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Abstract

Reparameterization (RP) and likelihood ratio
(LR) gradient estimators are used to estimate
gradients of expectations throughout machine
learning and reinforcement learning; however,
they are usually explained as simple mathe-
matical tricks, with no insight into their na-
ture. We use a first principles approach to ex-
plain that LR and RP are alternative methods
of keeping track of the movement of probabil-
ity mass, and the two are connected via the
divergence theorem. Moreover, we show that
the space of all possible estimators combining
LR and RP can be completely parameterized
by a flow field u(x) and importance sampling
distribution ¢(z). We prove that there cannot
exist a single-sample estimator of this type
outside our characterized space, thus, clarify-
ing where we should be searching for better
Monte Carlo gradient estimators.

1 INTRODUCTION

Both likelihood ratio (LR) gradients (Glynn, 1990;
Williams, 1992) and reparameterization (RP) gradi-
ents (Rezende et al., 2014; Kingma and Welling, 2013)
give unbiased estimates of the gradient of an ex-
pectation w.r.t. the parameters of the distribution:
%Ep(x;g) [¢(x)]. This gradient estimation problem is
fundamental in machine learning (Mohamed et al.,
2019), where the gradients are used for optimization.
LR is the basis of many reinforcement learning (RL)
(Sutton and Barto, 1998; Schulman et al., 2015b, 2017;
Sutton et al., 2000; Peters and Schaal, 2008) and evo-
lutionary algorithms (Wierstra et al., 2008; Salimans
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et al.; 2017; Ha and Schmidhuber, 2018; Conti et al.,
2018). In RL, ¢(x) represents the sum of rewards, and
are the policy parameters. RP, on the other hand, is the
backbone of stochastic variational inference (Hoffman
et al., 2013), where ¢(z) is the evidence lower bound,
and 6 are the variational parameters. For example, RP
is used in autoencoders (Kingma and Welling, 2013).
There is a vast body of research on both estimators
(App. A), and there is no clear winner among RP and
LR—both have advantages and disadvantages.

LR uses samples of the value of the function ¢(x) to
estimate the gradient, and is usually derived as

e ) = [ D 0y
= [ p(a:6) o S P ot
/ dlogp(x ) dlogp (@36) o \q
=Ep(z:0) [géogp(x 9)¢(x)
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On the other hand, RP uses samples of the gradient
of the function %(x), and it is derived by defining a
mapping g(e; ) = x, where ¢ is sampled from a fixed
simple distribution, p(¢), independent of 6, but x ends
up being sampled from the desired distribution. For
example, if x is Gaussian, z ~ N (u, o), then the re-
quired mapping is g(¢; 0) = p+ oe, where e ~ AN(0,1),
and the RP gradient is derived as

4 By 6@)] = B [0 o(c:0))]

L)

) do (g(e;0)) dg(e; 6)
= Le~N(0,1) dg 46 )
(2)
where 0 = [y, 7], g—i =1 d—i = e and 734’(9(6;9)) = Sf(m).

What do these derivations mean, and what is the re-
lationship between the two methods? We give two
possible answers to this question: (i) we give a first
principles explanation that these are different methods
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of keeping track of the movement of probability mass
(Sec. 3), (ii) we show that RP and LR are duals under
the divergence theorem when considering the integral
of a probability mass flow (Sec. 4). Our theory gives
a physical insight by analogy to fluid dynamics, and
allows for intuitive visualizations. Our main technical
result is in Thm. 3, where we formalize a generalized
estimator that includes all previous LR and RP gradi-
ents as special cases, and we prove that there cannot
exist an estimator of this type outside our characterized
space. Finally, we advocate for a systematic approach
in the search for novel gradient estimators (Sec. 5).

2 PRELIMINARIES

We introduce some preliminaries. In Eq. (4) we intro-
duce a general form of all gradient estimators of the
LR-RP type. Sec. 2.2 explains that the introduced
equation indeed includes RP as a special case. Sec. 2.3
introduces the Monte Carlo (MC) integration principle,
which provides a link between integral expressions and
the corresponding gradient estimators. Sec. 2.4 intro-
duces previous works on the relationship between LR
and RP, and the limitations of these works. Sec. 2.5
gives basic knowledge about fluid dynamics and the
divergence theorem necessary for understanding Sec. 4.

