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Abstract

Regression Discontinuity (RD) design is
commonly used to estimate the causal
effect of a policy. Existing RD relies on
the continuity assumption of potential
outcomes. However, self selection leads
to different distributions of covariates on
two sides of the policy intervention, which
violates this assumption. The standard
RD estimators are no longer applicable
in such setting. We show that the direct
causal effect can still be recovered under a
class of weighted average treatment effects.
We propose a set of estimators through a
weighted local linear regression framework
and prove the consistency and asymptotic
normality of the estimators. We apply our
method to a novel data set from Microsoft
Bing on Generalized Second Price (GSP)
auction and show that by placing the
advertisement on the second ranked posi-
tion can increase the click-ability by 1.91%.

1 Introduction

Regression discontinuity (RD) design is an impor-
tant policy evaluation tool that has been widely
used in empirical studies. Under the continuity as-
sumptions (Lee, 2008), the RD design gives rise to
many testable restrictions similar to a randomized
control trial, and it allows for the identification of
causal effects (Hahn et al., 2001). Standard non-
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parametric tools like series expansion method or ker-
nel regression method can be applied to estimate this
quantity under this minimal assumption, see Imbens
and Lemieux (2008) and Cattaneo and Escanciano
(2017).

An implication of the continuity assumption is that
the distribution of the covariates conditional on
the assignment variable is continuous at the cutoff.
To validate this assumption, a variety of statistical
tests and nonparametric inference procedures have
been proposed, including Cattaneo et al. (2015) and
Canay and Kamat (2018). However, this assumption
may not hold in many applications. In particular, we
consider the following two motivating examples.

Example 1 (Generalized Second Price (GSP) auc-
tion). GSP is widely used by internet search engines
like Google or Bing to allocate sponsored search ad-
vertisements. In reality, it is implemented through a
reservation score system. Each bidder is assigned a
score as a function of their bids and characteristics.
The bidder’s advertisement is displayed if her score
passes the reservation. However, due to design of
the score system, bidders with low quality may be
selected below the reservation score while bidders
with high quality may be selected above the reser-
vation score. Given that low quality bidders may
have a high willingness to pay, we often observe the
distribution of bids to be different on two sides of
the reservation score. We will further elaborate this
example in the real data analysis.

Due to different distributions of the covariates at
the cutoff in these examples, the standard RD es-
timand is no longer valid. We show in those cases
the standard RD estimand can be decomposed into
a direct treatment effect and an indirect treatment
effect. The indirect effect is due to the unbalanced
covariates near the cut-off. For example, the pol-
icy intervention may result more boys than girls to
receive scholarship. If in general boys perform dif-
ferent from girls in SAT test, the difference in SAT



score due to gender will also be accounted into the
standard RD estimand as if the policy intervention
is selecting on genders. However as no direct causal
mechanism is assumed between the unbalanced co-
variates and running variable, the selection could
be generated due to an unknown equilibrium, com-
pletely reversed or purely spurious. For example, in
a GSP auction, the reservation score is designed to
separate the bidders by quality and in the meanwhile
bidders may self-select such that low quality bidders
may have incentive to bid higher. As a result, policy
changes to move reservation score can be risky if the
equilibrium between reservation score and quality of
bidders are not disentangled.

In this paper, we propose a new framework to ad-
dress this problem by adjusting unbalanced covari-
ates due to self-selection. Consider the following
sharp RD setup: T is a binary treatment variable,
Y (1) and Y (0) are the potential outcomes under
T = 1 and T = 0 and X is the running vari-
able so that the treatment is fully determined by
T = 1(X > c) for a known threshold c. In the classi-
cal RD framework, it is assumed that E(Y (t)|X = x)
is continuous at x = c for t = 0, 1; see Assumption
2. This essentially assumes away self-selection based
on both observed and unobserved covariates. To ac-
count for the self-selection effect, we assume that
further covariate information can be collected. In
particular, we define Z(1) and Z(0) as the poten-
tial covariates with or without treatment. By us-
ing the potential “outcome” formulation, we allow
the distribution of the covariates on two sides of the
threshold to be different, i.e., discontinuity of the co-
variate distribution. By controlling all unbalanced
covariates, we assume that E(Y (t)|X = x, Z(t) = z)
is continuous in x at the threshold; see Assumption
4. This is the main assumption made in this paper.

