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Abstract

Traditionally, permutation puzzles such as the
Rubik’s Cube were often solved by heuristic
search like A*search and value based rein-
forcement learning methods. Both heuristic
search and Q-learning approaches to solving
these puzzles can be reduced to learning a
heuristic/value function to decide what puz-
zle move to make at each step. We propose
learning a value function using the irreducible
representations basis (which we will also call
the Fourier basis) of the puzzle’s underlying
group. Classical Fourier analysis on real val-
ued functions tells us we can approximate
smooth functions with low frequency basis
functions. Similarly, smooth functions on fi-
nite groups can be represented by the anal-
ogous low frequency Fourier basis functions.
We demonstrate the effectiveness of learning a
value function in the Fourier basis for solving
various permutation puzzles and show that it
outperforms standard deep learning methods.

1 Introduction

Most methods to solve permutation puzzles such as
the Rubik’s Cube, Pyraminx (fig: , and the Sliding
Number Tile Puzzle involve heuristic search such as A*
search and Iterative Deepening A*search (IDA) (Kort]
1985). The runtime of these methods depends on how
well the heuristic functions used estimate the distance
of a given puzzle state to the goal state. The most
effective heuristic functions for permutation puzzles
like the Rubik’s Cube and the Sliding Number Tile
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Puzzle use pattern databases (Korf and Taylor, [1996;
Korfl, [1997; Kociembal n.d.; [Felner et al., [2004), which
effectively store the distance of various partially solved
puzzles to the solution state. Korf| (1997)) famously
solved instances of the Rubik’s Cube using a pattern
database of all possible corner cube configurations and
various edge configurations and has since improved
upon the result with an improved hybrid heuristic
search (Bu and Kort] 2019).

Machine learning based methods have become popular
alternatives to classical planning and search approaches
for solving these puzzles. Brunetto and Trundal (2017)
treat the problem of solving the Rubik’s cube as a
supervised learning task by training a feed forward neu-
ral network on 10 million cube samples, whose ground
truth distances to the goal state were computed by
brute force search. Value based reinforcement learning
methods to solve the Rubik’s Cube and Sliding Num-
ber Tile Puzzle (Bischoff et al., [2013) are also common.
Most recently, McAleer et al.| (2018) and |Agostinelli
et al.| (2019)) developed a method to solve the Rubik’s
cube and other puzzles by training a neural network
value function through reinforcement learning . They
then used this value network in conjunction with A*
search and Monte Carlo tree search.

In this paper, we focus on learning to solve permu-
tation problems in the reinforcement learning setting,
specifically using value functions. The crux of our ap-
proach to solving permutation puzzles is to exploit the
underlying structure of the puzzle by using special-
ized basis functions for expressing this value function.
There has been a wealth of research in reinforcement
learning on constructing basis functions for value func-
tion approximation (Keller et al.l [2006; [Menache et al.|
2005)). Common choices for a set of basis functions in-
clude radial basis functions (Kretchmar and Anderson)
1997) and Fourier series (sinusoids) (Konidaris et al.l
2011). Proto Value Functions (PVF) (Mahadevan and
Maggioni,, 2007} 2006; Mahadevan! [2005) try to solve
Markov decision processes (MDP) by representing the
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value function in the eigenbasis of the MDP’s graph
Laplacian. Their method uses ideas from spectral graph
theory which tell us that the smoothest functions on a
graph correspond to the lowest eigenvalue eigenvectors
of the graph laplacian. Though our work is conceptu-
ally similar to Proto Value Functions, computing the
eigenvectors of the graph Laplacian of a permutation
puzzle would be a prohibitively expensive O(n?) opera-
tion, where n is the size the puzzle. Our approach uses
spectral ideas as well, but does not suffer from cubic
run-time costs.

What is an appropriate basis for learning functions
over our permutation puzzles? It turns out that the
puzzles we are interested in solving are groups. Repre-
sentation theory (Serrel [1977)) tells us there is a natural
basis, the Fourier Basis, for expressing functions over
a given group. Using this Fourier basis, we show that
we can learn linear value functions to permutation puz-
zles such as Pyraminx, and the 2-by-2 Rubik’s cube
with far fewer samples and orders of magnitude fewer
parameters than a neural network parameterization.
Our work is the first to demonstrate the efficacy of the
Fourier Basis in reinforcement learning and the first
to propose leveraging the representations of wreath
product groups to solve the 2-by-2 cube.