2.1 Setup

Problem statement. Given one sample © ~ q(x),
and while being allowed to evaluate ¢p(x) and Vzo(x),
construct an estimator, Ey,, which may depend on
z,9(x) and Vyo(x), s.t.

d
Eq@) [Eoi] = 75

To obtain an estimator for the full gradient w.r.t. 8
(as opposed to the derivative w.r.t. one element of the
parameters 6;), we can stack the estimators together:
Ey = [Ey,, Ep,,...]. Note that, while in the problem
statement we consider one sample,  ~ ¢(x), the es-
timators can also be used with multiple samples in a
batch by averaging the estimates together. The main
reason we explicitly write out this problem statement is
to emphasize the format based on having access to ¢(x)
and Vzo(x). We will further restrict our discussion to
estimators having the following product form:

Ep, = ug, () - Vo o(x) + Yo, (2)0(2),  (4)

where wug, () is an arbitrary vector field, and 1y, (x)
is an arbitrary scalar field (a function). Essentially,
this equation is taking a weighted sum of the partial
derivatives and value of ¢(x), with a different weighting
defined at each . Both LR and RP belong to this class

of gradient estimators. Assuming that the sampling
distribution is g(x) = p(x; ), we obtain LR by setting
ug, () = 0, and 1y, (x) = %@;9). Note, that in

Eq. (2), RP also has a %(m) term, so it seems that
it may also be described by the class of estimators in
Eq. (4); however, there is a coordinate transformation
to the e-space, which may cause some confusion. In
Sec. 2.2, we clear this confusion and show that, indeed,
RP also belongs to the given class of estimators.

2.2 Coordinate Transformations

In Eq. (2), M = %(m) requires no reference to e,
and could be computed by just knowing the x corre-
sponding to the e. Moreover, each ¢ is always in a one-
to-one correspondence with a particular .2 Therefore,

W ig(“e) could be computed

by directly sampling x ~ p(x;#), converting it to the
corresponding €, and computing the estimator. We
denote the mapping from z to € with ¢ = S(z;0), and
call S the standardization function. This function is the
inverse of the RP transformation, x = g(e; 6), defined
in the introduction. The standardization function was
used in implicit reparameterization gradients (Figurnov
et al., 2018) to create an estimator without reference to
€ that is applicable to a broader class of distributions
than typical reparameterizations. The main point we
wanted to emphasize here is that there is no need to
refer to coordinate transformations at all to define RP
gradients, and the e-space is just a convenience that
makes it easier to apply RP using automatic differen-
tiation. In particular, given a sample z ~ p(x; ), the

dé(z) 0g(e;0)
da 00

the whole estimator

RP estimator can be written as ,
e=S5(x;0)

0g(e;0)
0

where Z7== corresponds to ug, ().
s

e=S(z;0)

2.3 Importance Sampling/MC Integration

Definition 1 (Integral expression). An integral ex-
pression is denoted by fQ f(z)dz, and it comprises the
domain of integration ), the function f(x), and the
measure of integration corresponding to dx.

The reason we make such a seemingly trivial definition
is to distinguish between the integral expression and
the wvalue of the integral. For example, the integral
expressions corresponding to the LR gradient (Eq. (1))
and the RP gradient (Eq. (2)) are different, but they
evaluate to the same quantity. Thus, there is a duality
between the integrals; however, it is not clear how this
duality arises. In Sec. 4 we explain that the integrals
are duals under the divergence theorem. Next, we

2Here, we assume that g is invertible as is usually the
case; however, this assumption can be easily lifted by inte-
grating across the pre-image of z (App. E.1).
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explain how these integral expressions are related to
the gradient estimators via importance sampling.

MC integration: Any integral [ f(z) da can be
estimated using Monte Carlo integration as follows:

[1@aa= [ q<x>£((jj
(

s
v ]

q\xr

dx
(5)

where we are importance sampling from z ~ ¢(z).
From this method, we see that the LR gradient es-

timator Frr = wwm)/q(a@)
the MC integration principle to the integral expres-
sion Iyr = f%d)(m)dx, when q(z) = p(xz;0).
Moreover, the integral expression corresponding to

RP is given by Irp = [ p(z;6) d¢(x) 33(6 i’ =S (x:0) dz,

and the gradient estimator for general g¢(z) is

p(x:0) dé(x) 9g(e:0) :
o) du (a0 In general, given

an integral expression for a gradient estimator, one can
always construct the estimator by directly applying
MC integration. But the reverse is also true—given
an estimator, F, one can always construct the inte-
gral expression as [ = f FEdgq, where the dg indicates
that we are integrating w.r.t. the measure correspond-
ing to ¢ (dg can be considered as being equivalent to
q(z)dx). Thus, there is a one-to-one correspondence
between the estimator and the integral expression, given
the sampling distribution, q(x). Previously, in machine
learning (ML), importance sampling was suggested as
a principle for LR (Jie and Abbeel, 2010), but the link
to RP has not been discussed in ML. We on the other
hand, suggest importance sampling as a key component
of any gradient estimator, including RP.