We propose a class of estimands for RD design in
the framework of weighted average treatment effect
(WATE). We show that our estimands can tease
out the effect of discontinuity of the conditional
distribution of covariates through re-weighting the
marginal treatment effects. For instance, under the
constant treatment effect model with unbalanced co-
variates, our estimands reduce to the direct treat-
ment effect. One special case of our estimands is
Frölich and Huber (2018). Another special case
can be interpreted as the “global” average treat-
ment effect (ATE) E(Y (1) − Y (0)) under the con-
ditional independence assumption (CIA) as in An-
grist and Rokkanen (2015). The CIA assumes that
the treatment is mean independent of the running
variable near the cutoff conditional on the covari-

ates. Intuitively, after projecting the outcome vari-
able onto a rich set of covariates (excluding running
variable), the residual should not depend on the run-
ning variable and can be viewed as an experiment
with randomly assigned treatment. We show that
our method identifies ATE under CIA assumption,
whereas the standard RD estimand remains a “lo-
cal” treatment effect at the cutoff (Lee, 2008).

We further provide the nonparametric identifica-
tion for our estimands and propose nonparamet-
ric estimators based on the inverse propensity score
weighted (IPW) approach, see Horvitz and Thomp-
son (1952) and Abadie and Imbens (2016). However,
notice that the treatment assignment is degenerate
with respect to the running variable. We get around
this problem by considering the marginal effect of
the treatment and re-weighting on the other covari-
ates first. The kernel method is applied to estimate
the conditional mean function. The consistency and
asymptotic normality of the proposed estimator are
established. We further extend our method to the
fuzzy RD design where the treatment compliance is
imperfect. Similarly, we provide the nonparamet-
ric identification of the causal effect under the fuzzy
RD design, and propose a nonparametric estimator.
The proposed estimator is similar to that of the lo-
cal average treatment effect (LATE) in a fractional
format but with numerator being adjusted to incor-
porate additional selections.

This work is connected to the growing literature on
the RD design with covariates. In particular, two re-
cent papers provide insightful guidance on the sub-
ject. Calonico et al. (2019) estimated the marginal
treatment effect by a local linear regression with the
linear-in-parameters specification for the covariates.
The main advantage of their method is that the non-
parametric estimation of E(Y (t)|X = x, Z(t) = z)
is avoided. In another paper, Frölich and Hu-
ber (2018) proposed a fully nonparametric estima-
tor of the marginal treatment effect by estimating
E(Y (t)|X = x, Z(t) = z) nonparametrically. They
allowed the conditional density of Z(t) given X to be
discontinuous. Our work differs from the above pa-
pers by considering a different estimand that is less
local under CIA and identifies the direct treatment
effect under the constant treatment effect model.
Unlike Calonico et al. (2019), we do not require the
continuity of the conditional mean of Z(t) given X.
Instead, our Assumption 4 is similar to assumption
1 (iv) in Frölich and Huber (2018) under the sharp
RD design. The proposed IPW estimator is also dif-
ferent from the above regression based estimators.
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2 Sharp RD Design

2.1 Problem Setup and Continuity
Assumption

In the standard RD design setting, we observe n
i.i.d. random samples {Yi, Xi, Zi, Ti}ni=1, where Yi is
the outcome variable of interest for the ith sample,
Ti ∈ {0, 1} is the binary treatment variable, Xi ∈ R
is the running variable and Zi ∈ Rp is the covariate.
In the sharp RD design, the treatment Ti is perfectly
assigned through the running variable Xi relative to
a known cutoff c. For example, we have

Ti = 1(Xi > c).

Adopting a potential outcome framework, we can
write the observed outcome variable Yi as

Yi = Yi(0) · (1− Ti) + Yi(1) · Ti,

where Yi(0) and Yi(1) represent the potential out-
comes without or with treatment Rubin (2006). The
average treatment effect is defined as E(Yi(1) −
Yi(0)). However, this estimand is not identifiable
under the RD design as the treatment assignment
Ti is a deterministic function of Xi. In this frame-
work, Hahn et al. (2001), Lee (2008) and Cattaneo
et al. (2015) showed that one can still identify the
treatment effect at the cutoff

τSRD = E(Yi(1)− Yi(0)|Xi = c),

under the following continuity assumption on the po-
tential outcomes.

Assumption 2.

E(Yi(1)|Xi = x) and E(Yi(0)|Xi = x)

are continuous in x at x = c.

This assumption implies that the conditional mean
of the potential outcomes near the cutoff x = c are
similar. There is no discontinuity of the conditional
mean functions at the cutoff. This assumption en-
ables us to identify τSRD in the RD design. We refer
to Hahn et al. (2001), Lee (2008) and Cattaneo et al.
(2015) for further discussion on this assumption.

