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A Proofs of Section 3

A.1 Proof of Proposition 1

Proof. We only prove the statement for the optimistic reward, er⇡,t. The proof for the pessimistic cost, ec⇡,t, is
analogous. From the definition of the confidence set Cr

t (↵r) in (7), any vector ✓ 2 C
r
t (↵r) can be written as b✓t + v,

where v satisfying kvk⌃t  ↵r�t(�, d). Thus, we may write

er⇡,t = max
✓2Cr

t (↵r)
Ex⇠⇡[hx, ✓i] = max

✓2Cr
t (↵r)

hx⇡, ✓i = hx⇡,
b✓ti+ max

v:kvk⌃t↵r�t(�,d)
hx⇡, vi

(a)

 hx⇡,
b✓ti+ ↵r�t(�, d)kx⇡k⌃�1

t
.

(a) By Cauchy-Schwartz, for all v, we have hx⇡, vi  kx⇡k⌃�1
t
kvk⌃t . The result follows from the condition on v

in the maximum, i.e., kvk⌃t  ↵r�t(�, d).

Let us define v
⇤ := ↵r�t(�,d)⌃

�1
t x⇡

kx⇡k⌃�1
t

. This value of v⇤ is feasible because

kv
⇤
k⌃t =

↵r�t(�, d)

kx⇡k⌃�1
t

q
x>
⇡⌃

�1
t ⌃t⌃

�1
t x⇡ =

↵r�t(�, d)

kx⇡k⌃�1
t

q
x>
⇡⌃

�1
t x⇡ = ↵r�t(�, d).

We now show that v
⇤ also achieves the upper-bound in the above inequality resulted from Cauchy-Schwartz

hx⇡, v
⇤
i =

↵r�t(�, d)x>
⇡⌃

�1
t x⇡

kx⇡k⌃�1
t

= ↵r�t(�, d)kx⇡k⌃�1
t
.

Thus, v⇤ is the maximizer and we can write

er⇡,t = hx⇡,
b✓ti+ hx⇡, v

⇤
i = hx⇡,

b✓ti+ ↵r�t(�, d)kx⇡k⌃�1
t
,

which concludes the proof.

A.2 Proof of Proposition 2

Proof. Recall that c̃⇡,t =
hxo

⇡,e0ic0
kx0k + hx

o,?
⇡ ,bto,?⇡ i+ ↵c�t(�, d� 1)kxo,?

⇡ k(⌃o,?
t )�1  ⌧ .

Conditioned on the event E as defined in equation 16, it follows that:

|hx
o,?
⇡ , bµo,?

t � µ
o,?
⇤ i|  kµ

o,?
⇤ � bµo,?

t k⌃o,?
t

kx⇡k(⌃o,?
t )�1

 hx
o,?
⇡ , bµo,?

t � µ
o,?
⇤ i�t(�, d� 1)kx⇡k(⌃o,?

t )�1

And therefore:
0  hx

o,?
⇡ , bµo,?

t � µ
o,?
⇤ i+ �t(�, d� 1)kx⇡k(⌃o,?

t )�1 (21)

Observe that:

c⇡ =
hx

o
⇡, e0ic0

kx0k
+ hx

o,?
⇡ , µ

o,?
⇤ i


hx

o
⇡, e0ic0

kx0k
+ hx

o,?
⇡ , bµo,?

t i+ ↵c�t(�, d� 1)kxo,?
⇡ k(⌃o,?

t )�1

| {z }
I

(22)

The last inequality holds by adding Inequality 21 to Inequality 22. Since by assumption for all ⇡ 2 ⇧t term I  ⌧ ,
we obtain that c⇡  ⌧ . The result follows.
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B Proofs of Section 4

B.1 Proof of Lemma 2

We first state the following proposition that is used in the proof of Lemma 2. This proposition is a direct
consequence of Eq. 20.9 and Lemma 19.4 in Lattimore and Szepesvári (2019). Similar result has also been
reported in the appendix of Amani et al. (2019).
Proposition 3. For any sequence of actions (x1, . . . , xt), let ⌃t be its corresponding Gram matrix defined by (4)
with � � 1. Then, for all t 2 [T ], we have

TX

s=1

kxsk⌃�1
s


r

2Td log
�
1 +

TL2

�

�
.

We now state the proof of Lemma 2.

Proof of Lemma 2. We prove this lemma through the following sequence of inequalities:

TX

t=1

hxt, e✓ti � hxt, ✓⇤i
(a)


TX

t=1

kxtk⌃�1
t

ke✓t � ✓⇤k⌃t

(b)


TX

t=1

(1 + ↵r)�t(�, d)kxtk⌃�1
t

(c)
 (1 + ↵r)�T (�, d)

TX

t=1

kxtk⌃�1
t

(d)
 (1 + ↵r)�T (�, d)

r
2Td log

�
1 +

TL2

�

�

(a) This is by Cauchy-Schwartz.

(b) This follows from the fact that e✓t 2 C
r
t (↵r) and we are on event E .

(c) This is because �t(�, d) is an increasing function of t, i.e., �T (�, d) � �t(�, d), 8t 2 [T ].

(d) This is a direct result of Proposition 3.

B.2 Proof of Lemma 3

Proof. In order to prove the desired result it is enough to show that:

�
x
o,?
⇡

�> ⇣
⌃o,?

t

⌘†
x
o,?
⇡  x

>
⇡⌃

�1
t x⇡

w.l.o.g. we can assume xo = e1, the first basis vector. Notice that in this case ⌃o,?
t can be thought of as a

submatrix of ⌃t such that ⌃t[2 :, 2 :] = ⌃o,?
t , where ⌃t[2 :, 2 :] denotes the submatrix with row and column indices

from 2 onwards.

