
Supplement to Fourier Bases for Solving Permutation Puzzles

Our supplement is organized as follows:

• Section 1 gives a full description of the irreducible representations of the symmetric group

• Section 2 discusses the irreducible representations of wreath product groups

• Section 3 provides additional information on our experiments

1 Irreducible Representations of the Symmetric Group

We present the construction of Young’s Orthogonal Representation (YOR). The presentation here largely follows
Huang et al. (2009), and Kondor (2008).

1.1 Preliminaries

A compact way of denoting permutations of Sn is through cycle notation. Permutations can be expressed as a
product of disjoint cycles. The cycle (a1, . . . ak) denotes the permutation that sends a1 7! a2, a2 7! a3, . . . , ak 7! a1.
Without loss of generality, we can omit singleton cycles going forward.

The representations of Sn are indexed by partitions of n, a set of positive integers that sum to n. The tuple
of non-negative integers � = (�1,�2 . . .�k) is a partition of n if

Pk
i=1 �i = n. Conventionally, the parts of a

partition are listed in weakly decreasing order: �1 � . . . � �k. We use the notation � ` n to indicate that � is a
partition of n.

Partitions can be visualized by Ferrers diagrams, patterns of unfilled left aligned boxes where row i contains
�i boxes.

Definition 1 A Young tableau is a assignment of the numbers 1, 2, . . . n to the n boxes of a Ferrers diagram.

Definition 2 A Young standard tableau is a Young tableau where the entries are strictly increasing along
each row and across each column.

For convenience, we will also refer to Young standard tableaux as standard tableaux. The partition underlying a
Ferrers diagram or a Young tableau as also referred to as its shape.

Example 1 For n = 3, there are three possible partitions (3), (2, 1) and (1, 1, 1), which have the respective Ferrers

diagrams: , , .

Example 2 There are only two possible Young standard tableaux with the shape (2, 1):

1 2
3

and 1 3
2

.

Permutations act on the set of Young standard tableaux by permuting the entries of the boxes. For � 2 Sn and t
a standard tableau, the action of � on t is denoted � � t and is given by permuting the entries of t by �. For

example, (2, 3) 2 S3. The action of (2, 3) on the standard tableau 1 3
2

is

(2, 3) � 1 3
2

= 1 2
3

Definition 3 The axial distance dt(i, j) between entries i and j in tableau t is defined to be

dt(i, j) = (col(t, j)� col(t, i))� (row(t, j)� row(t, i))

where col(t, i) is the column index of label i in tableau t and similarly row(t, i) is the row index of label i in tableau
t. Also, dt(i, j) = �dt(j, i)



Example 3 For t = 1 3
2

, we have the axial distances:

dt(1, 2) = (1� 1)� (2� 1) = �1 (1)
dt(1, 3) = (2� 1)� (1� 1) = 1 (2)
dt(2, 3) = (2� 1)� (1� 2) = 2 (3)

1.2 Defining Young’s Orthogonal Representation on Transpositions

Young’s Orthogonal Representation is one instantiation of the irreps irreps of Sn that is relatively efficient to
compute. Given a set of generators for Sn, it suffices to define the irrep matrices on all generator elements. Then
any � 2 Sn can be expressed as a product of these generators: � = g1g2 . . . gk and using the property of irrep
matrices we can produce ⇢(�) from ⇢(�) = ⇢(�1) . . . ⇢(�k).

A transposition is a permutation that swaps only two elements. Any cycle (c1, ..., cl) is the product of
transpositions: (c1, c2)(c2, c3) . . . (cl�1, cl). Furthermore, any transposition (i, j) can be written as a product of
adjacent transpositions of the form ⌧k = (k, k + 1)

(i, j) = ⌧j�1, . . . ⌧i+1⌧i⌧i+1 . . . ⌧j�1

The set of transpositions: (1, 2), (2, 3), . . . (n� 1, n) generate Sn, so we only need to define Young’s Orthogonal
Representation for these transpositions.