2 Related Work

Permutation puzzles often exhibit symmetries that can
be exploited to shrink their state space. In the tradi-
tional planning literature, many have proposed various
procedures to handle symmetries in heuristic search.
Fox and Long (1999, [2002), and Pochter et al.| (2011)
try to detect symmetric states during heuristic search
to avoid searching states that are isomorphic to pre-
viously seen states. [Domshlak et al| (2012) tries to
detect symmetries in the transition graph of the puzzle
to avoid redundant search as well. While our work deals
with permutation puzzles that do have symmetries, we
do not explicitly model any of their symmetries since
our focus is on demonstrating the efficacy of the Fourier
basis for value function approximation.

Though they are not commonly known in the machine
learning community, the Fourier basis of the symmetric
group has been used in machine learning and statistics
(Diaconis, |1988) for a variety of applications including;:
learning rankings (Kondor and Barbosa;, 2010 [Kondor
and Dempsey, [2012; [Mania et al., [2018)), and perform-
ing inference over probability distributions on permu-
tations for object tracking (Kondor et al.l |2007; [Huang
et al.l [2009] |2008). These works deal with bandlim-
ited representations of functions over the symmetric
group, but do not address reinforcement learning over
permutation puzzles.

Our work builds on [Swan| (2017)’s which used the irre-
ducible representations of the symmetric group specifi-
cally for solving the 8-puzzle (the 3-by-3 sliding number
tile puzzle). Swan demonstrates that commonly used
A* heuristics for solving the puzzle such as the Ham-
ming Distance, and Manhattan distance, are bandlim-
ited in the Fourier basis. Starting from these heuristics,
Swan uses a derivative-free optimization technique to
find the optimal Fourier coefficients to minimize the
the number nodes explored during A*search. Our ap-
proach differs from Swan’s in that we are learning value
functions (which can eventually be used with heuristic
search) in the reinforcement setting. We also go further
than Swan by demonstrating that reinforcement learn-
ing using the Fourier basis works on wreath product
groups as well the symmetric group.

3 Reinforcement Learning
Background

It is natural to pose the problem of solving permutation
puzzles under the reinforcement learning framework.
We briefly review the key definitions on Markov Deci-
sion Processes. A (deterministic) Markov Decision Pro-
cess is described by a tuple M = (S, A, r,T,v). Here S
is the state space, A is the action space, r: S x A - R
is the reward function, T : S x A — S is the transition
operator of the process. < is a discount parameter
which determines how much future rewards are valued
relative immediate rewards. The goal in reinforcement
learning is to find a policy 7 : S — A that maximizes
long term expected reward under actions drawn from
.

Permutation puzzles are deterministic Markov Decision
Processes where the state space is the set of accessible
puzzle states. The set of actions is the set of legal
moves of the puzzle (for example, face twists for the
Rubik’s Cube). The reward function can be +1 for any
action that transitions directly to the solved state and
—1 otherwise.

3.1 Value Functions

Value based reinforcement learning methods learn a
value function V' : S — R that estimates the long
term reward of a given state, or a value function @ :
S x A — R that measures the long term value of taking
an action at a given state. Given a V or ) function,
we naturally get the following greedy policy: w(s) =
argmax,c 4V (T'(s,a)) or m(s) = argmax,c4Q(s,a)

Value iteration (Bellman, [1957) and Q-learning
(Watkins and Dayan| (1992)) methods iteratively update
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the current value estimate with one-step look-ahead

V(s) +— argmax,c 4 (r(s,a) + 7V (T'(s,a)))
Q(s,a) < r(s,a) + argmax, c 47Q(T'(s,a),a’)

or by minimizing the squared difference between the
two sides of the above update rules over a batch of
states.

V or ) are often parameterized in some class of function
approximators such as neural networks whose parame-
ters are optimized through backpropagation.

4 Mathematical Preliminaries

Recall that a group G is a set of objects endowed with a
multiplication operation -: G x G — G which satisfies
the three properties:

1. the group multiplication is associative: a - (b-¢) =
(a-b)-cforall a,b,ceq.