Using the following formula for the inverse of a psd symmetric matrix:


Z �

�
>

A

�
=

"
1
D �

A�1�
D

�
�>A�1

D A
�1 + A1��>A�1

D

#

Where D = z � �
>
A

�1
�. In our case D = ⌃t[1, 1]� ⌃t[2 : d]>

⇣
⌃o,?

t

⌘�1
⌃t[2 : d] 2 R. Observe that since ⌃t is

PSD, D � 0. Therefore:

⌃�1
t =

2

4 1/D �
(⌃o,?

t )�1
⌃t[2,:d]

D

�
⌃>

t [2:d](⌃o,?
t )�1

D

⇣
⌃o,?

t

⌘�1
+

(⌃o,?
t )�1

⌃t[2:d]⌃t[2:d](⌃o,?
t )�1

D

3

5

Then:
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x
>
⇡

�
⌃�1

t

��1
x⇡ =

x⇡(1)2 � 2x⇡(1)⌃t[2 : d]>
⇣
⌃o,?

t

⌘�1
x⇡[2 : d]

D
+

x⇡[2 : d]>
⇣
⌃o,?

t

⌘�1
⌃t[2 : d]⌃t[2 : d]>

⇣
⌃o,?

t

⌘�1
x⇡[2 : d]

D

+ x⇡[2 : d]>
⇣
⌃o,?

t

⌘�1
x⇡[2 : d]

� x⇡[2 : d]>
⇣
⌃o,?

t

⌘�1
x⇡[2 : d]

The result follows by noting that x⇡[2 : d] = x
o,?
⇡ .

B.3 Proof of Lemma 4

Proof. For any policy ⇡, we have

er⇡,t = max
✓2Cr

t (↵r)
hx⇡, ✓i � hx⇡, ✓⇤i = r⇡. (23)

If ⇡⇤
t 2 ⇧t, then by the definition of ⇡t (Line 4 of Algorithm 1), we have

er⇡t,t � er⇡⇤
t ,t. (24)

Combining (23) and (24), we may conclude that er⇡t,t � r⇡⇤
t

as desired.

We now focus on the case that ⇡
⇤
t 62 ⇧t, i.e.,

ec⇡⇤
t ,t =

hx
o
⇡⇤
t
, e0ic0

kx0k
+ hx

o,?
⇡⇤
t
, bµo,?

t i+ ↵c�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1 > ⌧.

We define a mixture policy e⇡t = ⌘t⇡
⇤
t + (1� ⌘t)⇡0, where ⇡0 is the policy that always selects the safe action x0

and ⌘t 2 [0, 1] is the maximum value of ⌘ such that
�
⌘⇡

⇤
t + (1� ⌘)⇡0

�
2 ⇧t. Conceptually, ⌘t shows how close is

the optimal policy ⇡
⇤
t to the set of safe policies ⇧t.

By the definition of e⇡t, we have

x
o
e⇡t

= ⌘tx
o
⇡⇤
t
+ (1� ⌘t)x0, x

o,?
e⇡t

= ⌘tx
o,?
⇡⇤
t
, (25)

which allows us to write

ece⇡t,t =
⌘thx

o
⇡⇤
t
, e0i+ (1� ⌘t)hx0, e0i

kx0k
· c0 + ⌘thx

o,?
⇡⇤
t
, bµo,?

t i+ ⌘t↵c�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1

=
(1� ⌘t)hx0, e0ic0

kx0k
+ ⌘tec⇡⇤

t ,t.

From the definition of ⌘t, we have ece⇡t,t =
(1�⌘t)hx0,e0ic0

kx0k + ⌘tec⇡⇤
t ,t = ⌧ , and thus, we may write

⌘t =
⌧ �

hx0,e0ic0
kx0k

ec⇡⇤
t ,t �

hx0,e0ic0
kx0k

=
⌧ � c0

hxo
⇡⇤
t
,e0ic0

kx0k + hx
o,?
⇡⇤
t
, bµo,?

t i+ ↵c�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃0,?

t )�1 � c0

=
⌧ � c0

hxo
⇡⇤
t
,e0ic0

kx0k + hx
o,?
⇡⇤
t
, µ⇤i+ hx

o,?
⇡⇤
t
, bµo,?

t � µ⇤i+ ↵c�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1 � c0

(a)

�
⌧ � c0

hxo
⇡⇤
t
,e0ic0

kx0k + hx
o,?
⇡⇤
t
, µ⇤i+ (1 + ↵c)�t(�, d� 1)kxo,?

⇡⇤
t
k(⌃o,?

t )�1 � c0

(b)

�
⌧ � c0

⌧ + (↵c + 1)�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1 � c0

. (26)
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(a) This holds because

hx
o,?
⇡⇤
t
, bµo,?

t � µ⇤i = hx
o,?
⇡⇤
t
, bµo,?

t � µ
o,?
⇤ i  kbµo,?

t � µ
o,?
⇤ k⌃o,?

t
kx

o,?
⇡⇤
t
k(⌃o,?

t )�1  �t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1 ,

where the last inequality is because we are on the event E .

(b) This passage is due to the fact that the optimal policy ⇡
⇤
t is feasible, and thus, Ex⇠⇡⇤

t
[hx, µ⇤i]  ⌧ . Therefore,

we may write

Ex⇠⇡⇤
t
[hx, µ⇤i] = Ex⇠⇡⇤

t
[hxo

, µ⇤i] + hx
o,?
⇡⇤
t
, µ⇤i = Ex⇠⇡⇤

t
[hhx, e0ie0, µ⇤i] + hx

o,?
⇡⇤
t
, µ⇤i

= Ex⇠⇡⇤
t
[hhx, e0i

x0

kx0k
, µ⇤i] + hx

o,?
⇡⇤
t
, µ⇤i =

c0

kx0k
Ex⇠⇡⇤

t
[hx, e0i] + hx

o,?
⇡⇤
t
, µ⇤i

=
hx

o
⇡⇤
t
, e0ic0

kx0k
+ hx

o,?
⇡⇤
t
, µ⇤i  ⌧.

