.1). Then, we split U into 7 disjoint sub-
datasets (U;)7_;. Starting from By = Binit of (3.1), we
iteratively apply self-training (3.2) to obtain

B = self-train(8;-1,U;) for 1<i<T. (3.7
The final model is then equal to B = B.. Note that the
asymptotic co-tangent of self-training with 7 iterations
will be given by F7(z) where x is the co-tangent of the
initial supervised model. The following theorem estab-
lishes the asymptotic performance of this procedure.

Theorem 3.3 (Iterative self-training bound)
Set n = nfp and @ = ufp. Let S = (x;,y:), and
U= (x;)"7Y be independent datasets with i.i.d. sam-
ples generated according to Binary GMM. Obtain
the model B via applying T iterations of the iterative
self-training (3.7) to the supervised model (3.1). Recall
the co-tangent evolution formula of (3.6). We have
that

;}HEO cot(B, ) R EI (Va]o). (3.8)

Let us call this model Fresh-ST (ST for self-training)
as each iteration requires fresh batch of unlabeled data.
Figure 2a and Figure 2b illustrate the the test perfor-
mance associated with this iterative approach. The pa-
rameters in these figures are as follows. We set labeled
data amount to be 7 = 0.05 and unlabeled data amount
4 is varied along the x axis. The noise level is o = 0.75
and the input dimension is p = 400. The dashed lines
are our formula (3.8). We see from Figure 2a that the
test performance improves as the amount of unlabeled
data increases (here ' = 0). The self-training iterations
also improve the test accuracy as long as the unlabeled

ossy4 r=0 ST(1,3,20)
A --=-= [=0.55T(1,3,20)

0.5 25 0.5 25

1.0 15 2.0
Unlabeled data

1.0 15 2.0
Unlabeled data

(a) The impact of self- (b) Comparing accep-
training iterations on the tance thresholds of I' =0
model accuracy at I'=0. vs I'=0.5.

0.90

Supervised (n samples)
< Supervised (u samples)
= lterative-ST(20)

—— Unsup Bayes (u samples)
o Fresh-sT(1, 20)

05 25

1.0 15 2.0
Unlabeled data

(¢) Comparison of differ-
ent baselines at I" = 0.

Figure 2: p = 400, 7 = n/p = 0.05, 0 = 0.75. z-axis is
the unlabeled data amount @ = u/p. In Figures (a) and
(b), ST(7) refers to self-training repeated 7 times with
new batch of unlabeled data (same as Fresh-ST). Larger T
corresponds to the line with better accuracy. All lines are
theoretical predictions except the Iterative-ST.

data amount is above the fixed point of the Fj func-
tion. In other words, we need @ larger than a threshold
u, where u, preserves the co-tangent of the initial su-
pervised model i.e. F, (cot(Binit,t)) = cot(Binit, it)-
Clearly this threshold u, depends on the initial super-
vised model (i.e. the amount of labeled training data) as
well as the noise level ¢. Figure 2b demonstrates that
choosing a proper acceptance threshold I' can improve
the test performance over always choosing I" = 0. We
observe that benefit of optimizing I" is more noticeable
when there are fewer unlabeled data. Also optimizing
I" can shift the fixed point of the Fj; function so that
less unlabaled data is required for improvement.

Figure 2c¢ provides multiple baselines to compare our
self-training bounds (I' = 0) (blue, red, green curves).
The blue curve is the performance of the initial model
which only uses n labels. The red curve is the per-
formance of a supervised model that uses u labeled
samples. Note that, this curve is not necessarily an up-
per bound on the performance of the Fresh-ST however
provides a natural reference. The magenta curve is the
accuracy of the unsupervised Bayes optimal classifier
using u input samples. Finally, the green line is the
iterative self-training where we always use the same un-
labeled dataset with u samples. Specifically, we apply
the iterations B, = self-train(3;,U) for 1 <4 < 7 = 20.
Let us call this Iterative-ST. We see that, repetitively
applying self-training on the same dataset improves
the performance over applying it only once (i.e. green
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line is above the lower dashed black line). On the
other hand, we also see the positive effect of using
fresh unlabeled data on the test performance from Fig-
ure 2c. Comparing the Fresh-ST with the empirical
performance of Iterative-ST in Figure 2c shows that
the test performance substantially benefits from resam-
pling. For instance, only 3 iterations of resampling can
be noticeably better than many iterations of Iterative-
ST. Intuitively, this is due to the fact that repeated
self-training on the same dataset can guide the opti-
mization to a suboptimal fixed point of the self-training
iteration. This is also known as the confirmation bias
of pseudo-labeling (Arazo et al., 2019). In this example,
fresh samples help get out of bad fixed points.