arises by applying

Erp =

2.4 Prior Work on the Relationship between
LR and RP Gradient Estimators

Measure theoretic view: LR and RP gradients are
well-studied in operations research (L’Ecuyer, 1991),
where their relationship has been described in terms
of measure theory (L’Ecuyer, 1990). They defined the
problem as finding the gradient of an expectation of a
function ¢(w; @) where the expectation is taken w.r.t. a
probability measure Py. Here, w represents a sample in
this space, and, unlike our previous definition, ¢ may
also depend on . Then, by sampling w.r.t. a different
probability measure GG, independent of 6, on the same
space, the expectation can be written as

/gbdePg /mue@dc; /gbw@LgdG’

(6)

where Ly = % is the Radon-Nikodym derivative, a

function f, s.t. Py(A) = [, fdG, where Py(A) denotes
the measure of set A. pr(w; 0) and g(w) are the pdf’s of
Py and G respectively, then we simply have Ly = %

is the likelihood ratio. Differentiating w.r.t. 8 gives

_ _ [ do(w;0)

dLg
+ o(w; 0)— 0 dG.
(7)
Now, depending on how the probability space Py is
defined, one obtains either the likelihood ratio gradient
or the reparameterization gradient. If w := z, then ¢

is independent of 6, so w

the likelihood ratio gradient term gaﬂ = W/q(z),
which is the same as in Eq. (1), except that importance
sampling from ¢ is used (set ¢ = p to get exactly the
LR gradient). On the other hand, if w = €, and ¢(e; 0)
is defined as ¢ (g(e; 0)), then L is independent of 8, and
one is left with only the reparameterization gradient
term w, as in Eq. (2).

A strength of this view is that it shows that LR and RP
lie at opposite ends of a spectrum of estimators using
both derivative and value information of ¢. However,
the additional intuition is still limited, as the theory
does not explain how these opposite ends are related,
and how to convert between the two—the theory only
says that if one can choose probability spaces with
specific properties, one obtains either RP or LR, but it
does not explain how to achieve the desired properties.

= 0, and one obtains

Stein’s identity/integration by parts: Another
work on policy gradients (Liu et al., 2017) showed a
connection between RP and LR via Stein’s identity:

/p(x;Q) <3313ng($;8)¢($) + 3;1;(@

however, note that the derivative here is w.r.t. x, not
0. They showed algebraically that it generalizes to
derivatives w.r.t. 8, but to do so, they put infinitesimal
Gaussian noise on x, and the additional intuition from
their work is still limited.

)de; (8)

Ranganath et al. (2016) presented a derivation based on
integration by parts, which can be seen as a generalized
view compared to Stein’s identity. We present this
derivation and discuss it below.

Integration by parts is described by the identity:

b
/ F(@)h(z)da
[ ] - [ e
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We apply this identity on the integral for LR:

/+DO wQﬁ(aﬂdm: [/z jz(z 00 ]

— 00

+oo
/ / dp(z; 9 d¢(x) .
* dx
(10)
We can simplify as follows:
* dp(z; 0 d [* dQ(x; 0
_ dg( : )dz: @/_Oop(z;e)dz: 7(152( : ),
(11)
where Q(z;0) is the cumulative density function. The
first term in Eq. (10) disappears because w =0
at = o0, and we end up with
. —1 dQ(z;0) dé(z) ,
/p(m,@) (p(x;@) dé ) dx de (12)

—1 dQ(z;0)
p(z;0) dO

Eq. (4). 3 In the one-dimensional case, it turns out that
this estimation method is the same as RP; however, the
theory is still limited in several ways: (i) the derivation
only considers one particular ug, () as opposed to an
arbitrary one, (ii) in multiple dimensions, there are
other RP gradients not conforming to this equation
(Jankowiak and Obermeyer, 2018), (iii) the additional
intuition from the derivation is limited—it appears to
be just another “trick”. It was suggested that the
derivation is insightful, because the analytic computa—

tion of the zero term, [ff dp(z =0 4z p(a) =0, is
— 00

a reason for why RP has lower variance than LR (Ran-
ganath et al., 2016; Cong et al., 2019). However, this
argument is unsound because, on the contrary, adding
a negatively correlated 0-mean random variable to the
estimator, known as a control variate, is a common
technique to reduce the variance (Greensmith et al.,
2004a). Moreover, RP is not guaranteed to have lower
variance than LR. For example, Parmas et al. (2018)
showed a practical situation where LR is 10 more ac-
curate than RP due to chaotic dynamics in the system.
Other works showed toy problems where LR outper-
forms RP (Gal, 2016; Mohamed et al., 2019). Finally,
it is unclear why analytically integrating a variable
added to the integral expression should be related to
the variance to begin with (as opposed to integrating
a random variable in the estimator, a technique known
as conditioning/Rao-Blackwellization (Owen, 2013)).