For partition �, we we denote the Young Orthogonal Representation associated with � as ⇢� : Sn ! Cd�⇥d� ,
where d� is the dimension of ⇢�. It turns out that d� is also the number of standard tableaux of shape �.

Suppose we are given a fixed ordering of the standard Young tableaux of shape �: t1, t2, . . . , td� . We will refer
to the rows and columns of the ⇢� matrices using the standard tableau in the fixed ordering above. The first
standard tableau t1 refers to the first column and row, t2 refers to the second column and row, etc. [⇢�(�)]ti,tj
refers to the (i, j) entry of ⇢�(�). For a transposition (i� 1, i), the entries of the YOR matrix ⇢�(i� 1, i) are
defined by the following rules:

1. On the diagonal entries:
[⇢�(i� 1, i)]tt =

1

dt(i� 1, i)

2. For all entries (tj , tk) where tk 6= (i� 1, i) � tj :

[⇢�(i� 1, i)]tj ,tk = 0

3. If (i� 1, i) � tj = tk, then

[⇢�(i� 1, i)]tj ,tk =

s
1�

1

d2tj (i� 1, i)

Now that we have a prescription for computing the ⇢� YOR matrices of any transposition of the form ⌧k = (k, k+1),
we can use them to compute representations for any other permutation. For � 2 Sn, we first decompose � into a
product of transpositions: � = ⌧a1 . . . ⌧ak using bubblesort Huang et al. (2009). Then ⇢�(�) is simply the product
of the YOR matrices of �’s constituent transpositions:

� = ⌧a1 . . . ⌧ak (4)
⇢�(�) = ⇢�(⌧a1) . . . ⇢�(⌧ak) (5)

Example 4 S3 is generated by the two transpositions: ⌧1 = (1, 2), ⌧2 = (2, 3). For � = (2, 1) we have exactly two
standard tableaux so ⇢� is a 2⇥ 2 irrep. The YOR irrep matrices ⇢ for the elements of S3 are:

⇢ (e) =

✓
1 0
0 1

◆
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The last three permutations of S3 are: (1, 3), (1, 2, 3) and (1, 3, 2). To compute their ⇢ matrices, we express
each permutation as a product of the transpositions (1, 3) and (2, 3). So (1, 2, 3) = (1, 2)(2, 3), giving us
⇢ (1, 2, 3) = ⇢ (1, 2)⇢ (2, 3), and so on for the remaining permutations.

1.3 Dimensions of the Irreps of the Symmetric Group

The number of standard tableau of shape �, which is also the dimension of the irrep ⇢�, is given by the hook
length formula. Given any box of a Ferrers diagram of shape �, its corresponding hook is defined to be that
box, the boxes in its row to its right and the boxes in its column below it. The hook length of a box is the number
of boxes in its hook. The hook length formula is

f� =
n!

⇧ili!

where li is the hook length of box i, and i ranges over all boxes of the � shaped Ferrers diagram.

Example 5 The Ferrers diagram of shape � = (2, 1) is a b
c

. The hook lengths of the boxes are: la = 3, lb =

1, lc = 1. So f = 3!
3·1·1 = 2.

In Table 1, we show the hook length or irrep dimension for a few of the partitions of n = 6.

Table 1: Dimension of irreps for n = 6

� Ferrers Diagram f�

(6) 1

(5, 1) 5

(4, 2) 9

(4, 1, 1) 10

(3, 3) 5

2 Irreducible Representations of Wreath Product Groups

The description of the irreps of wreath product groups here follows Kerber (1971) and Rockmore (1995).