Logistic regression: We next compare our averaging-
based self-training (3.2) to logistic regression. Given
unlabeled data U and a linear classifier Gy, we first
obtain the dataset U’ of acceptable inputs and asso-
ciated pseudo-labels by thresholding =7 Binic/| Binit | ¢, -
We then solve logistic regression over U’ to obtain a
new linear classifier. The test performances of logistic-
regression self-training are plotted in Figure 3. The
labeled data fraction is 7 = 0.2 and the unlabeled data
amount varies along x-axis, as in the case of Figure 2.
We set I = 0 in Figure 3a, and I" = 1/2 in Figure 3b.

0.90 0.84
0.85

30807 /7 e 7
g 0.80
5 L 0.
075 —— :
gom gos
®
0.65
g o6
@ 0.60 - §

055, 074

0.50 e sT(10)
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Unlabeled data

"
0.72
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Unlabeled data

(a) Comparing logistic re- (b) Performance com-
gression (dashed) and av- parison  of  different
eraging (solid) at I'=0.  approaches. I' = 0.5.

0.90

0.85
30.80
Cos
5075
0070

+ 0.65

n

2 060
0.55
0.50

e

=0 ST(1,3,10) iters

7 =0.5 5T(1,3,10) iters

050 0.75 1.00 1.25 150 1.75 2.00 2.25 2.50
Unlabeled data

(c) Logistic regression,
comparison of I' = 0 vs
I'=0.5.

Figure 3: Experiments on logistic regression: 71 = n/p = 0.2,
0 =0.75, p = 400. Fresh-ST (and ST in Fig. (c)) uses fresh
batch of unlabeled data at each self-training iteration. In
Fig. (¢), (1,3,10) self-training iterations have markers A, o,
O respectively.

For both Figure 3a and Figure 3b, the black dashed
line refers to Fresh-ST iterations, and green dashed line
corresponds to self-training iterations with the same
unlabeled data. Similarly, blue dashed line plots the

test performance of supervised learning with n samples
and red dashed line plots the performance of supervised
learning with v samples for both figures. The dashed
lines in Figure 3a are logistic regression based algo-
rithms whereas solid lines display the performance of
the corresponding averaging estimator. Observe that
averaging bounds are uniformly better which is not
surprising given that the averaging estimator is Bayes
optimal for GMM.

We observe from Figure 3a and Figure 3b that the
amount of unlabeled data has a positive effect on the
test performance, and carrying out self-training iter-
ations with fresh unlabeled data improves the perfor-
mance. Comparing Figure 3a with Figure 3b, we see
how the acceptance threshold I' plays a critical role
on the outcome. In fact, we find out from Figure 3b
that Fresh-ST can outperform supervised learning with
u samples, and regular iterative self-training can out-
perform regular supervised algorithm if the acceptance
threshold I' is high enough. The effect of I" on the
test performance is also demonstrated by Figure 3c,
where we observe how picking an appropriate accep-
tance threshold boosts the test performance. We also
see from Figure 3¢ how the test performance gets better
when the number of iterations increases.

4 Importance of Regularization and
Margin Between Components

We consider here a particular binary mixture model
involving a scalar random variable X, and investigate
the conditions and learning setups under which the
use of unlabeled data improves the alignment of the
classifier with the ground-truth mixture mean g (and
hence the accuracy).

Definition 4.1 (Generalized Mizture Model (Gen-
MM)) The distribution D is given as follows. Fix
a unit vector p € RP and scalar o > 0. Let X,y,g
be independent random variables where X is a scalar
random variable with distribution Dx, g ~ N(0,I,),
and P(y =1) =1-P(y = -1) = 1/2. The input x is
generated as

r=yXp+og.