Now let us consider the case that additional covari-
ates Zi are observed. Denote

Zi = Zi(0) · (1− Ti) + Zi(1) · Ti,

where Zi(0) and Zi(1) represent the potential co-
variates without or with treatment. In the presence

of covariates Zi, the causal parameter τSRD can be
rewritten as

τSRD = E
(
E[Yi(1)|Xi = c, Zi(1)]

− E[Yi(0)|Xi = c, Zi(0)]
∣∣∣Xi = c

)
.

(2.1)

In a recent work, Calonico et al. (2019) proposed a
kernel based estimator of τSRD by accounting for
the additional covariates Zi. In addition to the
continuity Assumption 2, it is also assumed that
E(Zi(1)|Xi = c) = E(Zi(0)|Xi = c) for the con-
sistency of the resulting kernel estimator, that is the
potential covariates Zi(1) and Zi(0) have the same
conditional mean at the cutoff Xi = c.

However, in some applications we may observe
E(Zi(1)|Xi = c) 6= E(Zi(0)|Xi = c), when self-
selection based on the covariates exists. For exam-
ple, consider the classical scholarship example. Stu-
dents with SAT score higher than a threshold will
receive scholarship. The treatment effect of inter-
est is the effect of scholarship on the students’ first
semester GPAs. If the cutoff is pre-released, it might
be possible that students with some common char-
acteristics (i.e. gender) may study harder to pass
the bar. This leads to an ex-ante selection based on
the covariates. Thus, one may observe that the con-
ditional mean functions of Zi given Xi right below
or above the threshold are different, i.e.,

lim
x→c+

E(Zi|Xi = x) 6= lim
x→c−

E(Zi|Xi = x). (2.2)

The following simple lemma essentially says that the
self-selection based on the covariates (i.e., eq 2.2)
implies E(Zi(1)|Xi = c) 6= E(Zi(0)|Xi = c).

Lemma 3. If E(Zi(t)|Xi = x) is continuous at x =
c for t ∈ {0, 1}, then

E(Zi(1)|Xi = c) = E(Zi(0)|Xi = c)

⇐⇒ lim
x→c+

E(Zi|Xi = x) = lim
x→c−

E(Zi|Xi = x).

The above lemma provides a convenient way to check
whether E(Zi(1)|Xi = c) = E(Zi(0)|Xi = c) holds in
empirical studies. One may simply plot the observed
covariates Zi against Xi and examine whether there
is a discontinuity of the trend around x = c. The
method is applied in the real data analysis.

In the following, we investigate the consequence of
E(Zi(1)|Xi = c) 6= E(Zi(0)|Xi = c). To be specific,
we consider the following constant treatment effect
model

E(Yi(t)|Xi, Zi(t)) = α+ τ1(t = 1) + g(Xi) +Zi(t)γ,
(2.3)
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for t ∈ {0, 1}, where g(·) is an arbitrary continuous
function. By (2.1), one can show that

τSRD = τ +
(
E(Zi(1)|Xi = c)− E(Zi(0)|Xi = c)

)
γ.

(2.4)
The estimand τSRD can be decomposed into two
terms. The first term τ represents the direct treat-
ment effect after controlling the running variable
Xi and the covariates Zi(t). The second term in
the right hand side of (2.4) can be interpreted as
the indirect effect of the policy due to the unbal-
anced covariates near the cutoff or self-selection,
which is nonzero if γ 6= 0 and E(Zi(1)|Xi = c) 6=
E(Zi(0)|Xi = c). In many applications, the direct
treatment effect τ is usually more meaningful and
interpretable than τSRD, as τSRD is confounded by
the self-selection effect.

In this example, when the indirect effects in τSRD
is assumed away by requiring the continuity of the
conditional density of the covariates Zi at the cutoff
Xi = c, the data around the cutoff can be viewed as
a natural experiment and continuity on the covari-
ates implies a balanced design for this experiment
so that we can estimate a local average treatment
effect. However when the self-selection exits, the
experiment is no longer balanced and the average
treatment effect τSRD will typically differ from the
direct effect τ .