2.1 Irreducible Representations of Cn
m

Recall that the irreps of Cm are the complex exponentials: �j(k) = eijk/m for j = 0, 1, . . . ,m� 1. The irreps of
Cn

m are: �j1 ⌦ �j2 ⌦ . . .⌦ �jn for j1, ..., jn 2 {0, . . .m� 1}. For x 2 Cn
m,

(�j1 ⌦ �j2 ⌦ . . .⌦ �jn)(x) =
nO

i=1

�ji(xi) =
nY

i=1

�ji(xi) (6)

The last equality holds because the �j irreps are 1-dimensional.

In subsequent sections, for partitions of n into m non-negative parts, ↵ = (↵1,↵2, . . . ,↵m), ↵i � 0, we will use
the notation �↵ to denote the irrep of Cn

m where

�↵ = �0 ⌦ ...⌦ �0| {z }
↵1 times

⌦�1 ⌦ ...⌦ �1| {z }
↵2 times

⌦ . . .⌦ �m�1 ⌦ ...⌦ �m�1| {z }
↵m times

(7)

= �
⌦↵1
0 ⌦ �

⌦↵2
1 ⌦ . . .⌦ �

⌦↵m
m�1 (8)



For f 2 Cn
m, ⇡ 2 Sn, let f = (f1, ..., fn). The permutation action of Sn on the Cn

m, denoted ⇡ � f , permutes the
indices of f :

(⇡ � f)i = f⇡�1(i) (9)

for i = 1 . . . n.

2.2 Young Subgroups

The Young Subgroup corresponding to a partition ↵ = (↵1, . . . ,↵m), where
Pm

i=1 ↵i = n, ↵i � 0 for i = 1, . . .m
is the group

S↵ = S{1,...,↵1} ⇥ S{↵1+1,...,↵1+↵2} ⇥ . . .⇥ S{n�↵m+1,...,n}.

S↵ is also isomorphic to S↵1 ⇥ S↵2 ⇥ . . .⇥ S↵m .

The irreps of S↵ are constructed by taking the tensor product of irreps of each individual S↵i . Suppose we have
 = ( 1, 2, ..., m), where each  i is a partition of ↵i, then  indexes an irrep of S↵:

⇢ = ⇢ 1 ⌦ ⇢ 2 ⌦ . . .⌦ ⇢ m .

We can compute each ⇢ i using Young’s Orthogonal Representation as detailed in Section 1.2.

Example 6 For ↵ = (2, 2), S↵ = S{1,2} ⇥ S{3,4} = {e, (1, 2), (3, 4), (1, 2)(3, 4)}. The irreps of S↵ are the tensor
product of the irreps of S2 by the irreps of S2: (⇢ ⌦ ⇢ ), (⇢ ⌦ ⇢ ), (⇢ ⌦ ⇢ ), and (⇢ ⌦ ⇢ ).

2.3 Induced Representations

Given a group G with a subgroup H. Let g1, . . . gr be a set of left coset representatives of H in G. So
G = g1H [ . . . [ grH, with r = [G : H]. Suppose H has the representation ⇢ : H ! Cn⇥n. Then the induced
representation ⇢̃ : G ! Cnr⇥nr is defined as:

⇢̃(x) =

0BBB@
⇢(g�1

1 xg1) ⇢(g�1
1 xg2) . . . ⇢(g�1

1 xgr)
⇢(g�1

2 xg1) ⇢(g�1
2 xg2) . . . ⇢(g�1

2 xgr)
...

...
. . .

...
⇢(g�1

r xg1) ⇢(g�1
r xg2) . . . ⇢(g�1

r xgr)

1CCCA (10)

where ⇢ is extended to G by defining ⇢(x) = 0 if x 62 H. See Sagan (2013) for a proof on how this construction of
⇢̃ results in a representation of G. We denote the induced representation of ⇢ from H to G as ⇢̃ = IndGH⇢.

An important property of induced representations is that only one entry of every row of Eq. (10) will be non-zero,
and likewise for every column. This means that that the total number of non-zero blocks of IndGH⇢ will be [G : H ].
At most, only 1

[G:H] of the entries of IndGH⇢(g) will be non-zero for all g 2 G, giving us a sparse matrix which can
be stored in memory more efficiently.