In this section, we provide algorithmic insights for
the Gen-MM distribution which will shed light on the
necessity of margin and importance of regularization.
Here, our notion of margin is the gap between the
class conditional distributions X and -X. If X is a
positive random variable strictly bounded away from
zero, then, we say there is a margin between the two
classes since the distributions X and - X are away from
each other. We first focus on a simplified scenario where
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we assume that we are provided an initial model ﬂinitl
and we use Bi,i; to label U and refine our estimate
using pseudo-labeling. Focusing on least-squares loss
and linear classifiers, in the infinite sample setup, this
corresponds to the following problem

B =arg min E[1(|BL;x| > T) (sgn(Bh;x) - BT z)?].
(4.1)

where Binit = Binit/| Binit | ¢, Before investigating this
problem, it is worth understanding the simpler super-
vised loss. Denoting 8 = 87, the supervised quadratic
loss is given by

Ls(B) =Ep[(y-BTx)*] =Exg[(XB u+08"g-1)?]
=E[(XB-1)*]+0%|B°|e,
= 0% 8% - 2uxB+1+0%|B%|e,.

This loss is minimized by choosing 3* = *pu where 5* =
px /(0% +0?). Additionally, this loss satisfies gradient
dominance with respect to the global minima 3* (as it
will be discussed further later on), thus gradient descent
on population loss will quickly find 8*. The question
we are asking in this section is what happens when
label information y is replaced by the pseudo-labels
sgn(BL,.x). Our first theorem picks X to be the folded
normal distribution (in words, X is the absolute value
of a standard normal variable) and shows a negative
result on pseudo-labeling.?

4.1 No Improvement with No Margin

Theorem 4.2 Pick X to be the folded normal distri-
bution (with density function fx(t) = \/2/_7re’t2/2) and
any I' >0. Let B be the solution of the population self-
training problem (4.1). For some scalar ¢ >0 function

Of (07 (l‘l’vlg’wmt) 7F)7 we have that B = cﬁinit-

The surprising conclusion from this theorem is that
pseudo-labeling optimization (4.1) do not lead to an im-
proved model. ,5’ remains parallel to the original model
Binit thus it will make the exact same label prediction
as Binit. Observe that folded normal distribution has
no margin since the distributions of X and —X both
start from zero.

4.2 Guaranteed Improvement with Margin

In contrast to the result above, the following theorem
shows that if there is a margin in the distribution of
X, self-training does lead to an improved solution.

'Such an initial model can be obtained by minimizing
the supervised risk Ls of (2.1) or via (3.1) as in Section 3.

2Folded normal has a nice simplifying nature during the
theoretical analysis since yX becomes standard normal.

Theorem 4.3 Fix 1 > v >0 > 0. Let X have unit
variance and obey M~ > X >~. Let B be the solution
of the population self-training problem (4.1). For T =0,
setting p(Binit, b) = a, we have that

eC
cot(B, 1) > 7= (1(1 = 6" M)).

where C = % Specifically, if ay > \/2log(12M)ao,
~ QZ 2
we find cot(B, ) > 0.107e =% .

Note that cot(3, ) can be arbitrarily larger than the
initial value cot(Binit, ). As o decreases, cot(,é,,u)
increases exponentially fast in the margin v and the
initial correlation o and ,(; becomes quickly aligned with
the optimal direction . This should be contrasted with
Theorem 4.2 where 3 remains aligned with the initial
model B¢ which implies no improvement.

4.3 Provable Benefits of Regularization

In this section, we show that with proper regularization,
distributional bias of the data can push the solution
towards the global minima (i.e. a classifier perfectly
aligned with p). We consider two type of regulariza-
tions (recall Binit = Binit/||Binit ¢z )-

o Ridge regression: We consider the ridge regu-
larized version of (4.1) given by

B= argngnE[l(|B£itw| >T)(sgn(B) - B x)?]

+ MBI, (42)

e Early-stopping: We apply a single gradient iter-
ation which corresponds to the averaging estimator
of Section 3. This is given by the estimator

B=E[1(|BL x| >T) sgn(Bhyz) - x].  (4.3)

In both cases, we show that regularization leads to a
power iteration which emphasizes the distributional
bias of the data and picks up the central direction p.
Our first result characterizes the performance of ridge
regression.

Lemma 4.4 (Ridge regression) Set I' = 0 and let
X have folded normal distribution. Define the strictly
increasing function

o%+ A

1+02
02 1+02+\

k(A) =

Suppose 3 is the solution of (4.2). We have that

cot(B, 1) = K(N) coll Bt 1)-
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Observe that x(A) > 1 and unlabeled data leads to
provable improvement for any positive regularization
parameter A > 0. Our second result characterizes the
performance of early-stopping (i.e. single iteration).