2.2 Weighted Average Treatment Effect

As seen in (2.4), if E(Zi(1)|Xi = c) 6= E(Zi(0)|Xi =
c) (i.e., the covariates are unbalanced at the cutoff)
and γ 6= 0, τSRD can be different from the causal
parameter of interest. To overcome this difficulty, we
propose a new class of causal parameters, called the
weighted average treatment effect (WATE). Denote

∆(c, z) = E(Y (1)|X = c, Z(1) = z)

− E(Y (0)|X = c, Z(0) = z).

Define the average treatment effect over entire pop-
ulation as

τw1
SRD =

∫
∆(c, z)fZ(z)dz,

where fZ(·) is the p.d.f of the covariates Z. In τw1
SRD,

we average the conditional mean difference over the
entire population whose covariates follow from the
marginal distribution fZ(z).

We can also define average treatment effect over
locally randomized population τw2

SRD and average
treatment effect via classical RD estimand τw3

SRD by

choosing different weights. Those results are giving
in the Appendix. In practice, which causal estimand
in above examples to use should depend on the tar-
get population of interest and is often determined on
a case-by-case basis. Indeed, our framework opens a
door towards designing new causal parameters tai-
lored to specific applications. Since the goal of the
paper is to deal with unbalanced covariates, to fix
the idea we will mainly focus on τw1

SRD.

In the following, we comment on two properties of
our estimands τw1

SRD. First, under the constant treat-
ment effect model (2.3), direct calculation shows
that ∆(c, z) = τ and thus τw1

SRD equals to the di-
rect treatment effect τ without any further assump-
tion. In contrast, the classical RD estimand τSRD
reduces to τ under the extra assumption that γ = 0
or E(Zi(1)|Xi = c) = E(Zi(0)|Xi = c).

Second, τw1
SRD generalizes to the overall average

treatment effect (ATE) under the conditional in-
dependence assumption (CIA) proposed by Angrist
and Rokkanen (2015). Assume that Zi are the pre-
treatment covariates, i.e, Zi(1) = Zi(0) = Zi. The
CIA is defined as

E(Yi(1)|Xi, Zi) = E(Yi(1)|Zi),
E(Yi(0)|Xi, Zi) = E(Yi(0)|Zi),

(2.5)

which implies that the potential outcomes are mean
independent of the running variable conditional on
the covariates. By controlling a rich set of covari-
ates, CIA seems to be a reasonable assumption as
the link between the running variable and outcomes
can be blocked (Angrist and Rokkanen, 2015). Since
the CIA (2.5) implies ∆(c, z) = ∆(z), our estimand
τw1
SRD reduces to

τw1
SRD =

∫
∆(z)fZ(z)dz = E(Yi(1)− Yi(0)),

which is the overall ATE. Thus, the new estimand
τw1
SRD can represent a causal effect that is less local

than the standard RD estimand τSRD.

2.3 Nonparametric Identification

In this subsection, we study the nonparametric iden-
tification of τw1

SRD. The identification results of τw2
SRD

and τw3
SRD are given in the Appendix. Instead of

Assumption 2, we impose the following continuity
assumption.

Assumption 4. E(Yi(1)|Xi = x, Zi(1) = z) and
E(Yi(0)|Xi = x, Zi(0) = z) are right and left contin-
uous in x at x = c for any z ∈ Z respectively.
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Intuitively, this assumption says, once all unbal-
anced covariates are controlled, there is no further
discontinuity between the running variable and out-
comes at the threshold. This assumption is similar
to assumption 1 (iv) in Frölich and Huber (2018) un-
der the sharp RD design. In addition, this assump-
tion is weaker than CIA, as (2.5) implies our As-
sumption 4 when the covariates are pre-determined.

The following theorem shows that τw1
SRD is identifi-

able based on the distribution of the observed data
under Assumption 4.

Theorem 5 (Nonparametric Identification). Under
Assumption 4, τw1

SRD is identifiable:

τw1
SRD =

∫ [
E(Y |X = c+, Z = z)

− E(Y |X = c−, Z = z)
]
fZ(z)dz,

where E(Y |X = c+, Z) = limx→c+ E(Y |X = x, Z)
and E(Y |X = c−, Z) = limx→c− E(Y |X = x, Z).

An alternative proof of identification showing

τw1
SRD = lim

δ→0+
E
( Y T

π1(Z)
|X = c+ δ

)
− lim
δ→0+

E
(Y (1− T )

π0(Z)
|X = c− δ

)
,

is provided in the appendix.