2.4 Putting it all together

The irreps of Cm o Sn are indexed by tuples (↵, ), where ↵ is a partition of n into m non-negative parts:
↵ = (↵1, . . . ,↵m), and  = ( 1, . . . , m) is a tuple of m partitions, where  i is a partition of ↵i. Some of the
↵i’s may be 0, but each of the  i partitions must only contain positive integers. We denote the irrep of Cm o Sn
indexed by (↵, ) with ⇢(↵, ).

Example 7 The tuple (↵, ) for ↵ = (2, 3, 3), = ((2), (1, 1, 1), (2, 1) indexes an irrep of C3 o S8.

Let a full set of coset representatives of the Young Subgroup S↵ in Sn be R = {g1, ..., gk}. For (f,⇡) 2 Cm o Sn,
the irrep matrix ⇢(↵, )(f,⇡) is the block matrix, with the (i, j) block defined as

[⇢(↵, )(f,⇡)]ij = z(gi, f) · [Ind
Sn
S↵⇢(⇡)]ij

= z(gi, f) · ⇢(g
�1
i ⇡gj)



for i, j = 1, . . . , k, where z : Sn ⇥ Cn
m ! C is the function defined as

z(g, f) = �↵(g�1
� f) (11)

(g�1
� f is defined by Eq. (9), �↵ is defined by Eq.(7)) and ⇢ =

Nm
i=1 ⇢ i , is an irrep of the Young Subgroup S↵.

The dimension of this representation is d(↵, ) = [Sn : S↵] ·⇧m
i=1d i , where d i is the dimension of the irrep ⇢ i of

S↵i .

Recall from Eq (10) that IndSnS↵⇢(⇡), is a block matrix where the (i, j) block is ⇢(g�1
i ⇡gj), where

⇢(g�1
i ⇡gj) =

(
0 if g�1

i ⇡gj 62 S↵
(⇢↵1 ⌦ . . .⌦ ⇢↵m)(g�1

i ⇡gj) otherwise

as defined shown in Eq. (10).

All of the irreps of S8 and Pyraminx (C2 o S6) can be computed once and loaded into RAM when needed. The
2-by-2 cube group (C3 o S8) is too large to load every irrep matrix into RAM so we only store and load the irrep
matrices ⇢ of S↵ and IndSnS↵⇢. At runtime, we compute the scalar factors z(gi, f) to multiply with each non-zero
(i, j) block of IndSnS↵⇢ to construct ⇢(↵, ).

3 Miscellaneous Experiment Details

We trained low rank Fourier models in the basis spanned by the top 2 irreps for the 2-by-2 cube. The top two
irreps comprise a total of: 560⇥ 560 + 420⇥ 420 = 490000 basis functions, which happens to be a perfect square:
700⇥ 700. This allowed us to express the parameters of the low rank value function as ✓k = UkV

>
k 2 C700⇥700:

where Uk 2 C700⇥k, Vk 2 C700⇥k for rank k = 1, 10, 100. We trained the low rank models until their performance
on proportion of greedy solves and locally optimal moves converged, which happened after 20k epochs. Over the
course of these 20k epochs, the low rank models saw only 165k unique cube states, or about 4.5% of all possible
states. Figure 1 shows the proportion of locally optimal moves and proportion of greedy solves made by the low
rank models during training plotted against the performance of the full rank top 2 irrep model. As we can see
from these plots, the low rank models have limited capacity but also converge in a fraction of the training epochs
required for the full rank model.
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Figure 1: Training curve of low rank models for 2-by-2 cube

3.1 Hyperparameters

As we mentioned in the Experiments section, we chose the hyperparameters of our training procedure and baseline
DVN architecture by doing a randomized grid search over the parameters listed in 2. While McAleer et al. (2018)



and Agostinelli et al. (2019) both used batch normalization layers after each layer’s ReLU, we found that it slowed
training time without improving the proportion of solves and locally optimal moves.