2. there exists an identity element of G, which we
denote e, such that for every g € G, gre=e-g=g

3. for every g € G, there exists an inverse element
g ted.

The state space of a permutation puzzle naturally forms
a group, since any legal move can be followed by any
other legal move, and also any legal move has an "in-
verse" which just undoes it.

Definition 1 The cyclic group of order m, denoted
Cn, 1s the set of integers {0,1,...,m — 1} with the
group operation being addition modulo m.

Definition 2 The Symmetric group of order n, de-
noted S,, is the set of permutations on n objects,
or equivalently the set of bijections from the set

{1,2,...,n} to {1,2,...,n}.

Definition 3 Given a subset of group elements: S, we
denote by (S) the subgroup of G generated by S, i.e.,
the set of all elements of G that can be expressed as a
finite product of the elements of S and their inverses.
We say G is generated by S if G =(S).

Definition 4 Given a group G and a set of generators
S C G, the Cayley Graph T'(G,S) is a graph whose
vertices correspond to elements of G (in a one-to-one
fashion) and for any two vertices vy and vy, there is
an edge between v, and vy, if there is some s € S such
that s - g = h.

Given a puzzle’s underlying group G and legal puzzle
moves (i.e., generators) S, solving the puzzle can be

(a) (b) ()

Figure 1: 2-by-2 Cube: three possible orientations of a
corner cubie.

recast as finding a path on I'(G, S) from an arbitrary
group element g € G to a solved state d. Without loss
of generality, we take the identity element as the solved
state.

Example 1 The set of legal positions of the Rubik’s
Cube forms a group. The inverse of any face move is the
move twisting the same face in the opposite direction.
The solved state is the identity element. Every legal
cube position is the result of applying a sequence of
90 degree clockwise or counter-clockwise face moves
(Front, Back, Left, Right, Up, or Down) to the solved
state. Any legal cube state g which is produced by the
sequence of face twists: mims ... my, has an inverse:
my = ...myq .

It turns out that in the case of all the permutation
puzzles that we are interested in, the puzzle’s group is
a so-called wreath product group.

Definition 5 Given n copies of a group G, the wreath
product group G1S,, is defined to be the set of elements
(g, h) € G™ x S,, with the group multiplication defined
as:

(91, h1) - (g2, h2) = (g1 - (h2 - g2), hah1),

where the action of h € S;, on g € G" is defined as
[h-gli = gn—13)-

The permutation puzzles that we discuss will be wreath
product groups where G is a cyclic group.

Example 2 The group of the 2-by-2 Rubik’s cube is a
subgroup of the wreath product group: C31Sg. There
are eight moveable "cubies” and each cubie has three
visible colored facets. Each face twist permutes the eight
cubies among themselves while cycling through the three
possible orientations of a cubie (as shown in Fig .

Example 3 Pyraminz (Fig: @) is a three-layered
tetrahedron shaped puzzle similar to the Rubik’s Cube.
The tips and middle layers of the puzzle can be rotated
clockwise or counter-clockwise by %’T There are 4 tips
and 6 edge facets that can be moved. The tips can cycle
between three possible orientations and be moved inde-
pendently of the rest of the layers of the puzzle. Similar
to the cubies of the 2-by-2 cube, the six edge facets get
permuted amongst themselves and cycle between their



Fourier Bases for Solving Permutation Puzzles

two possible orientations (determined by the two colors).
The full group is a subgroup of: (Ca1Sg) x C4.

(a) (b) (c)

Figure 2: Suppose the bottom face of the Pyraminx
puzzle in Fig[2a]is yellow. Rotating the puzzle’s front
two layers clockwise by %” results in Fig Subse-
quently, rotating just the front tip counterclockwise by

%’T results in Fig
4.1 Fourier Analysis on Finite Groups

Classical Fourier analysis gives us the tools to decom-
pose functions on the real line into linear combinations
of sinusoidal basis functions. The harmonic analysis
of functions on permutation groups is defined using
representations and similarly gives us the tools to
decompose functions on the group into the analogous
basis functions. Representations of finite groups have
been thoroughly studied in mathematics (Serre, (1977}
Diaconis|, [1988)), so we will simply give a brief overview
of the main concepts from the field that underpin our
work.