3 Nonparametric Estimation

In the causal inference literature, inverse propen-
sity score weighting (IPW) is one of the most widely
used tools to handle the unbalanced covariates in the
treatment and control groups (Horvitz and Thomp-
son, 1952). However, the standard IPW method
is not directly applicable because in the sharp RD
design the treatment assignment is a determinis-
tic function of the running variable and thus the
propensity score is degenerate. In this section, we
propose a class of nonparametric estimators of τw1

SRD,
by modifying the inverse propensity score weighting
approach.

To motivate our nonparametric estimator, we con-
sider the following notation. Denote by π1(Zi) a
function of the covariate Zi to be chosen later, K(·)
a symmetric kernel function and h a bandwidth that
shrinks to 0. The detailed conditions on the kernel
function and bandwidth are deferred to the next sec-
tion. Consider the following inverse weighted kernel
estimator

1

n

n∑
i=1

YiTi
π1(Zi)

· h−1K
(Xi − c

h

)
, (3.1)

for the estimand E{Y (1)w1(Z(1))|X = c}, where
π1(Z) plays the same role as the propensity score
in the IPW method. Since in the RD design the
propensity score function is degenerate, in the fol-
lowing we will show that the choice of π1(Zi) differs
from the standard propensity score model. The ra-
tionale is to choose π1(Zi) so that the estimator (3.1)
is asymptotically unbiased,

E
(

YiTi
π1(Zi)

· h−1K
(Xi − c

h

))
≈
∫

E(Y |X = c+, Z = z)fZ(z)dz.

(3.2)

With some algebra we show that (3.2) holds pro-
vided

π1(z) =
fX,Z(1)(c, z)

2fZ(z)
, (3.3)

where fX(c) is the p.d.f of X at x = c. Follow-
ing from the same argument, one can show that

π0(z) =
fX,Z(0)(c,z)

2fZ(z) . Since the weight π1(z) and

π0(z) depends on the unknown density functions, we
propose to estimate those densities by the following
kernel estimators

f̂X,Z(1)(c, z) = 2 · (nh21)−1
∑
xi>c

K1(
c− xi
h1

,
z − zi
h1

),

(3.4)

f̂X,Z(0)(c, z) = 2 · (nh21)−1
∑
xi<c

K1(
c− xi
h1

,
z − zi
h1

),

(3.5)

f̂Z(z) = (nh2)−1
n∑
i=1

K(
z − zi
h2

),

f̂X(c) = (nh2)−1
n∑
i=1

K(
c− xi
h2

),

(3.6)

where h1 and h2 are bandwidth parameters. Note
that the kernel estimator is known to suffer from the
curse of dimensionality and is only applicable when
the dimension of Zi is small. For the applications
in which a large number of covariates can be col-
lected, one may consider alternative parametric or
semiparametric approaches for density estimation.
In this work, we only focus on the above kernel es-
timators and leave the alternatives for future inves-
tigation.

Replacing the unknown density functions in π1(z)
and π0(z) with the corresponding kernel estimators,
we can obtain π̂1(z) and π̂0(z). While we can con-
struct the final estimator by plugging π̂1(z) into
(3.1), for practical use and theoretical analysis we
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recommend the local linear estimator, since it has
smaller asymptotic bias and better finite sample be-
havior near the boundary (Fan and Gijbels, 1996).
Motivated by the formulation of the kernel estimator
(3.1), we propose the following weighted local linear
(WLL) estimator(

α̂0, β̂0

)
= arg min

α,β

∑
{i:Xi<c}

1− Ti
π̂0(Zi)

·
(
Yi − α− (Xi − c)β

)2
K
(Xi − c

h

)
,(

α̂1, β̂1

)
= arg min

α,β

∑
{i:Xi>c}

Ti
π̂1(Zi)

·
(
Yi − α− (Xi − c)β

)2
K
(Xi − c

h

)
,

(3.7)

Thus, we can estimate the WATE τw1
SDR by

τ̂w1
SDR = α̂1 − α̂0. (3.8)

4 Theoretical Results

In this section, we study the asymptotic properties
of the proposed estimator. We focus on the local
linear estimator (3.7) for the estimand τw1

SRD, due to
the nice properties of τw1

SRD as explained in Section
2.2.

Let δ denote a small positive constant. For nota-
tional simplicity, define F− as the class of functions
of x ∈ (c−δ, c] and z ∈ Z such that for any f ∈ F−,
∂3

∂a∂b∂cf(x, z) is continuous, where a, b, c = {x, z}.
Here, the derivatives of f(x, z) with respect to x

at x = c (say ∂3

∂x3 f(c, z)) are interpreted as left
derivatives. Similarly, we define F+ as the class
of functions of x ∈ [c, c + δ) and z ∈ Z such that

for any f ∈ F+, ∂3

∂a∂b∂cf(x, z) is continuous, where
a, b, c = {x, z}. The derivatives at x = c correspond
to the right derivatives. For simplicity, we only con-
sider the case that dim(Z) = 1. The generalization
to multivariate covariates follows from the similar
argument.