We can see that is equivalent to ug, (x) in

In conclusion, previous theories of the connection be-
tween RP and LR are still limited.

3Note that substituting = x leads to w = p(x;0),
and the equation becomes Stein’s identity in Eq. (8), show-
ing that integration by parts generalizes it.
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Figure 1: Illustration of the divergence theorem.

2.5 Vector Calculus and Fluid Dynamics

Our unified theory in Sec. 4 relies on considering a
“flow” of probability mass, so we give some background
information. We illustrate the background in the 3-
dimensional case, but it generalizes straightforwardly
to higher dimensions.

Notation:
F = [Fy(z,y,2), Fy(z,y, 2), F.(x,y, 2)] is a vector field.
o(z,y,z) is a scalar field (a scalar function)

Divergence operator: V- F' = 6mz +3 6u +

Gradient operator: V¢ = {%, g—i, g—f}.

The vector field F' could be, for example, thought of as a
local flow velocity of some fluid. If F' is the density flow
rate, then the divergence operator essentially measures
how much the density is decreasing at a point. If
the outflow is larger than the inflow, then the density
decreases and vice versa. The divergence theorem,
illustrated in Fig. 1, shows how this change in density
can be measured in two equivalent ways: one could
integrate the divergence across the volume, or one could
integrate the inflow and outflow across the surface.

Theorem 1 (Divergence theorem).

/V~FdV:/F‘dS.
1% s

Proof. To prove the claim, consider the infinitesimal
box in Fig. 1. The divergence can be calculated as

/ V- FdV = dzdy (gF + gjy) . (14)

(13)

On the other hand, to take the integral across the
surface, note that the surface normals point outwards,
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(a) LR probability “boxes”

2.00

(0 )

(b) RP probability “boxes”

Figure 2: LR keeps the boundaries of the “boxes” fixed, while RP keeps the probability mass fixed.

and the integral becomes

/F.dS:§y <Fgc+F3c aFI{Fx)
S

ox

+ oz (—Fy +F, + 25/51/) (15)

OF, OF,
-o (G 5),

which is the same as the divergence. To generalize this
to arbitrarily large volumes, notice that if one stacks
the boxes next to each other, then the surface integral
across the area where the boxes meet cancels out, and
only the integral across the outer surface remains. O

For an incompressible flow, the density at any point
does not change, and the divergence must be zero.

3 A PROBABILITY “BOXES”
VIEW OF LR AND RP
GRADIENTS

Here we give our first explanation of the link between
LR and RP gradients, illustrated in Fig. 2. In short,
LR gradients estimate the change in expectation by
measuring how the probability mass assigned to each
¢(x) located at a fixed z changes, whereas RP gra-
dients define “boxes” of fixed probability mass, keep
track of where this “box” moves as the parameters 6
change, and measure how the value ¢ corresponding
to this “box” changes. For the ease of the explana-
tion, consider a discrete space, where z ~ P(x;0) can
take N possible values. The continuous case can be
recovered by letting N — oo. Fundamentally, the
expectation, Ep (. [¢()], is a weighted average of

function values Zf\il P(x;)¢(x;), where the weights

sum to one: vazl P(z;) = 1. Therefore, to determine
the expectation, we must determine how the probability
mass is allocated to the different ¢(x;) values. We can
envision two different allocation procedures: (i) for each
o(x;) at a fized x;, we determine how much probability
mass P; we assign to it; (ii) we predetermine the sizes of
the “boxes” of fized probability mass P;, then, for each
box with weight P; we assign one of the available ¢(z;)
values. Now, to measure the gradient of the expectation,
%Ep(x;g) [¢(x)], one must measure how the probability
mass is reallocated as the parameters 6 are perturbed.
We will see that allocation procedure (i) corresponds
to LR gradients, whereas (ii) corresponds to RP gra-
dients. A full formal derivation is given in App. C,
but reading it should not be necessary to understand
the concept, which we explain intuitively below. To
perform the estimation, first note that the gradient is

given by 45 S | P(z:)é(w:) = SN, &5 (P(ai)d(x,)).