Definition 6 A representation p of a group G is a
matriz valued function: p : G — C%*% that preserves
the group structure: p(g - h) = p(g)p(h). d, is referred
to as the dimensionality of the representation.

Example 4 The permutation matrices of size n X n
comprise a representation for the Symmetric group S, :
p(0)ij =1{o(j) =i} forc €S, and 1 <i,j <n

We say that two representations p; and ps are equiv-
alent if there exists some invertible transformation T'
such that pi(g) = Tp2(g)T~* for all g € G. We can
express this as p; = po.

Given two representations p;andps of G, we can con-
struct larger representations by taking their direct sum:

(o1 @ p2)(g) = ( mioty D ) |

We say that a representation p is reducible if there
exists representations pi, p2 such that p = p; @ pa. A
representation is irreducible if it is not reducible. For
a given finite group G, we can construct infinitely many
inequivalent reducible representations by taking any
number of direct sums of an arbitrary representation
p. However, G only has finitely many inequivalent
irreducible representations.

Example 5 The cyclic group C,, has m irreducible
representations. They are the complex exponentials:
xk(j) = e2mak/m for j € Cpk € {0,1,...,m — 1}
regarded as "1 x1 matrices”.

For notational convenience, we will also refer to irre-
ducible representations as "irreps" going forward. The
group Fourier transform of a function f : G — C at
a given irreducible representation p is defined as:

Fo=>_ f9)nlg). (1)

geG

The inverse Fourier transform is

f(g) |G|ZTrf plg (2)

pPER

One way of looking at the irreducible representations
of a finite group is to view each irreducible p is a col-
lection of d, x d, individual functions p;; : G — C,
with p;;(9) = [p(9)]i;- Recall the property of traces:
Tr[AT B] = vec(A) Tvec(B). The inverse fourier trans-
form of f is just an expansion of f into a linear combi-
nation of these p;; functions.

Theorem 1 |Serrel (1977) Given a complete set of
unitary irreducible representations of a finite group
G, the set of matriz entries of these irreducible rep-
resentations form a complete orthonormal basis for
L(G) ={f : G — C}, the space of functions on G:

L(G) = span{\/d, p;j | 1 <i,j <d,}.

where the inner product on L(G) is defined as:

o

geG

(D, V) (@) =

Going forward, we will also refer to the irreducible rep-
resentation basis as the Fourier basis, as is common
in existing literature (Huang et al.| 2009). Theorem
1 and the definition of the inverse Fourier transform
tell us that we can express any function f: G — C in
fourier space using the matrix entries of the irreducible
representations of G as a basis.

There exist well known constructions for the irreps of
S, such as Young’s Orthogonal Representation (YOR).
We leave the definition of YOR, which can also be found
in Kerber| (1971), to the Supplement. The irreducible
representations of wreath product groups of the form
Cn 1S, are constructed by inducing the irreducible
representations of Young Subgroups of S,, up to S,
(Ceccherini-Silberstein et all |2014)). In Table |1} we
show some examples of the irreps of C3?Sg, the wreath
product group associated with the 2-by-2 cube along
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Table 1: Dimensionality of irreps of C31Sg

Young Subgroup Young Subgroup Irrep  Dim

So x S3 x S3 Djx@x@ 560
Sy X Sy xSy [T xHxH 420
Sy X S3 x S3 mxHH x 2240
Ss X Sy X Sy Bﬂx@jxm 1680

with their dimensionalities. We direct the reader to
our supplement for full details on constructing YOR
and the irreps of wreath product groups which follow
the prescriptions given by [Huang et al.| (2009) and
Rockmore| (1995). For now we just assume that we can
evaluate the irreps of the symmetric group and various
wreath product groups relatively efficiently.