Assumption 6 (Smoothness condition). Assume
fX,Z(0)(x, z) ∈ F− and fX,Z(1)(x, z) ∈ F+. Denote
mt(x, z) = E(Yi(t)|Xi = x, Zi(t) = z) for t = {0, 1}.
Assume m0(x, z) ∈ F− and m1(x, z) ∈ F+.

Since the proposed method requires to esti-
mate the unknown density functions fX,Z(0)(x, z)
and fX,Z(1)(x, z), we assume they are sufficiently
smooth. In addition, we also need the smoothness of
mt(x, z) in order to study the local linear estimator

(3.7). This assumption implies Assumption 4, which
is required for identification purpose.

Assumption 7. Assume the following conditions
hold:

1. X ∈ [xl, xu] such that xl < c < xu and Z also
has bounded support.

2. The kernel K(u) is a non-negative, symmetric
and bounded function with compact support
which satisfies∫

K(z) dz = 1, and K(u) = K(−u).

The bivariate kernelK1(u, v) is a product kernel
K1(u, v) = K(u)K(v), where K(·) satisfies the
above conditions.

3. fX,Z(1)(x, z) is bounded way from 0 by a con-
stant for x ∈ [c, c + δ) and z ∈ Z and
fX,Z(0)(x, z) is bounded way from 0 by a con-
stant for x ∈ (c− δ, c] and z ∈ Z.

4. σ2
t = E[(Y (t) − mt(X,Z(t)))2|X = x, Z(t) =
z] <∞ for t ∈ {0, 1}.

Assumption 7 has four parts. The first and second
parts are standard assumptions in kernel density es-
timation problems. Since our RD estimator applies
local linear estimators at the boundary, the uniform
kernel or triangular kernel has been shown to have
good performance under such scenario (Calonico
et al., 2019). The third part requires fX,Z(1)(x, z)
and fX,Z(0)(x, z) to be bounded away from 0 so that
the inverse weights in the local linear estimator can
be well controlled. This is similar to IPW estimator
which requires the propensity score to be bounded
away from 0. However, it also implies the overlap-
ping of the support for (X,Z(1)) and (X,Z(0)) near
the cut-off, which can be a strong assumption if the
covariates Z(1) and Z(0) are high-dimensional (see
D’Amour et al. (2020)). The last part assumes that
the (homoscedastic) noise has finite variance. De-
note αt =

∫
E(Y (t)|X = c, Z(t) = z)fZ(z)dz, and

recall that τw1
SRD = α1 − α0. The main theorem in

this section shows the rate of convergence of the lo-
cal linear estimators α̂1 and α̂0 and their limiting
distributions.

Theorem 1. Assume that assumptions 6 and 7
hold, and let h be the bandwidth in estimator (3.7),
and h1, h2 be the bandwidth choice in estimator
(3.4), (3.5) and (3.6). We choose h �

√
h1 � h2.

Then for t = 0, 1

|α̂t − αt| = Op(h
2 + (nh2)−1/2). (4.1)
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Denote dt(xi, zi) = mt(xi, zi) − αt. Furthermore, if
h3n1/2 = o(1) holds, we have
√
nh2(α̂1 − α1)

∼ N
(

0, Cv · EZ
(

fZ(zi)

fX,Z(1)(c+, zi)
d1(c+, zi)

2

))
,

and
√
nh2(α̂0 − α0)

∼ N
(

0, Cv · EZ
(

fZ(zi)

fX,Z(0)(c−, zi)
d0(c−, zi)

2

))
,

where EZ denotes the expectation under the
marginal distribution of Z, and

Cv =
κ22κ20 + κ21κ22 − 2κ1κ2κ21(

1
2κ2 − κ

2
1

)2 ,

with

κq =

∫
u>0

K(u)uqdu and κ2q =

∫
u>0

K(u)2uqdu,

for q = 0, 1, 2.