Lemma 4.5 (Early-stopping) Suppose 81 .u = «
and let X have folded normal distribution. Suppose (3
is the solution of (4.3). We have that

cot(B, 1) = (1+072) cot( Binir, 1)- (4.4)
Here, observe that the improvement in the co-tangent
cot(3, ) is captured by the signal-to-noise ratio. Since
X is folded normal, the covariance matrix of the data
obeys
E[zx”] = 0T + pu’.

The eigenvalue along the signal direction g is 1 + o2
whereas the orthogonal eigenvalues along the noisy

directions are ¢ and the ratio between them is (1 +
o) ot =1+0"2%

4.4 Importance of Regularization in Logistic
Regression

Note that regularization is also critical for ensuring
the success of self-training when it comes to classifica-
tion loss functions as well. Examples include logistic
loss, hinge loss and exponential loss. All of these loss
functions have the common form £¢(y,q) = £(yy), are
monotonically decreasing (Gunasekar et al., 2018), and
satisfy the limit lim;, ¢(t) = 0. For instance hinge
loss is given by £(y,3) = (1 - y§)+ and exponential loss
is given by £(y,9) = e ¥, For logistic and exponential
loss, the training loss never achieves zero and the model
parameters have to indefinitely grow to minimize the
loss. The pseudo-label loss function is obtained by
setting y = sgn(y) so that the unlabeled example has
loss equal to £(]g]).

In this section, we argue that, regularization is criti-
cal for enabling self-training/pseudo-labeling to find
non-trivial models. The basic intuition is that, without
regularization, the self-training loss can easily achieve
zero while preserving the label decision of the original
classifier. In other words, there is a trivial global min-
ima. For instance, suppose we scale the final (i.e. logit)
layer of a deep network by a. Then, this network will
output the logits ay rather than §. For a > 0, the
class decision for ay is exactly same as §. However for
a > 1, the training loss decreases from £(|]) to £(a|g|).
In general, as long as § # 0, indefinitely enlarging «
will asymptotically make the training loss zero. The
following lemma formalizes this basic observation for
general function classes.

Lemma 4.6 Fiz a prediction function f : RP - R.
Consider the function class F = {af | a>0}. Suppose

the loss function £ obeys lim;_., £(t) =0 and the input
distribution & ~ D satisfies Pp(f(x) #0) = 1. Define
the population self-training loss L(f) = Ep[0(|f(z)])].
We have that

011_1)130 L(af)=0.

Note that, the nonzero condition Pp(f(x) + 0) =1
helps us push the loss to zero by increasing the scale a.
While this is a reasonably mild condition when the data
has continuous distribution, we can also avoid this by
considering an infinitesimal perturbation of f to reach
a similar conclusion (e.g. using f(x) = f(x) + g where
g is Gaussian noise with arbitrarily small variance).

Similar to least-squares, regularization techniques such
as ridge-regression and early-stopping can guide self-
training towards useful models by preventing degen-
erate solutions (which requires o — o0) provided in
Lemma 4.6.

5 Conclusions and Discussion

In this work, we analyzed the performance of self-
training for linear classifiers and mixture distributions.
We analytically showed that self-training process would
converge to useful solutions for linear classifier param-
eters in the case of GMM. The theoretical findings
demonstrate the benefits of rejecting samples with low-
confidence and applying multiple self-training itera-
tions and provides a framework for contrasting various
algorithmic choices (e.g. fresh samples vs reusing sam-
ples). We also considered a variation of GMM which
reveals that: (1) class margin (in terms of distance be-
tween mixture means) is critical for convergence of self-
training to useful models and (2) ridge-regularization
and early-stopping can enable self-training to converge
to good models, in a similar fashion to power iteration
converging to principal eigenvector, even without mar-
gin requirements. There are many interesting future
works especially along joint statistical and algorithmic
analysis of more practical self-training problems. It
would be of interest to develop non-asymptotic bounds
for iterative self-training schemes for more complex
distributions and classifiers (e.g. logistic regression),
adapt our approach to multiclass classification, and in-
vestigate the self-training behavior for nonlinear models
such as deep nets.
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