5 Learning a Value Function in the
Fourier Basis

For a permutation puzzle whose states are elements of
an underlying group G, we propose learning a value
function V : G — C in the Fourier basis. Once we
pick a subset of irreducible representations of G to use,
learning a value function amounts to learning their
respective Fourier matrices. Let R be a complete set
of inequivalent irreducible representations of G and
I C R the subset of irreps that we pick. The value
function is then approximated as:

V(g)=>_ Tr(6,) p(g)],

pel

(3)

where 6, € C%*d for p € I are the learnable Fourier
coefficient matrices. Note that the domain of the pa-
rameters may be C instead of R since some irreps of
groups such as the 2-by-2 cube are defined over C (from
its factor of C3). Equation can also be rewritten
as:

V(g) =07 (@D veelp(s))). @)

pel

0= @vec(ﬁp) € Cxperdoxdp,
pel

(5)

where vec is the linear operator that converts a matrix
into a column vector. The scaling factors of %I and
d, from the inverse Fourier transform (Eqn. have
been collapsed into the 6, terms. Using this parame-
terization of the value function, we can use standard
value based reinforcement learning algorithms such as

Q-learning or value iteration to learn V. The number

. L 2
of parameters in V'is: }° ;d;.

[>T, BN N

<

10
11
12
13

14

5.1 Low Rank Fourier Matrices

Depending on the dimensionality of the irreducible
representations that we use to parameterize V', it might
not be feasible to learn dense 6, matrices. We can
circumvent this by parameterizing ¢, as a low rank
matrix: 6, = UprT, where U, € C** W, € Cdo*F
and k < d,. The number of parameters in V' is then:
2k pe1dp-

5.2 Algorithm

Our algorithm for performing value iteration in Fourier
space is Algorithm[I] We follow the general structure of
deep-Q learning popularized by Mnih et al.[(2013}2015);
Silver et al.| (2016]). In each iteration of the main loop,
following |Agostinelli et al.| (2019), we sample a random
walk starting from the goal state of our permutation
puzzle, and store it in our cache/replay buffer. The
contents of the cache are overwritten in a FIFO order
when the cache is full. We then sample a batch of states
S from the cache, compute the argmax neighbor values
according to the auxiliary target network Vj for each
sampled state, and minimize the difference between the
current value and the one-step look ahead value (line
10).

Algorithm 1: Value Iteration in Fourier Space

Result: V)
Input: num epochs T, set of irreps I, batchsize B,
max cache size C, target update interval
K, random walk length [, discount ~
fort <+ 1to T do
Sample a random walk of length [:
(81, S92y ... Sl)
Store (s1, 82, ....,8;) in circular cache
Sample a batch of states S from cache
Sy = stack [vec(p(s)) for all s € S, p € I]
S’ = stack [vec(p(s')) for all s’ adjacent to s
for s € S, p € I
Evaluate Vy(S;) = 01 Sy; V(') =018’
Let S;11 be the argmax neighbors of each
s € S, from V()
R; = stack|l if s is solved —1 for all s € Sy 1]
L(9) = (Va(St) — (Re +7Vj(Se41)))°
Update 6 with VyL(6)
if t mod K == 0 then
| 0«0

end

6 Experiments

We demonstrate the efficacy of the learning over the
Fourier bases of the following three permutation puzzles



Fourier Bases for Solving Permutation Puzzles

using Algorithm (I} Pyraminx (Fig , Sg, and the
2-by-2 cube (Fig|1).

e Pyraminx (without the tips): a subgroup of C5?Sg
with 11520 states, and a diameter of 9. The tips
can trivially be moved to the correct position, so
we choose to ignore them.

e An Sg puzzle with 40320 states and a diameter
of 9. The generators of this puzzle are the Sg
permutations associated with the six valid face
moves of the 2-by-2 cube.

e 2-by-2 Rubik’s Cube: a subgroup of C31Sg with
3.67 x 10° states, and a diameter of 14. Note that
we are using a symmetrized version of the 2-by-2
cube, by modding out the 24 rotational symmetries
of the cube (the full 2-by-2 cube has 88 million
states).

The goal of our experiments is to show that we can
learn effective value functions in the Fourier basis ,
where effectiveness is measured according to:

1. how often does our learned value function give
a locally optimal move at a given state? When
evaluating Vp over all neighbors of a given state,
is the argmax neighbor in fact closer to the goal
state?

2. if we use the value network in a greedy/best first
search manner, how often does this policy reach
the goal state?

3. how well does the value function work when used
in heuristic search?

We compare our models, which we will refer to as
Fourier or irrep models going forward, against deep
value networks (DVN) and an optimal solver, which
simply uses the ground truth shortest path distance
as the value function. These three puzzles are small
enough that we can use Djikstra’s algorithm to compute
the shortest path distance of each state to the goal
state which is also used to compute the proportion of
locally optimal moves. The DVN uses onehot encoding
representations of the puzzles while the Fourier models
use the Fourier basis representations.