Since e⇡t 2 ⇧t, we have

er⇡t,t � ere⇡t,t = hxe⇡t ,
b✓ti+ ↵r�t(�, d)kxe⇡tk⌃�1

t
= hxe⇡t , ✓⇤i+ hxe⇡t ,

b✓t � ✓⇤i+ ↵r�t(�, d)kxe⇡tk⌃�1
t

(a)

� hxe⇡t , ✓⇤i+ (↵r � 1)�t(�, d)kxe⇡tk⌃�1
t

(b)

� hxe⇡t , ✓⇤i+ (↵r � 1)�t(�, d� 1)kxo,?
e⇡t

k(⌃o,?
t )�1

(c)

= ⌘thx⇡⇤ , ✓⇤i+ (1� ⌘t)hx0, ✓⇤i+ ⌘t(↵r � 1)�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1

(d)

� ⌘thx⇡⇤
t
, ✓⇤i+ ⌘t(↵r � 1)�t(�, d� 1)kxo,?

⇡⇤ k(⌃o,?
t )�1

(e)

�

⇣
⌧ � c0

⌧ � c0 + (↵c + 1)�t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1

⌘⇣
hx⇡⇤

t
, ✓⇤i+ (↵r � 1)�t(�, d� 1)kxo,?

⇡⇤
t
k(⌃o,?

t )�1

⌘

| {z }
C0

. (27)

(a) This is because we may write

|hxe⇡t ,
b✓t � ✓⇤i|  kb✓t � ✓⇤k⌃tkxe⇡tk⌃�1

t
 �t(�, d)kxe⇡tk⌃�1

t
,

where the last inequality is due to the fact that we are on the event E . Thus, hxe⇡t ,
b✓t � ✓⇤i � ��t(�, d)kxe⇡tk⌃�1

t
.

(b) This is a consequence of Lemma 3 stated in the paper and proved in Appendix B.2.

(c) This is from the definition of e⇡ and Eq. 25.

(d) This is because ⌘t 2 [0, 1] and from Assumption 4 we have that all expected rewards are positive (belong to
[0, 1]), and thus, hx0, ✓⇤i � 0.

(e) This is by lower-bounding ⌘t from (26).

Let us define the shorthand notation C1 := �t(�, d� 1)kxo,?
⇡⇤
t
k(⌃o,?

t )�1 . Thus, we may write C0 as

C0 =
⌧ � c0

⌧ � c0 + (1 + ↵c)C1
⇥
�
hx⇡⇤

t
, ✓⇤i+ (↵r � 1)C1

�
.

Note that C0 � hx⇡⇤
t
, ✓⇤i = r⇡⇤

t
(and as a results er⇡t,t � r⇡⇤

t
as desired) iff:

(⌧ � c0)r⇡⇤
t
+ (⌧ � c0)(↵r � 1)C1 � (⌧ � c0)r⇡⇤

t
+ (1 + ↵c)C1r⇡⇤

t
,

which holds iff: (⌧ � c0)(↵r � 1)C1 � (1 + ↵c)C1r⇡⇤
t
.

Since r⇡⇤
t
 1 from Assumption 4, this holds iff: 1 + ↵c  (⌧ � c0)(↵r � 1). This concludes the proof as for both

cases of ⇡⇤
t 2 ⇧t and ⇡

⇤
t 62 ⇧t, we proved that er⇡t,t � r⇡⇤

t
.
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B.4 Unknown c0

In this section we relax Assumption 5, and instead assume we only have the knowledge of a safe arm x0, but
its expected cost c0 is unknown and needs to be learned. If the cost of the safe arm c0 is unknown, we start
by taking the safe action x0 for T0 rounds to produce first an empirical mean estimator ĉ0. Notice that for all
� 2 (0, 1), ĉ0 satisfies:

P

0

@ĉ0  c0 �

s
2 log (1/�)

T0

1

A  � (28)

Let c̃0 = ĉ0 +
q

2 log(1/�)
T0

. By inequality 28, it follows that with probability at least 1� �:

c̃0 � c0

We select T0 in an adaptive way. In other words, we do the following:

Let � = 1
T 2 . And let ĉ0(t) be the sample mean estimator of c0, when using only t samples. Similarly define

c̃0(t) = ĉ0(t) +
q

2 log(1/�)
t Let’s condition on the event E that for all t 2 [T ]:

|ĉ0(t)� c0| 

r
2 log(1/�)

t

By assumption P(E) � 1� T2� = 1� 2
T . Let T0 be the first time that c̃0(T0) + 2

q
2 log(1/�)

T0
 ⌧ .

Notice that in this case and conditioned on E and therefore on c̃0(T0) � c0:

s
2 log(1/�)

T0


⌧ � c0

2
i.e. T0 �

8 log(1/�)

(⌧ � c0)2

In other words, this test does not stop until T0 �
8 log(1/�)
(⌧�c0)2

. Now we see it won’t take much longer than that to
stop:

Conversely, let T
0
0 �

32 log(1/�)
(⌧�c0)2

. For any such T
0
0 we observe that by conditioning on E :

c̃0(T
0
0) + 2

s
2 log(1/�)

T 0
0

 c0 + 4

s
2 log(1/�)

T 0
0

 ⌧

Thus conditioned on E , we conclude 8 log(1/�)
(⌧�c0)2

 T0 
32 log(1/�)
(⌧�c0)2

. Then,

Therefore �̂c =
q

8 log(1/�)
T0

would serve as a conservative estimator for ⌧�c0
2 satisfying:

⌧ � c0

2
 �̂c  ⌧ � c0

We proceed by warm starting our estimators for ✓⇤ and µ⇤ using the data collected by playing x0. However,
instead of estimating µ

o,?
⇤ , we build an estimator for µ⇤ over all its directions, including e0, similar to what OPLB

does for ✓⇤. We then set ↵r
↵c

= 1/�̂c and run Algorithm 1 for rounds t > T0. Since the scaling of ↵r w.r.t. ↵c is
optimal up to constants, the same arguments hold.
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C Constrained Multi-Armed Bandits

C.1 Optimism Pessimism

Here we reproduce the full pseudo-code for OPB:

Algorithm 2 Optimism-Pessimism
Input: Number of arms K, constants ↵r,↵c � 1.
for t = 1, . . . , T do

1. Compute estimates {u
r
a(t)}a2A, {uc

a(t)}a2A.
2. Form the approximate LP (20) using these estimates.
3. Find policy ⇡t by solving (20).
4. Play arm a ⇠ ⇡t

Similar to the case of OPLB, we define ⇧t = {⇡ 2 �A :
P

a2A ⇡au
c
a(t)  ⌧}. We also define �a(0) = 0 for all

a 2 A.

C.2 The LP Structure

The main purpose of this section is to prove the optimal solutions of the linear program from (20) are supported
on a set of size at most 2. This structural result will prove important to develop simple efficient algorithms to
solve for solving it. Let’s recall the form of the Linear program in (20), i.e.,

max
⇡2�K

X

a2A
⇡au

r
a(t), s.t.

X

a2A
⇡au

c
a(t)  ⌧.

Let’s start by observing that in the case K = 2 with A = {a1, a2} and u
c
a1
(t) < ⌧ < u

c
a2
(t), the optimal policy ⇡

⇤

is a mixture policy satisfying:

⇡
⇤
a1

=
u
c
a2
(t)� ⌧

uc
a2
(t)� uc

a1
(t)

, ⇡
⇤
a2

=
⌧ � u

c
a1
(t)

uc
a2
(t)� uc

a1
(t)

. (29)

The main result in this section is the following Lemma:
Lemma 7 (support of ⇡⇤). If (20) is feasible, there exists an optimal solution with at most 2 non-zero entries.

Proof. We start by inspecting the dual problem of (20):

min
��0

max
a

�(⌧ � u
c
a(t)) + u

r
a(t) (D)

This formulation is easily interpretable. The quantity ⌧ � u
c
a(t) measures the feasibility gap of arm a, while u

r
a(t)

introduces a dependency on the reward signal. Let �⇤ be the optimal value of the dual variable �. Define A
⇤
✓ A

as A
⇤ = argmaxa �⇤(⌧ � u

c
a(t)) + u

r
a(t). By complementary slackness the set of nonzero entries of ⇡⇤ must be a

subset of A⇤.

If |A⇤
| = 1, complementary slackness immediately implies the desired result. If a1, a2 are two elements of A⇤, it

is easy to see that:
u
r
a1
(t)� �

⇤
u
c
a1
(t) = u

r
a2
(t)� �

⇤
u
c
a2
(t),

and thus,

�
⇤ =

u
r
a2
(t)� u

r
a1
(t)

uc
a2
(t)� uc

a1
(t)

. (30)

If �⇤ = 0, the optimal primal value is achieved by concentrating all mass on any of the arms in A
⇤. Otherwise,

plugging (30) back into the objective of (D) and rearranging the terms, we obtain

(D) = �
⇤(⌧ � u

c
a1
(t)) + u

r
a1
(t) = u

r
a2
(t)

✓
⌧ � u

c
a1
(t)

uc
a2
(t)� uc

a1
(t)

◆
+ u

r
a1
(t)

✓
u
c
a2
(t)� ⌧

uc
a2
(t)� uc

a1
(t)

◆
.
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If uc
a2
(t) � ⌧ � u

c
a1
(t), we obtain a feasible value for the primal variable ⇡

⇤
a1

=
⌧�uc

a1
(t)

uc
a2

(t)�uc
a1

(t) , ⇡
⇤
a2

=
uc
a2

(t)�⌧

uc
a2

(t)�uc
a1

(t)

and zero for all other a 2 A\{a1, a2}. Since we have assumed (20) to be feasible there must be either one
arm a

⇤
2 A

⇤ satisfying a
⇤ = argmaxa2A⇤ u

r
a(t) and u

c
a⇤(t)  ⌧ or two such arms a1 and a2 in A

⇤ that satisfy
u
c
a2
(t) � ⌧ � u

c
a1
(t), since otherwise it would be impossible to produce a feasible primal solution without having

any of its supporting arms a satisfying u
c
a(t)  ⌧ , there must exist an arm a 2 A

⇤ with u
c
a(t) < ⌧ . This completes

the proof.

From the proof of Lemma 5 we can conclude the optimal policy is either a delta mass centered at the arm with
the largest reward - whenever this arm is feasible - or it is a strict mixture supported on two arms.

A further consequence of Lemma 7 is that it is possible to find the optimal solution ⇡
⇤ to problem 20 by

simply enumerating all pairs of arms (ai, aj) and all singletons, compute their optimal policies (if feasible) using
Equation 29 and their values and selecting the feasible pair (or singleton) achieving the largest value. More
sophisticated methods can be developed by taking into account elimination strategies to prune out arms that
can be determined in advance not to be optimal nor to belong to an optimal pair. Overall this method is more
efficient than running a linear programming solver on (20).

If we had instead m constraints, a similar statement to Lemma 5 holds, namely it is possible to show the optimal
policy will have support of size at most m+ 1. The proof is left as an exercise for the reader.