We note that from (4.1) the optimal choice of h is of
order O(n−1/6) and the corresponding convergence
rate is |α̂t − αt| = Op(n

−1/3) due to the bound-
ary effect. Specifically, the estimated weights π̂1(z)
and π̂0(z) depend on the density estimators at the
boundary. Since we only require fX,Z(0)(x, z) ∈ F−
and fX,Z(1)(x, z) ∈ F+ to be smooth from one side,
the corresponding density estimators have a slower
rate. So, the plug-in error becomes the dominant
term when establishing the rate of α̂t. However,
if Zi are the pre-treatment covariates, i.e, Zi(1) =
Zi(0) = Zi, we can estimate the density fX,Z(c, z)
by

f̂X,Z(c, z) = (nh21)−1
n∑
i=1

K1(
c− xi
h1

,
z − zi
h1

). (4.2)

The following corollary shows that in this case α̂t
has an improved rate. With an optimal choice of
the bandwidth parameters, we prove that |α̂t−αt| =
Op(n

−2/5), that is the boundary effect for estimating
αt is automatically removed without applying any
additional bias correction procedures.

Corollary 1. Assume that assumptions 6 and
7 hold and Zi are the pre-treatment covariates.
Choosing h � h1 � h2, we have

|α̂t − αt| = Op(h
2 + (nh)−1/2).

If h5n = o(1), we have

√
nh(α̂t − αt) ∼ N

(
0, Cv · σ2

t

∫
fZ(z)2

fX,Z(c, z)
dz

)
.

The asymptotic results proved in theorem 1 and
corollary 1 require undersmoothing to justify the
intervals constructed (see Armstrong and Kolesár,
2020; Calonico et al., 2014). In our simulation below,
we did not employ undersmoothing but used stan-
dard 10-fold cross-validation to select bandwidth.
We consider bias correction for our estimator as a
future research topic.

5 Simulation and Empirical
Examples

5.1 Simulation Study

We consider the following data generating process:

yi(1) = 3 + xi + zi + ε1i,

yi(0) = 1 + xi + zi + ε0i,

where xi and εi are generated independently from
N(0, 1) distribution, however, zi is generated from
another independent N(0, 1) process with a discon-
tinuity at X > 0, i.e. zi = γ · 1(xi > 0) + z∗i , where
z∗i ∼ N(0, 1). The treatment Ti is assigned at the
cutoff 0: Ti = 1(xi > 0). When γ = 0, again there is
no discontinuity of the conditional distribution of zi
given xi = 0. Both our estimaind τw1

SRD and the stan-
dard RD estimand τSRD are equal to 2. However,
as γ differs from 0, the conditional distribution of zi
given xi is discontinuous at xi = 0. Our estimand
τw1
SRD still equals to 2, which is the direct causal ef-

fect of interest. If we adopt the standard RD frame-
work and ignore the discontinuity of the conditional
distribution of zi given xi, we would expect that
the standard RD estimator is biased for estimating
the direct causal effect of interest (which is 2 in this
example). In the data generating process, we vary
γ from 0 to 1 and compare our estimator with the
standard RD estimator Lee (2008). The results are
shown in Table 1. The standard RD estimator has
large bias and very poor coverage probability when
γ is close to 1, which agrees with our expectation. In
contrast, the proposed estimator has relatively small
MSE –bias and variance and accurate coverage prob-
abilities across different choices of the sample size n
and the parameter γ. In summary, our simulation
studies confirm that one should apply the proposed
framework to the RD study if there exists some po-
tential discontinuity of the conditional distribution
of the covariates given the running variable. More
simulation results can be found in the appendix.
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bias variance Coverage CI length

n γ RD WLL RD WLL RD WLL RD WLL

500

0.2 0.19 0.08 0.62 0.43 0.94 0.96 2.42 1.69
0.4 0.45 0.12 0.55 0.43 0.87 0.95 2.16 1.70
0.6 0.57 0.18 0.59 0.49 0.85 0.94 2.31 1.93
0.8 0.76 0.24 0.57 0.47 0.71 0.93 2.23 1.84
1 0.98 0.36 0.53 0.44 0.58 0.88 2.10 1.73

1000

0.2 0.19 0.09 0.41 0.49 0.92 0.97 1.62 1.92
0.4 0.41 0.13 0.41 0.34 0.85 0.94 1.61 1.32
0.6 0.55 0.18 0.40 0.34 0.72 0.92 1.58 1.34
0.8 0.82 0.25 0.46 0.39 0.58 0.90 1.81 1.51
1 1.01 0.32 0.44 0.51 0.40 0.94 1.74 2.02