Baseline DVIN For Pyraminx and the Sg puzzle, we
parameterize the DVN as a multilayer perceptron with
one hidden layer and rectified linear unit nonlinearities;

the hidden layer sizes were 1024 and 2048 respectively.

For the 2-by-2 cube, the DVN architecture follows a

similar architecture to the one used by |Agostinelli et al.

(2019): five fully connected layers with a rectified linear
unit nonlinearity placed after every non-output layer,
and a skip connection between the output of the 2nd
and 4th fully connected layers. The layers have the
following input and output dimensions: (88, 1024),
(1024, 2048), (2048, 2048), (2048, 2048), (2048, 1),

where 88 is the size of the one-hot encoding of a 2-by-2
cube state. For all puzzles, we decided the number of
layers, hidden layer sizes, and residual layers by doing
grid search. Similar to |Agostinelli et al.| (2019)), we
found that increasing the number of layers did not
improve training while wider hidden layers did.

We trained the Pyraminx, Sg, and 2-by-2 cube models
for a maximum of 60k, 100k, and 300k epochs. For the
2-by-2 cube experiments, we terminated training for
irrep models if they showed no improvement in solves
or locally optimal moves within the last 10k epochs.

Hyperparameters During training, we sample a
random walk of length 15 for Pyraminx, the Sg puzzles,
and a random walk of length 25 for the 2-by-2 cube. All
model parameters were optimized using Adam (Kingma,
and Baj 2014). For all the Fourier models, we used
a learning rate of 0.005 and a minibatch size of 128
for the two smaller puzzles and 32 for the 2-by-2 cube.
For the DVN, we used a learning rate of 0.003 and
a minibatch size of 128. The initial weights of the
the DVN were drawn from a normal distribution with
mean 0 and standard deviation of 0.03,0.05 or 0.1. The
capacity of the circular cache was 100,000 and the tar-
get network was updated every 100 epochs. In our
experience, most of these hyperparameters (except the
model architecture of the DVNs) can be slightly modi-
fied without changing the performance of the models
too much. We picked the various hyperparameters by
randomized grid search: after training DVNs for 10k for
the smaller puzzles or 50k epochs for the 2-by-2 cube
over various parameter settings, we picked the ones
that lead to the highest proportion of locally optimal
moves.

For the Fourier models, the only model parameter to
choose is the set of irreps/Fourier basis functions to
use for parameterizing Vy. Finding the best k irreps to
use would require performing a cross validation over
O(|R|¥) different combinations of irreps, which is not
practical. Instead, for each puzzle, for each irrep p, we
trained a Fourier model using only that single irrep
p over 5000 epochs. We then ranked the irreps by
the proportion of locally optimal moves made over a
random sample of puzzle states. We suspect that a
deeper understanding of the group structure of the
puzzles will inform us on how to choose which irreps to
use which we leave for future work. For further details
on the range of values searched over for the network
architectures, see our supplement.

The algorithm for learning the value function with the
DVN is identical to Algorithm [I] except lines 5 — 6 use
the one-hot encoding of the puzzle states instead of
the irreducible representations and Vj would instead
be a neural network parameterized with weights 6. For
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S;, the one-hot encoding of o € S,, is its corresponding
permutation matrix vectorized. For Pyraminx and the
2-by-2 cube, which are both wreath product groups,
recall that an element of the wreath product group
Cm 1S, can be represented as a tuple (7,0), where
7 € C} and o € S,,. The onehot encoding of 7 is an
m x n binary vector. A onehot encoding of (7,0) is
just a concatenation of the individual onehot-encodings
of 7 and o. So the one-hot encoding of a state of the

Pyraminx puzzle (C21Sg) has length 6 x 6+2 x 6 = 48.

The one-hot encoding of a state from the 2-by-2 cube
(C51Sg) has length 8 x 8 + 3 x 8 = 88.