C.3 Regret Analysis

In order to show a regret bound for Algorithm 2, we start with the following regret decomposition:

R⇧(T ) =
TX

t=1

Ea⇠⇡⇤ [r̄a]� Ea⇠⇡t [r̄a] =

 
TX

t=1

Ea⇠⇡⇤ [r̄a]� Ea⇠⇡t [u
r
a(t)]

!

| {z }
(I)

+

 
TX

t=1

Ea⇠⇡t [u
r
a(t)]� Ea⇠⇡t [r̄a]

!

| {z }
(II)

.

In order to bound R⇧(T ), we independently bound terms (I) and (II). We start by bounding term (I). We proceed
by first proving an Lemma 6, the equivalent version of Lemma 4 for the multi armed bandit problem.

C.4 Proof of Lemma 6

Proof. Throughout this proof we denote as ⇡0 to the delta function over the safe arm 1. We start by noting that
under E , and because ↵r,↵c � 1, then:

(↵r � 1)�a(t)  ⇠
r
a(t)  (↵r + 1)�a(t) 8a and (↵c � 1)�a(t)  ⇠

c
a(t)  (↵c + 1)�a(t) 8a 6= 0. (31)

If ⇡⇤
2 ⇧t, it immediately follows that:

Ea⇠⇡⇤ [r̄a]  Ea⇠⇡⇤ [ur
a(t)]  Ea⇠⇡t [u

r
a(t)] . (32)

Let’s now assume ⇡
⇤
62 ⇧t, i.e., Ea⇠⇡⇤ [uc

a(t)] > ⌧ . Let ⇡
⇤ = ⇢

⇤
⇡̄
⇤ + (1� ⇢)⇡0 with ⇡̄

⇤
2 �K [2 : K]5.

Consider a mixture policy e⇡t = �t⇡
⇤ + (1� �t)⇡0 = �t⇢

⇤
⇡̄
⇤ + (1� �t⇢

⇤)⇡0, where �t is the maximum �t 2 [0, 1]
such that e⇡t 2 ⇧t. It can be easily established that

�t =
⌧ � c̄1

⇢⇤Ea⇠⇡̄⇤ [uc
a(t)]� ⇢⇤c̄1

=
⌧ � c̄1

Ea⇠⇡̄⇤ [⇢⇤(c̄a + ⇠ca(t))]� ⇢⇤c̄1

(i)

�
⌧ � c̄1

⌧ � c̄1 + ⇢⇤(1 + ↵c)Ea⇠⇡̄⇤ [�a(t)]
.

(i) is a consequence of (31) and of the observation that since ⇡
⇤ is feasible ⇢

⇤Ea⇠⇡̄⇤ [c̄a] + (1� ⇢
⇤)c̄1  ⌧ . Since

5In other words, the support of ⇡̄⇤ does not contain the safe arm 1.
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e⇡t 2 ⇧t, we have

Ea⇠⇡t [u
r
a(t)] � �tEa⇠⇡⇤ [ur

a(t)] + (1� �t)u
r
0(t)| {z }

Ea⇠e⇡t [u
r
a(t)]

(ii)

�
⌧ � c̄1

⌧ � c̄1 + ⇢⇤(1 + ↵c)Ea⇠⇡̄⇤ [�a(t)]
⇥ Ea⇠⇡⇤ [ur

a(t)]

=
⌧ � c̄1

⌧ � c̄1 + ⇢⇤(1 + ↵c)Ea⇠⇡̄⇤ [�a(t)]
⇥

⇣
Ea⇠⇡⇤ [r̄a] + Ea⇠⇡⇤ [⇠ra(t)]

⌘

(iii)

�
⌧ � c̄1

⌧ � c̄1 + ⇢⇤(1 + ↵c)Ea⇠⇡̄⇤ [�a(t)]
⇥

⇣
Ea⇠⇡⇤ [r̄a] + (↵r � 1)Ea⇠⇡⇤ [�a(t)]

⌘

(iv)

�
⌧ � c̄1

⌧ � c̄1 + (1 + ↵c)Ea⇠⇡⇤ [�a(t)]
⇥

⇣
Ea⇠⇡⇤ [r̄a] + (↵r � 1)Ea⇠⇡⇤ [�a(t)]

⌘

| {z }
C0

.

(ii) holds because ur
0(t) � 0. (iii) is a consequence of (31) and (iv) follows because Ea⇠⇡⇤ [�a(t)] = ⇢

⇤Ea⇠⇡̄⇤ [�a(t)]+
(1� ⇢

⇤)�0(t) � ⇢
⇤Ea⇠⇡̄⇤ [�a(t)] since �a(t) � 0 for all a and t.

Let C1 = Ea⇠⇡⇤ [�a(t)]. The following holds:

C0 =
⌧ � c̄1

⌧ � c̄1 + (1 + ↵c)C1
⇥

⇣
Ea⇠⇡⇤ [r̄a] + (↵r � 1)C1

⌘
.

Note that C0 � Ea⇠⇡⇤ [r̄a] iff:

(⌧ � c̄1)Ea⇠⇡⇤ [r̄a] + (⌧ � c̄1)(↵r � 1)C1 � (⌧ � c̄1)Ea⇠⇡⇤ [r̄a] + (1 + ↵c)C1Ea⇠⇡⇤ [r̄a] ,

which holds iff:
(⌧ � c̄1)(↵r � 1)C1 � (1 + ↵c)C1Ea⇠⇡⇤ [r̄a].

Since Ea⇠⇡⇤ [r̄a]  1, this holds if 1 + ↵c  (⌧ � c̄1)(↵r � 1).