2000

0.2 0.21 0.06 0.32 0.27 0.91 0.97 1.24 1.06
0.4 0.38 0.09 0.31 0.25 0.76 0.94 1.20 0.98
0.6 0.58 0.17 0.32 0.26 0.55 0.90 1.25 1.01
0.8 0.84 0.22 0.32 0.30 0.25 0.91 1.24 1.17
1 1.01 0.22 0.29 0.36 0.05 0.95 1.13 1.39

5000

0.2 0.21 0.04 0.22 0.17 0.83 0.95 0.88 0.69
0.4 0.41 0.07 0.24 0.19 0.62 0.95 0.94 0.76
0.6 0.61 0.13 0.23 0.22 0.30 0.94 0.91 0.87
0.8 0.83 0.18 0.23 0.27 0.05 0.92 0.90 1.07
1 1.03 0.23 0.23 0.21 0.01 0.98 0.88 0.84

Table 1: Comparison of the standard RD estima-
tor and the proposed weighted local linear estimator
(WLL) in the second setting.

5.2 Generalized Second Price Auction
(GSP)

Next we apply our method to study the general-
ized second price auction (GSP) problem. GSP is
an auction mechanism for multiple items and it has
been used widely for the assignment of advertise-
ment positions by internet search engine like Google
and Bing. Let n be the number of bidders, and let
b1 ≥ b2 ≥ · · · ≥ bn be the bids from high to low.
Denote by v(1), v(2), · · · , v(n) the bidders’ valuation

associated with the rank of bids and rk the click
through rate for the kth position. The kth bidder’s
payoff in a GSP is given as (v(k) − bk+1)rk.

An important metrics is the click through rate rk

for the kth position. Bidders are interested in the
potential growth in their search traffic by winning
the auction. And furthermore, in a Vickrey-Clarke-
Groves (VCG) auction, rk will determine the total
cost for placing each bidder in the sponsored ad-
vertisement region. In real world, GSP is usually
implemented through a reservation score. A search
score is formed for every bidder based on their bid
and other quality measures. When the search score

Figure 1: Search Score v.s. Bids

is bigger than a pre-set reservation score, the bid-
der’s link will be displayed in the sponsored area.
Otherwise, they will be displayed after all the spon-
sored advertisements. The reservation score cut-off
creates a natural regression discontinuity setting to
evaluate rk.

We study the Microsoft Bing search data from Oct
2nd to Oct 22nd in 2015 and estimate the effect
of advertisement positions. We focus on a set of
searches with first advertisement positions displayed
but without third advertisement position displayed.1

This allows us to analyze the effect of second ad-
vertisement positions by comparing click-abilities for
bidders near the search score cutoff. Once the score
passed the cut-off at 15.17, the customers’ links will
be placed at the sponsored advertisement area and
a significant increase in the click traffic can be ob-
served. Consider the bid as a covariate. Figure 1
plots the mean bidding price before and after the
search score cut-off. The mean bids before the cut-
off is higher than the mean bids after the cut-off,
implying the discontinuity of the conditional distri-
bution of the covariate. The conditional density of
the covariate before and after the cut-off are also
different. The plot is given in the Appendix. Al-
though a local envy free equilibrium exists when
bidders are all bidding their true valuation (Edel-
man et al., 2007), information asymmetry or bidder
inertia may still lead to bidder selections. For ex-
ample, active bidders may have the incentive to bid
more aggressively to take advantage of the bidders
with high inertia.

Table 2 presents the results of our estimator and a

1Microsoft Bing allows a maximum of 4 advertisement
to be displayed at the time of study.
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polynomial RD estimator. The classic RD estimator
may not be valid in this case due to the discontinu-
ity in the covariates. It estimates that placing the
advertisement on the second position can increase
the click-ability by 1.91% and it is statistically sig-
nificant. On the other hand, the proposed estimator
delivers only 1.20%, 57% less than the RD estima-
tor and it is not statistically significant at 5% level.
The difference is mainly because low quality bidders
with high willingness to pay have the incentive to bid
higher to move their search scores pass the threshold.
But when we match bidders with similar bids before
and after the cut-off, the effect goes away. Thus, the
conclusion based on our proposed estimator is more
reliable.

RD WLL
Estimates 1.91%∗∗∗ 1.20%
Standard Error 0.0033 0.0090

Table 2: Estimated effect of adversing at second po-
sition using the standard RD estimator and the pro-
posed method. The bandwidth parameters are se-
lected using cross-validation and standard errors are
obtained via bootstrap. ∗∗∗ represents significance
at p < 0.05
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