Table 2: Hyperparameters

Parameter Value Range

seed {0, 1, 2, 3, 4}
minibatch size {32, 64, 128}
learning rate [0.003, 0.006]
discount � {0.95, 0.99, 1}

hidden layer size {512, 1024, 1536, 2048}
number of layers {1, 2, 3}

weight initialization std {0.03, 0.05, 0.1}
replay buffer capacity {10000, 100000}
target update interval {50, 100}
Adam weight decay {0, 1e-1, 1e-2, 1e-3, 1e-4}

Adam � {0.99}

3.2 Irreps

Tables 3, 4 and 5 show the irreps used for the Pyraminx, S8 and 2-by-2 cube experiments respectively. The irreps
of Sn are indexed by partitions of n. The irreps of wreath product groups of the form Cm o Sn are indexed by
tuples (↵, ), where ↵ is a partition of n and  is a tuple of partitions, where each  i 2  is a partition of ↵i.

Finding the top irreps to use remains a nontrivial and open ended research question. There is, however, a certain
symmetry among the irreps of wreath product groups that helps reduce our search space. Consider arbitrary
irreps ⇢1 and ⇢2 of the 2-by-2 cube, where ⇢1 is indexed by the tuple (3, 1, 4), ((�1,�2,�3)) and ⇢2 is indexed by
the tuple ((3, 4, 1), (�1,�3,�2)). Then ⇢1 and ⇢2 essentially contain equivalent sets of basis functions, so we only
need to consider the efficacy of one of them. This symmetry alone allowed us to ignore ⇠ 40% of the 270 total
irreps of the 2-by-2 cube.
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Table 3: Top 24 irreps used for Pyraminx

↵  d(↵, ) d2(↵, )

(3, 3) ((2, 1), (3)) 40 1600
(3, 3) ((2, 1), (1, 1, 1)) 40 1600
(2, 4) ((1, 1), (2, 1, 1)) 45 2025
(2, 4) ((2), (3, 1)) 45 2025
(4, 2) ((1, 1, 1, 1), (2)) 15 225
(2, 4) ((1, 1), (4)) 15 225
(1, 5) ((1), (3, 1, 1)) 36 1296
(5, 1) ((4, 1), (1)) 24 576
(2, 4) ((1, 1), (3, 1)) 45 2025
(4, 2) ((1, 1, 1, 1), (1, 1)) 15 225
(4, 2) ((2, 1, 1), (2)) 45 2025
(0, 6) ((), (5, 1)) 5 25
(6, 0) ((1, 1, 1, 1, 1, 1), ()) 1 1
(6, 0) ((4, 1, 1), ()) 10 100
(6, 0) ((2, 2, 2), ()) 5 25
(6, 0) ((3, 3), ()) 5 25
(0, 6) ((), (2, 1, 1, 1, 1)) 5 25
(1, 5) ((1), (5)) 6 36
(1, 5) ((1), (2, 1, 1, 1)) 24 576
(1, 5) ((1), (1, 1, 1, 1, 1)) 6 36
(1, 5) ((1), (2, 2, 1)) 30 900
(1, 5) ((1), (3, 2)) 30 900
(2, 4) ((2), (4,)) 15 225
(2, 4) ((2), (2, 2)) 30 900

Total basis functions 17621

Table 4: Top 4 irreps used for S8

� d� d2�

(4, 2, 2) 56 3136
(3, 2, 2, 1) 70 4900
(5, 1, 1, 1) 35 1225
(3, 3, 1, 1) 56 3136

Total basis functions 12397

Table 5: Top 2 irreps used for the 2-by-2 Cube

↵  d(↵, ) d2(↵, )

(2, 3, 3) ((2), (1,1,1), (1,1,1)) 560 313600
(4, 2, 2) ((4), (1,1), (1,1)) 420 176400

Total basis functions 490000