LR estimator: In case (i): ¢(z;) is fixed, so
S (P(z)d(2)) = %ﬂmi), and to estimate the
gradient, one must measure how the weight assigned to
each particular ¢(x;) changes. This corresponds pre-
cisely to what the LR gradient estimator does. To see
this, first consider that any integral can be estimated
by importance sampling from a distribution ¢(z), and
using MC integration, as shown in Eq. (5). Now, we set
q(x) = P(x;0), sample z; ~ P(x;0), and use the gra-

dient estimator E = ﬁ jg(mi)ﬂmi). Then this will
Note

satisfy Eq,wpao) [B] = Yy 35 (P(i)é(x:)).
that ﬁ 35(‘“;0) = 3—9 log P(z;;6), and we see that
it is the same as the LR gradient in Eq. (1). The trans-
formation to the log term is known as the log-derivative
trick, and it may appear to be the essence behind the
LR gradient. However, actually the multiplication and

division by P(z;60) is just a special case of the more
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general MC integration principle. Rather than thinking
of the LR gradient in terms of the log-derivative term,
it may be better to think of it as simply estimating
the integral of the probability gradient by applying
the appropriate importance weights. Sometimes, the
LR gradient is described as being “kind of like a finite
difference gradient” (Salimans et al., 2017; Mania et al.,
2018), but here we see that it is a different concept
that does not rely on fitting a straight line between dif-
ferences of ¢ (App. B), but estimates how probability
mass is reallocated among different ¢ values.

RP estimator: In case (ii): P(z;) is fixed, but ¢(z;)
may change—such a situation can occur when one has
a fixed amount of probability mass P; in the “box”,
but the location, x;, changes. In this case, we have
G (P(zi)o () = Plag) G2 = Pe) 25 45+, and
to estimate the gradient, one must measure how the
function value ¢ in the “box” changes. For exam-
ple, consider shifting the mean location of a Gaus-
sian distribution by du, hence, also shifting the lo-
cation of each of the “boxes” by the same quantity,
as depicted in Fig. 2. The probability inside the
box would stay fixed, but the function value ¢ would
change. This situation corresponds to the RP gradi-
ent in Eq. (2). In this case, the position of the “box”
is defined by x; := g(e;;6), and the probability den-
sity assigned to ¢; stays fixed at p(e;). Finally, note
that we can construct an estimator F = df(gc‘) dz; 1y

sampling from x; ~ P(x;), and this will be unblased

Eaimp(ai0) [E] = Siey 33 (P(2:)(x1)).

We see that LR and RP are estimating the same quan-
tity; the difference lies just in the way how one keeps
track of the movement of the probability mass: LR
measures how the probability mass assigned to a fixed
location z; changes, whereas RP measures how the
function value ¢ corresponding to a moving “box” of
probability mass changes.

4 A UNIFIED PROBABILITY
FLOW VIEW OF LR AND RP
GRADIENTS

Here we give another explanation of LR and RP. In
this theory, both LR and RP come out of the same
derivation, thus showing a link between the two. In
particular, we define an incompressible flow of proba-
bility mass imposed by perturbing the parameters 6
of p(x;8), which can be used to express the derivative
of the expectation as an integral over this flow. LR
and RP estimators correspond to duals of this integral
under the well-known divergence theorem (Thm. 1).

The main idea resembles RP, but in addition to

sampling @, we sample a height h for each point:

h = enp(x;0), where €, ~ unif(0, 1), i.e., the sam-
pling space is extended with an additional dimen-
sion for the height & := [x”,h]T, and we are uni-

formly sampling in the volume under p (x;6). The
definition of g in the introduction is extended, s.t.
Glex, en) =@ = [g(ex)T, enp (x;0)]T. The expectation
turns into

G [r@o @i
=5 [ | pearteo

z/Vm@%%WWZ/Vw@WM@wWW
174 174

(16)
In Eq. (16), V is the volume under the curve of p(x; ),
and ¢([x7,h]T) = ¢(x) ignores the h-component.
Each column i of Vyg(e,,e€n) corresponds to a vec-
tor field induced by perturbing the i*" component of
0. The red lines in Fig. 3 show the flow fields for a
Gaussian distribution as the mean and variance are
perturbed. The other term, Vz¢(&), is the gradient
of the scalar field ¢(&). As ¢ is independent of h, the
gradient is parallel to the & axes with magnitude %.