Evaluation We evaluated the proportion of local
optimal moves made and proportion of random puzzles
solved using a greedy policy in conjunction with the
learned value function every 1000 epochs. We say that
the value function produces a locally optimal move at
state s if the argmax of V' on the neighbors of s is in
fact a state that is closer to the goal state than s. For
the two smaller puzzles, we evaluated the proportion
of locally optimal moves and greedy solves over all the
legal puzzle states. The 2-by-2 cube is too large to do
this for all for all cube states so we instead did this
for a random sample of 1000 cubes. We repeated the
training for each model over five random seeds. In
Figures 3 and 4, we plot the median values of these
metrics with the max and min shaded. All experiments
were run on a GeForce GTX 1080 Ti GPU.

Heuristic search with the value function To get
another measure of how effective these learned value
functions were, we used the Fourier models and the
DVN in A* search and kept track of the number of
states explored. We only do this for the 2-by-2 cube
since a greedy/best first search policy is already quite
effective on the smaller puzzles. A* search results in an
optimal path if the heuristic function used is admissable
(never underestimates the true distance to the goal
state). There are no such guarantees on the Fourier
model or the DVN being admissable heuristics, but it
is reasonable to use A* search since the 2-by-2 is small
enough that the search will eventually terminate after
visiting all states if our value functions are particularly
ineffective as heuristics. We generate 1000 sample
test cubes uniformly and tested the Fourier models
(including the low rank models) and the DVN. A puzzle
state is considered "explored" after we evaluate the
value function on each of its neighbors and add them

on the priority queue of puzzle states to explore next.

In general, it is preferable to have a heuristic function
that requires fewer state explorations. Node statistics
using an optimal heuristic function (Djikstra’s shortest
path) are also shown so that we have a sense of how
suboptimal these value functions performed.

Learning low rank Fourier models One of the
downsides of the Fourier approach is its memory foot-
print. The top 2 irreps of the 2-by-2 cube have di-
mensionality 560 x 560 and 420 x 420. So the learned
Fourier matrices have: 2 x (560% + 420?) = 9.8 x 10°
parameters (note: the factor of two comes from the
fact that the irreps of the 2-by-2 cube are complex
valued). However, as proposed in Section we can
address the scaling issues by learning low rank Fourier
matrices. To demonstrate the feasibility of learning
low rank Fourier matrices, we train rank 1,10 and 100
Fourier matrices for a Fourier model that uses the top
2 irreducible representation of the 2-by-2 cube. We use
these resulting low rank Fourier models in A*search
as well. Plots for the proportion of greedy solves and
locally optimal moves of the low rank Fourier models
are in the supplement.

Discussion Figures [3] and [4] show that our Fourier
approach unequivocally outperforms DVN in terms of
the number of states that need to be seen to learn a
successful policy. Table [2] gives the final proportion
of random puzzles solved using each of the learned
value functions with greedy search and the number
of unique puzzle states seen during training. For the
smaller puzzles, the DVN is still a reasonable policy and
with more training would likely outperform the Fourier
models. For the 2-by-2 cube, the difference between the
DVN and the Fourier models is substantial: the Fourier
models learn can solve up to 86% of the sampled cubes
while the DVN can only solve around 14% at most
under a greedy policy. It is not entirely surprising that
the Fourier models would outperform the DVN since
the DVN must learn a representation from the one-hot
encoding of puzzle states. As shown in Table [3] when
the Fourier based value functions are used in heuristic
search, we solve all the randomly sampled test cubes
within the allotted state exploration budget. The irrep
models do not find optimal (shortest) paths to the
solved state (in terms of number of states explored),
but considering the number of unique cube states they
were trained on (especially the low rank models), we
believe the performance is noteable.

Our results lend support to the common complaint
that deep reinforcement learning is quite sample in-
efficient. Using one-hot encodings and deep neural
networks as function approximators for solving per-
mutation puzzles is attractive because they avoid the
need for any domain expertise; the dynamics of the
puzzle can be learned by sufficiently sampling the state
space. We show that there is a middle ground between
using domain knowledge and learning from the sampled
puzzle states through reinforcement learning by using
the Fourier basis. We can still learn effective value
functions through the same value iteration techniques
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Figure 4: Proportion of puzzles solved with greedy policy

and we can do so much more efficiently in the Fourier
basis, which are intrinsic to each puzzle.