Proposition 4. If � = ✏
4KT for ✏ 2 (0, 1), ↵r,↵c � 1 with ↵c  ⌧(↵r � 1), then with probability at least 1� ✏

2 ,
we have

TX

t=1

Ea⇠⇡⇤ [r̄a]� Ea⇠⇡t [u
r
a(t)]  0

Proof. A simple union bound implies that P(E) � 1� ✏
2 . Combining this observation with Lemma 6 yields the

result.

Term (II) can be bounded using the confidence intervals radii:
Proposition 5. If � = ✏

4KT for an ✏ 2 (0, 1), then with probability at least 1� ✏
2 , we have

TX

t=1

Ea⇠⇡t [u
r
a(t)]� Ea⇠⇡t [r̄a]  (↵r + 1)

⇣
2
p
2TK log(1/�) + 4

p
T log(2/✏) log(1/�)

⌘
.

Proof. Under these conditions P(E) � 1 �
✏
2 . Recall u

r
a(t) = bra(t) + ↵r�a(t) and that conditional on E ,

r̄a 2 [bra(t)� �a(t), bra(t) + �a(t)] for all t 2 [T ] and a 2 A. Thus, for all t, we have

Ea⇠⇡t [u
r
a(t)]� Ea⇠⇡t [r̄a]  (↵r + 1)Ea⇠⇡t [�a(t)].

Let Ft�1 be the sigma algebra defined up to the choice of ⇡t and a
0
t be a random variable distributed as ⇡t | Ft�1

and conditionally independent from at, i.e., a0t ? at | Ft�1. Note that by definition the following equality holds:

Ea⇠⇡t [�a(t)] = Ea0
t⇠⇡t

[�a(t) | Ft�1].
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Consider the following random variables At = Ea0
t⇠⇡t

[�a0
t
(t) | Ft�1] � �at(t). Note that Mt =

Pt
i=1 Ai is a

martingale. Since |At|  2
p
2 log(1/�), a simple application of Azuma-Hoeffding6 implies:

P

0

BBBB@

TX

t=1

Ea⇠⇡t [�a(t)] �
TX

t=1

�at(t) + 4
p

T log(2/✏) log(1/�)

| {z }
Ec
A

1

CCCCA
 ✏/2.

We can now upper-bound
PT

t=1 �at(t). Note that
PT

t=1 �at(t) =
P

a2A
PT

t=1 1{at = a}�a(t). We start by
bounding for an action a 2 A:

TX

t=1

1{at = a}�a(t) =
p
2 log(1/�)

Ta(T )X

t=1

1
p
t
 2
p
2Ta(T ) log(1/�).

Since
P

a2A Ta(T ) = T and by concavity of
p
·, we have

X

a2A
2
p
2Ta(T ) log(1/�)  2

p
2TK log(1/�).

Conditioning on the event E \ EA whose probability satisfies P(E \ EA) � 1� ✏ yields the result.

We can combine these two results into our main theorem:
Theorem 4 (Main Theorem). If ✏ 2 (0, 1), ↵c = 1 and ↵r = 2

⌧�c̄1
+ 1, then with probability at least 1 � ✏,

Algorithm 2 satisfies the following regret guarantee:

R⇧(T ) 

✓
2

⌧ � c̄1
+ 1

◆⇣
2
p
2TK log(4KT/✏) + 4

p
T log(2/✏) log(4KT/✏)

⌘

Proof. This result is a direct consequence of Propositions 4 and 5 by setting � = 4KT ✏.

C.5 Lower Bound

We start by proving a generalized version of the divergence decomposition lemma for bandits.
Lemma 8. [Divergence decomposition for constrained multi armed bandits] Let ⌫ = ((P1, Q1), · · · , (PK , QK))
be the reward and constraint distributions associated with one instance of the single constraint multi-armed
bandit, and let ⌫0 = ((P 0

1, Q
0
1), · · · , (P

0
K , Q

0
K)) be the reward and constraint distributions associated with another

constrained bandit instance. Fix some algorithm A and let P⌫ = P⌫A and P⌫0 = P⌫0A be the probability measures
on the cannonical bandit model (See section 4.6 of Lattimore and Szepesvári (2019)) induced by the T round
interconnection of A and ⌫ (respectively A and ⌫

0). Then:

KL(P⌫ ,P⌫0) =
KX

a=1

E⌫ [Ta(T )]KL((Pa, Qa), (P
0
a, Q

0
a))

Where Ta(T ) denotes the number of times arm a was pulled until by A and up to time T .

Proof. The same proof as in Lemma 15.1 from Lattimore and Szepesvári (2019) applies in this case.

The following two lemmas will prove useful as well:
Lemma 9. [Gaussian Divergence ] The divergence between two multivariate normal distributions and means
µ1, µ2 2 Rd with spherical identity covariance Id equals:

KL(N (µ1, Id),N (µ2, Id)) =
kµ1 � µ2k

2

2
6We use the following version of Azuma-Hoeffding: if Xn, n � 1 is a martingale such that |Xi � Xi�1|  di, for

1  i  n, then for every n � 1, we have P(Xn > r)  exp
⇣
� r2

2
Pn

i=1 d2i

⌘
.
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Define the binary relative entropy to be:

d(x, y) = x log

✓
x

y

◆
+ (1� x) log

✓
1� x

1� y

◆

and satisfies:
d(x, y) � (1/2) log(1/4y) (33)

for x 2 [1/2, 1] and y 2 (0, 1). Adapted from Kaufmann et al. (2016), Lemma 1.
Lemma 10. Let ⌫, ⌫0 be two constrained bandit models with K arms. Borrow the setup, definitions and notations
of Lemma 8, then for any measurable event B 2 FT :

KL(P⌫ ,P⌫0) =
KX

a=1

E⌫ [Ta(T )]KL((Pa, Qa), (P
0
a, Q

0
a)) � d(P⌫(B),P⌫0(B)) (34)