According to the divergence theorem in Eq. (13), the
volume integral in Eq. (16) can be turned into a surface
integral over the boundary S (dS is a shorthand for
ndS, where n is the surface normal vector), depicted
by the blue lines in Fig. 3.

In Eq. (13), F is any vector field. A common
corollary arises by picking F' = ¢v, where ¢ is a
scalar field, and v is a vector field. We choose
v = Vyg(es,€p)00, where 50 is an arbitrary per-
turbation in 6, so that F = ¢(Z)Vggj(es,e€x)d0, in
which case Vz - F = Vjz - (¢(2)Vgg(ey,e€r)00) =
Vzd(Z)Vog(€er,€r)00 + ¢(&)V s - Vog(es, €n)00. Note
that the term Vyg(e,, €,)00 corresponds to an incom-
pressible flow (because the probability density does
not change at any point in the augmented space).
As the divergence of an incompressible flow is 0,
Vi - Vog(ez,en)00 = 0, and the second term disap-
pears. Noting that 66 can be canceled, because it is
arbitrary, we are left with the equation:

(‘(N](E;m eh)) dezdep,

/ Vad(@)Voii(es, en)dV = / $(&)Voii(cs. en) - dS.

(17)
Now we explain how the left-hand side of Eq. (17) gives
rise to the RP gradient estimator, while the right-hand
side corresponds to the LR gradient estimator.

RP estimator: Consider the Vz¢(Z)Vog(es,€n)
term. As the scalar field ¢(&) is independent of the
height location h, the component of the gradient in
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BN Probability flow
BN Surface normals
1.754

(a) p flow lines

2.00
B Probability flow
1.751 B Surface normals

(b) o flow lines

Figure 3: Probability flow lines when p and o are perturbed.

that direction is 0, and Vz¢(&) = [Ve¢(x),0]. As the
h-component is 0, the value of g in the h-direction is
multiplied by 0, and is irrelevant for the product, so
Vad(@)Voil(er n) = Vad(@)Vag(e,), which is just
the term used in the RP estimator. Hence, the left-
hand side of Eq. (17) corresponds to the RP gradient.

LR estimator: We Will show that the LR estimator
tries to integrate [¢¢(Z)Vog(es,en) - dS. To do so,
note that dS = ndS. It is necessary to express the
normalized surface vector n, and then perform the
integral over the surface. The derivation is in App. D.2,
and the final result is

/o> 5)Voi(ersen) - dS = /¢ ydp(@i0)
(18)

We have already seen that MC integration of the right-
hand side of Eq. (18) using samples from p (x; 0) yields
the LR estimator. Thus, RP and LR are duals under
the divergence theorem. To further strengthen this
claim we prove that the LR gradient estimator is the
unique estimator that takes weighted averages of the
function values ¢(x).

Theorem 2 (Uniqueness of LR estimator).
’L/J(:l:) (a: 0) 55 M is the unique function 1, s.t.

[(z)p(x)dx = 55 [ p(z;0) ¢(x)dx for all .

v #F f, st
) dx for all ¢. Rear-

Proof. Suppose that there exist
[o(@)yi(@) dz = [d(a
range the equatlon into f qb 1/)(33) — f(x)) de =0,
then pick ¢(x) = ¢¥(x) — f(x) from which we get
[ ((x) = f(x))® de = 0. This leads to ¢ = f, which
is a contradiction. Therefore, there cannot exist such
1 # f that satisfy the condition for all ¢. O

The result also follows from the Riesz representation

theorem (Riesz, 1907). From the theorem, we see
that Eq. (18) was immediately clear without having
to go through the derivation in App. D.2. The same
analysis does not work for RP (App. E.1). Indeed,
there are infinitely many RP gradients (Jankowiak and
Obermeyer, 2018).

Characterizing the space of all LR and RP es-
timators: Now we can derive a concrete form of all
estimators in the abstract class in Eqgs. (4) and (7).
The flow theory assumed that the flow is aligned with
the change of the probability density. We can lift this
restriction by subtracting the excess probability mass
(App. E.2), giving a general gradient estimator com-
bining both ¢(x) and V ¢(x). This characterization
is formalized in the theorem below.