7 Limitations and Future Work

While there are concerns on how well this method can
scale, the effectiveness of the low rank Fourier models
gives us hope that we can extend this work to larger
groups, including the 3-by-3 Rubik’s Cube. The 3-by-3
Rubik’s cube’s group is a subgroup of (C31Sg) x (Ca2
S12), where Cy 1S5 is the group that corresponds to
how the twelve edge facets of the 3-by-3 cube permute
amongst themselves. Its irreducible representations
are the tensor products p ® ¢, where p is an irrep
of C31Sg and ¢ is an irrep of C5 1 S15. The resulting
Fourier matrix has size (d, x dg) x (d, X dy). To learn a
value function V for the Rubik’s Cube group, we would
likely parameterize the learnable Fourier matrices in
the value function V' as the tensor products of low
rank matrices to make the problem tractable. Another
potential saving grace is that these irreps of wreath
product groups are quite sparse as we describe in detail
in the supplement.

The main challenge of applying this Fourier basis ap-
proach to larger groups is that computing their basis
functions/irreps gets progressively more difficult. For

wreath product groups, we need to compute induced
representations, which involve identifying how various
cosets are permuted by a given group element. For a
group as large as Cy 1 S12 that has 4.9 x 10! elements,
we would likely need to employ tools from computa-
tional group theory such as the Schreier-Sims algorithm
as a subroutine for these coset related
tasks. Luckily, Schreier-Sims and its variants do run
in polynomial time (polynomial in the log size of the
group and the order of the base symmetric group).
The irreps also get much larger but remain sparse. The
largest irrep of C51S;2 has dimension 202752, but also
only has 202752 nonzero entries so they can be stored
in sparse matrix format. While this all seems quite
expensive, recall that the size of this group is already
too large to even run a breadth first search over.

Finding the top irreps to use in the value function
remains a nontrivial and open ended research question.
Our method of ranking the irreps based on how well
each of them performed on a short training run may
be too computationally expensive for larger groups.

8 Conclusion

We developed a novel approach for solving permutation
puzzles using the Fourier basis of each puzzle’s under-
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Table 2: Proportion of puzzles solved by greedy search

Puzzle Model Parameters % Greedy Solves (& std) % States seen Train time (hrs)
Pyraminx DVN 1.1 x 108 96.2 +£0.7 100 2.5
Top 8 Irrep 9.5 x 103 65.4£1.7 100 1.1
Top 16 Irrep 1.4 x 10* 84.1+1.4 100 1.2
Top 24 Irrep 1.7 x 104 96.9 £ 0.7 100 1.3
Ss DVN 4.3 x 10° 77.0+0.9 93.8 2.9
Top 2 Irrep 8.0 x 103 81.6 0.1 93.8 1.6
Top 3 Irrep 9.2 x 103 93.1+£0.7 93.8 1.6
Top 4 Irrep 1.2 x 104 95.24+1.5 93.8 1.7
2-by-2 Cube DVN 1.0 x 107 1144+2.1 47.6 14.5
Top 1 Irrep 6.3 x 10° 67.3£22 19.2 9.2
Top 2 Irrep 9.8 x 10° 86.6 0.7 13.2 12.3
Top 2 Irrep - Rank 1 2.8 x 10° 94+1.1 4.5 2.9
Top 2 Irrep - Rank 10 2.8 x 10* 477+ 14 4.5 3.0
Top 2 Irrep - Rank 100 2.8 x 103 58.8£1.3 4.5 3.5
All Puzzles  Opt Solver(Djikstras) - 100 100% -

Table 3: 2-by-2 cube A* search solve statistics

Number of states explored

Model Solved ‘ Lower Quartile Median Upper Quartile
Opt Solver(Djikstras) 100% 10 11 11

DVN 100% 25 67.5 179.75
Top 1 Irrep - Full Rank  100% 12 13 16

Top 2 Irrep - Full Rank  100% 11 12 14

Top 2 Irrep - Rank 100 100% 11 13 16

Top 2 Irrep - Rank 10 100% 12 14 17

Top 2 Irrep - Rank 1 100% 13 18 25

lying group. Our method learns a more effective policy
for solving the 2-by-2 cube using far fewer samples
than the existing standard deep reinforcement learning
method. As far as we are aware, this is also the first
application of the representation theory of wreath prod-
uct groups and the symmetric group in reinforcement
learning.
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