We now present a worst-case lower bound for the constrained multi armed bandit problem. We restrict ourselves
to Gaussian instances with mean reward and cost vectors r̄, c̄ 2 [0, 1]K . Let A be an algorithm for policy selection
in the constrained MAB problem. For the purpose of this section we denote as R⇧(T,A, r̄, c̄) as the constrained
regret of algorithm A in the Gaussian instance N (r̄, I), N (c̄, I). The following theorem holds:

Theorem 5. Let ⌧, c̄1 2 (0, 1), K � 4, and B := max
⇣

1
27

p
(K � 1)T , 1

6(⌧�c̄1)2

⌘
and assume7

T � max(K �

1, 24eB) and let ⌧ be the maximum allowed cost. Then for any algorithm A there is a pair of mean vectors
r̄, c̄ 2 [0, 1]K such that:

R⇧(T,A, r̄, c̄) � B

Proof. If max
⇣

1
27

p
(K � 1)T , 1

6(⌧�c̄1)2

⌘
=

p
KT , then the argument in Theorem 15.2 of Lattimore and Szepesvári

(2019) yields the desired result by noting that the framework of constrained bandits subsumes unconstrained
multi armed bandits when all costs other than c0 equal zero. In this case we conclude there is an instance r̄, c̄

with c̄a = 0 for all a 2 A satisfying:
R⇧(T,A, r̄, c̄) �

1

27

p
(K � 1)T

Let’s instead focus on the case where B = max
⇣

1
27

p
(K � 1)T , 1

6(⌧�c̄1)2

⌘
= 1

6(⌧�c̄1)2
.

Pick any algorithm. We want to show that the algorithm’s regret on some environment is as large as B. If there
was an instance r̄, c̄ such that R⇧(T,A, r̄, c̄) > B there would be nothing to be proven. Hence without loss of
generality, we can assume that the algorithm satisfies R⇧(T,A, r̄, c̄)  B for all r̄, c̄ 2 [0, 1]K and having unit
variance Gaussian rewards.

Let c 2 (0, 1) with c = ⌧ � c̄1. For the reader’s convenience we will use the notation � = 1/2. By treating the
rewards in a symbolic way it is easier to understand the logic of the proof argument. Let’s consider the following
constrained bandit instance inducing measure ⌫:

c̄
1 = (⌧ � c, ⌧ + 2c, ⌧ � c, ⌧ + 2c, · · · , ⌧ + 2c)

r̄
1 = (�, 8�, 0, 4�, · · · , 4�)

Notice that the optimal policy equals a mixture between arm 1 and 2, where arm 1 is chosen with probability 2/3
and arm 2 with probability 1/3. The value of this optimal policy equals 10/3�.

Recall we use the notation T̄j(t) denote the total amount of probability mass that A allocated to arm j up to
time t. Notice that the expected reward of all feasible policies that do not have arm 1 in their support have
a gap (w.r.t the optimal feasible policy’s expected reward) of at least 2�

3 . Since by assumption, A satisfies
R⇧(T,A, r̄

1
, c̄

1)  B, we have

B � R⇧(T,A, r̄
1
, c̄

1) �
2�

3

✓
2

3
T �

1

2
T

◆
P
✓
T̄1(T ) <

T

2

◆
=

�

9
TP
✓
T̄1(T ) <

T

2

◆
,

7This constraint on T translates to T � C for some constant C.
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and thus, we may write

P
✓
T̄1(T ) �

T

2

◆
= 1� P

✓
T̄1(T ) <

T

2

◆
� 1�

9B

�T
� 1/2.

The last inequality follows from the assumption T � max(K � 1, 24eB).

Let’s now consider the following constrained bandit instance inducing measure ⌫
0:

c̄
2 = (⌧ � c, ⌧ + 2c, ⌧ � c, ⌧ � c, · · · , ⌧ + 2c)

r̄
2 = (�, 8�, 0, 4�, · · · , 4�)

In this instance the optimal policy is to play arm 4 deterministically, which gets a reward of 4�. Notice that the
expected reward of any feasible policy that does not contain arm 4 in its support has a gap (w.r.t. the optimal
feasible policy’s expected reward) of at least 2�

3 . Since by assumption, A satisfies R⇧(T,A, r̄
2
, c̄

2)  B, we have

B � R⇧(T,A, r̄
2
, c̄

2) �
2�

3

✓
1

2
T

◆
P
✓
T̄1(T ) �

T

2

◆
=

�

3
TP
✓
T̄1(T ) �

T

2

◆
,

and thus, we may write

P
✓
T̄1(T ) �

T

2

◆


3B

�T


1

4e
.

The last inequality follows from the assumption T � max(K � 1, 24eB). As a consequence of inequality (33) and
Lemmas 9 and 10, we have

E⌫ [T4(T )]KL

✓
N

✓✓
⌧ + 2c

4�

◆
, Id
◆
,N

✓✓
⌧ � c

4�

◆
, Id
◆◆

= E⌫ [T4(T )]2c
2
�

1

2
,

and thus, we can conclude that

E[T̄4(T )] = E[T4(T )] �
1

4c2
. (35)

Since in ⌫, any feasible policy with support in arm 4 and no support in arm 2 has a sub-optimality gap of 4/3�,
we conclude the regret R⇧(T,A, r̄

2
, c̄

2) must satisfy:

R⇧(T,A, r̄
2
, c̄

2) �
�

3c2
.

Since � = 1
2 and noting that in this case �

3c2 = B. The result follows.

C.6 Multiple Constraints

We consider the problem where the learner must satisfy M constraints with threshold values ⌧1, . . . , ⌧M . Borrowing
from the notation in the previous sections, we denote by as {r̄a}a2A the mean reward signals and {c̄

(i)
a } the mean

cost signals for i = 1, . . . ,M . The full information optimal policy can be obtained by solving the following linear
program:

max
⇡2�K

X

a2A
⇡ar̄a, s.t.