Theorem 3 (The probability flow gradient estimator
characterizes the space of all LR-RP gradient estima-
tors). Given a sample, © ~ q(x), every unbiased gradi-
ent estimator, Ey,, s.t. Eq(q) [Ep,] = g—eiEp(m;g) [p(x)],
of the product form in Eq. (4),

By, =v(x) - Voo () + Y (2)d(x),

where ¢ is an arbitrary function, and assuming®
p(x; 0)v(x)d(x) — 0 as ||z|| = oo, is a special case of

“Note that the case where p (z; 6) ¢(z)v(x) £ 0 does not
correspond to any sensible estimator, because the value of
¢(x) at ||| — oo will influence the gradient estimation. In
that case, because p (x;0) — 0 the probability of sampling
at infinity will tend to 0, and the gradient variance will
explode. This condition does however mean that if one
wants to construct a sensible estimator, care must be taken
to ensure that wg, (x) does not go to infinity too fast, e.g.,
as explained by Jankowiak and Karaletsos (2019).
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the estimator characterized by

Eei = pq(:fi:)g) Uy, (.’E) : vw(b(m)
b (Ve 0w @) + 2D ),

(19)
where wg, is an arbitrary vector field. Note that, for
simplicity, we also assumed continuity of p, ¢ and ug, ;
however, this is unnecessary, and discontinuities are

handled in App. E.4.
Proof. 1t is analogous to Thm 2. See App. E.2. O

The theorem says that given v, one can derive the
unique v necessary for unbiasedness. Thus, the proba-
bility flow gradient in Eq. (19) generalizes all previous
LR-RP gradients in the literature, as well as all pos-
sible gradient estimators having the product form in
Eq. (4).° By setting ug, () = 0 one recovers LR; by
setting Vg - (p (; 0) ug, () + w = 0, one recovers
the pathwise estimators described by Jankowiak and
Obermeyer (2018).5 Estimators combining both ¢(x)
and Vg ¢(x), such as the generalized RP gradient (Ruiz
et al., 2016b), also conform to Eq. (19) (App. E.3).7
Moreover, estimators in discontinuous situations, such
as the GO gradient (Cong et al., 2019) or RP gradi-
ents for discontinuous models (Lee et al., 2018) also
conform to this equation when taking into account for
the discontinuities (App. E.4).

The terms in Eq. (19) can be readily interpreted. First
note that ¢(x) is just a factor due to MC integration
by sampling from ¢ (Sec. 2.3). The remaining terms
can be made analogous to fluid motion. In the analogy,
perturbing 6; is equivalent to perturbing time mea-
sured in seconds (s), p(x; 0) is equivalent to the density

5Note, there still exist other gradient estimators that do
not have the form wu(x) - Vgo(x) + ¢ (x)d(x), e.g., gradi-
ent estimators with coupled samples (Walder et al., 2019;
Mohamed et al., 2019), or gradient estimators using %.

5The work of Jankowiak and Obermeyer (2018) was
concurrent to our initial derivations, and is the most similar
publication to ours. They also used the divergence theorem,
but they focused on deriving new pathwise estimators, and
did not discuss the duality between LR and RP.

"Note that it is an open question whether the gener-
alized RP and probability flow gradient estimator spaces
are equal. To show that they are equal, one would have to
find a generalized reparameterization corresponding to each
arbitrary wug, (). One main difficulty would arise if one
requires a single reparameterization to simultaneously corre-
spond to multiple different g, (&) and ue, (x) for different
dimensions ¢ and j of the parameter vector . However, we
believe that if finding such reparameterization is possible
at all, the reparameterization corresponding to some com-
plicated flow field may be quite bizarre, while in the flow
framework, one just has to do a dot product between the
flow and the gradient to compute the estimator.

measured in fn—gg, and wuy, is equivalent to the flow ve-
locity measured in . The term, p(x; 0)ug, (x), is the
probability mass flow rate per unit area, as is clear
from multiplying the units: % X o= l;i/; The term
Ve - (p(2;6) ug, (x)) is the divergence of the probabil-
ity mass flow rate, and it tells us the rate of change
of density at & with a corresponding ¢(x) caused by
the probability flow, p(x; 0)ug, () (see Sec. 2.5). The
p(x;0) ug, (x) - Vyd(x) term, on the other hand, gives
the rate of change of the ¢(x) corresponding to a point
moving on the probability flow. Integrated across the

whole volume, the two terms involving wuy, cancel out,

leaving only the W term. The probability flow
estimator could thus also be interpreted as adding a
control variate to the standard LR gradient estimator.

Our explanation of the principle behind LR and RP
gradients improves over previous explanations based on
two main criteria: (i) greater generality, (ii) requiring
fewer assumptions. In particular, Occam’s razor states
that given competing explanations, one should prefer
the one with fewer assumptions. Our explanation does
not require the reparameterization assumption used
in many previous explanations of RP gradients. In-
stead, we argue that reparameterization is just a trick
that allows implementing the estimator easily using
automatic differentiation, but has little to do with the
principle behind its operation. Moreover, the sufficient
conditions for the probability flow gradient estimator
are also necessary, so the explanation of the principle
cannot be improved without expanding the class of
estimators to go beyond Eq. (4).

Our characterization showed that the flow field ug, (x)
and importance sampling distribution ¢(x), together,
fully describe the space of estimators; one remaining
question is how to pick ug, () and g(x), s.t. the vari-
ance of the estimator is low. Jankowiak and Obermeyer
(2018) discussed how to pick ug, () when the ¢(x) term
disappears (i.e., for RP). In our concurrent work (Par-
mas and Sugiyama, 2019), we are discussing how to
pick g(x) when the Vzé(x) term disappears (i.e., for
LR). The general question of the best combination of
ug, () and ¢(x) remains an open problem.

5 BENEFIT OF
CHARACTERIZING THE SPACE
OF ESTIMATORS

Characterizing the space of estimators via uniqueness
claims is highly useful because it clarifies where we
should be searching for new gradient estimators. In
particular, often a new idea might appear promising
at first sight, but uniqueness claims could immediately
say that the idea will not lead to something novel, and
will instead be a special case of the characterized space.
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Figure 4: Motivation for slice integral sampling and the importance distribution for a Gaussian base distribution.

We illustrate this concept with two case studies below.

Case study 1 (Height reparameterization). Consider
the example with a height reparameterization explained
in Sec. 4. After some derivations, we reached Eq. (17),
which we repeat below:

/ Va(#)Voi(es, n)dV = / (&) Voii(ca er) - dS.
1% S

This equation looks promising because the left-hand
side is known to correspond to RP, which is an unbi-
ased gradient estimator. Therefore, we know that the
right-hand side must also be unbiased, and it could
potentially lead to some new interesting estimator us-
ing the ¢(x) information. However, to compute the
estimator, we have to perform the tedious error-prone
derivations in App. D.2. Instead, based on the unique-
ness claim in Thm. 2 we can immediately say that this
approach cannot possibly lead to a new estimator, be-
cause it has the same form as LR (product with ¢(x)),
saving us the trouble of going through the derivation.

Case study 2 (Horizontal slice integral sampling).
Consider an algorithm that would sample horizontal
slices of probability mass, illustrated in Fig. 4a, and
motivated by flipping the vertical slices in Sec. 3. One
could integrate the expectation over the slice, and try
to estimate the gradient w.r.t. a parameter 6.

Such an approach appears attractive, because if the
location of the slice is moved by modifying the parame-
ters of the distribution (e.g., by changing the mean, p),
then the derivative of the expected value of the integral
over the slice will depend only on the value at the edges
of the slice (because the probability density in the mid-
dle would not change). To clarify, consider a uniform
distribution p(z;p) between p + A. The derivative
is 4 A plesmé(a)de = C (o + A) = o(u — A)),
where C' is a constant. We could use importance sam-
pling to sample on one of the two edges of the slice,
to obtain an unbiased gradient estimator. However,

at this point, it is clear that the estimator will belong
to the same class as LR, as it will be averaging some
value multiplied with ¢(z), so we can already say that
this idea is not promising. At best, it would lead to
an LR gradient with a different sampling distribution
q(x)—this is indeed the case, and the distribution is
plotted in Fig. 4b. The full derivation is in App. F.

Systematic approach to deriving estimators:
Rather than pursuing an ad hoc approach as in the
two case studies, we propose that we should be using
a more systematic approach in the search for new gra-
dient estimators. It is not enough to find one novel
estimator; one should find all estimators of a given
novel class. Our proposed 3-step approach is below.

1. Find a new principle for a novel gradient estimator.
In the case of LR and RP, the principle is to mea-
sure the movement of probability mass, as described
in Sec. 3.

2. Parameterize the class of estimators that encloses
all estimators embodying the said principle.
In our case, this parameterization is in Eq. (4).

3. Find necessary and sufficient conditions for the
estimator to be unbiased.
In our case, these conditions were given in Sec. /.

6 CONCLUSIONS

We introduced a complete unified theory of LR and RP
gradients, and characterized the space of all unbiased
single sample gradient estimators taking a weighted
sum of ¢(x) and V4o (x). Each estimator is defined by
a vector field ug, (x) and an importance sampling dis-
tribution ¢(«) that represent two “knobs” one can tune
to improve gradient accuracy. We hope our work may
lead to a systematic pursuit to characterizing all possi-
ble gradient estimators based on different principles of
Monte Carlo gradient estimation.
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