X

a2A
⇡ac̄

(i)
a  ⌧i, for i = 1, . . . ,M. (P-M)

In order to ensure the learner’s ability to produce a feasible policy at all times, we make the following assumption:

Assumption 6. The learner has knowledge of c̄(i)1 < ⌧i for all i = 1, . . . ,M .

We denote by {bra}a2A and {bc(i)a }a2A, for i = 1, . . . ,M the empirical means of the reward and cost signals. We
call {ur

a(t)}a2A to the upper confidence bounds for our reward signal and {u
c
a(t, i)}a2A, for i = 1, . . . ,M the

costs’ upper confidence bounds:

u
r
a(t) = bra(t) + ↵r�a(t), u

c
a(t, i) = bc(i)a (t) + ↵c�a(t),
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where �a(t) =
p
2 log(1/�)/Ta(t), � 2 (0, 1) as before. A straightforward extension of Algorithm 2 considers

instead the following M�constraints LP:

max
⇡2�K

X

a2A
⇡a u

r
a(t), s.t.

X

a2A
⇡a u

c
a(t, i)  ⌧i, for i = 1, . . . ,M. ( \P �M)

We now generalize Lemma 6:

Lemma 11. Let ↵r,↵c � 1 satisfying ↵c  mini(⌧i � c̄
(i)
1 )(↵r � 1). Conditioning on Ea(t) ensures that with

probability 1� �:

Ea⇠⇡t [u
r
a(t)] � Ea⇠⇡⇤ [r̄a] .

Proof. The same argument as in the proof of Lemma 6 follows through, the main ingredient is to realize that �t

satisfies the sequence of inequalities in the lemma with ⌧ � c̄1 substituted by min ⌧i � c̄
(i)
1 .

The following result follows:

Theorem 6 (Multiple Constraints Main Theorem). If ✏ 2 (0, 1), ↵c = 1 and ↵r = 2

mini ⌧i�c̄(i)1

+ 1, then with
probability at least 1� ✏, Algorithm 2 satisfies the following regret guarantee:

R⇧(T ) 

 
2

mini ⌧i � c̄
(i)
1

+ 1

!⇣
2
p

2TK log(4KT/✏) + 4
p
T log(2/✏) log(4KT/✏)

⌘

Proof. The proof follows the exact same argument we used for the proof of Theorem 3 substituting ⌧ � c̄1 by
mini ⌧i � c̄

(i)
1 .



Stochastic Bandits with Linear Constraints

D Extra Experiments

Figure 6: Constraint Threshold ⌧ = 0.8.

Figure 7: Constraint Threshold ⌧ = 0.5.

Figure 8: Constraint Threshold ⌧ = 0.2.

Regret (left), cost (middle), and reward (right) evolution of OPLB in a Linear Problem. The arms are
identified with the rays corresponding to the standard basis vectors [0, e1], [0, e2], [0, e3]. The vector

✓? = (1, .2, .3) and µ? = (1, 0, 0).

In figures figs. 6 to 8 we show the advantages of relaxing the objective to an expectation constraint. In this
problem we let the action set be union of the rays [0, e1], [0, e2] and [0, e3] with reward and cost vectors equal
to ✓? = (1, .2, .3) and µ? = (1, 0, 0) and the safe action corresponding to the zero vector 0 and having 0 cost.
In the following table we compare the optimal costs and reward profiles for the optimal policy satisfying the
in-expectation constraint, vs the optimal policy satisfying the cost constraints with probability one for the different
thresholds values ⌧ = .2, .5, .8. The optimal probability-one cost constrained policy always consists of playing a
scaled version of ei for i 2 {1, 2, 3}. The optimal in-expectation cost constrained policy corresponds to a scaled
point of the 3 dimensional simplex.

Threshold ⌧ Opt Cost Exp Opt Cost High Prob Opt Reward Exp Opt Reward High Prob
0.8 0.8 0.8 0.86 0.8
0.5 0.5 0.5 0.65 0.5
0.2 0.2 0.0 0.44 0.3

We can observe that the optimal reward values can be substantially larger for the optimal in-expectation cost
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constrained policy. Nevertheless, the regret curves of OPLB with an expectation cost constraint or a high
probability cost constraint are comparable. This points to the fact that learning under a relaxed expectation cost
constraint is not substantially harder than under a high probability cost constraint but can allow for much higher
levels of accrued reward.

In order to run OPLB w.r.t a high probability cost constraint we modify the Algorithm 1 so that instead of
constructing a feasible policy set ⇧t as in Equation 13, we compute a safe action set Ãt defined as:

Ãt = {a 2 At : c̃a,t  ⌧}.

The rest of the algorithm remains the same. In order to make the OPLB algorithm computationally feasible
we notice that optimizing a constrained optimistic ellipsoidal reward objective over a ray [0, ei] can be done in
linear time. This is because the sets Ẽi = {a 2 [0, ei] : c̃a,t  ⌧} are also rays, and therefore the maximization
problems max✓2Cr

t (↵r) maxa2Ẽi
hx, ai are tractable. We approximate the OPLB constrained expectation objective

by sampling 1000 uniform random points {pi}
1000
i=1 from the simplex spanned by e1, e2, e3 and adding the 1000

rays (with a start point at 0) to the action set yielding an enlarged action set {[0, e1], [0, e1], [0, e1]}[ {[0, pi]}1000i=0 .
We optimize the high probability OPLB objective over this enlarged action set. In figures figs. 6 to 8 we run
each experiment 10 times and report average curves with a shaded region corresponding to the ±0.5 standard
deviation around the regret, cost and reward values.
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