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A OMITTED PROOFS

A.1 Proof of Lemma 1

Proof. We prove the lemma by induction on i. The base case of i = 1 follows from Proposition 2. For the
inductive step, assume the result is true for some i ≥ 1, and we now prove that it also holds for i+ 1. That is,
we aim to show that (Ei+1, . . . , E1) : FT → UT × · · · × UT is ((i + 1)ε′, (i + 1)δ′)-private, where ε′ = ε/k and

δ′ = δ/k. Let a ∧ b be the minimum of a and b and recall that MSi is the behavior of the i-th expert across all
T rounds.

Consider the neighboring databases F and F ′. Pick any set S ⊆ UT and a fixed Si = (ai, . . . , a1) ∈ (UT )i, then

Pr(Ei+1(F ) ∈ S | (Ei, . . . , E1)(F ) = Si)

= Pr(MSi(F ) ∈ S)

≤ (eε
′
Pr(MSi(F ′) ∈ S)) ∧ 1 + δ′ ((ε′, δ′)-DP of MSi)

= (eε
′
Pr(Ei+1(F ′) ∈ S | (Ei, . . . , E1)(F ′) = Si)) ∧ 1 + δ′.

This is true as long as (Ei, . . . , E1)(F ) = Si and (Ei, . . . , E1)(F ′) = Si are non-zero probability events, which is
ensured to be true since the Hedge algorithm places positive probability on all events.

We can write
Pr((Ei, . . . , E1)(F ) = Si) = eiε

′
Pr((Ei, . . . , E1)(F ′) = Si) + µ(Si),

where µ(Si) = Pr((Ei, . . . , E1)(F ) = Si)− eiε′ Pr((Ei, . . . , E1)(F ′) = Si). We have µ(S) ≤ iδ′ for any S ⊆ (UT )i

since (Ei, . . . , E1) is (iε′, iδ′)-DP by the inductive hypothesis.

Now, consider any set S ⊆ (UT )i+1. Then,

Pr((Ei+1, Ei, . . . , E1)(F ) ∈ S)

=
∑
Si∈S′

Pr((Ei+1(F ), Si) ∈ S | (Ei, . . . , E1)(F ) = Si) Pr((Ei, . . . , E1)(F ) = Si)

≤
∑
Si∈S′

(
(eε
′
Pr((Ei+1(F ′), Si) ∈ S | E1(F ′) = a1)) ∧ 1 + δ′

)
Pr((Ei, . . . , E1)(F ) = Si)

≤
∑
Si∈S′

(
(eε
′
Pr((Ei+1(F ′), Si) ∈ S | (Ei, . . . , E1)(F ′) = Si)) ∧ 1

)(
eiε
′
Pr((Ei, . . . , E1)(F ′) = Si) + µ(Si)

)
+
∑
Si∈S′

δ′ Pr((Ei, . . . , E1)(F ) = Si)

≤ e(i+1)ε′
∑
Si∈S′

Pr((Ei+1(F ′), Si) ∈ S | (Ei, . . . , E1)(F ′) = Si) Pr((Ei, . . . , E1)(F ′) = Si) + µ(S ′+) + δ′

≤ e(i+1)ε′ Pr((Ei+1, Ei, . . . , E1)(F ′) ∈ S) + (i+ 1)δ′

where S ′ = {Si ∈ (UT )i : (ai+1, Si) ∈ S for some ai ∈ UT } and S ′+ are the elements Si ∈ S ′ such that µ(S ′) ≥ 0.
This concludes the proof.
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A.2 Proof of Proposition 3

Proposition 3. The (1− 1/e)-regret of Algorithm 2 is bounded by the expected regret of E1, . . . , Ek.

Proof. Fix the choices S1, . . . , ST of the experts arbitrarily, and let ri the overall regret experience by Ei. That
is,

ri = max
a∈U

T∑
t=1

ft(S
i−1
t + a)− ft(Si−1

t )−
T∑
t=1

ft(S
i−1
t + ait)− ft(Si−1

t ).

Define the new function F : 2[T ]×U → R as

F (A) =
1

T

T∑
t=1

ft(At),

where At = {x ∈ U : (t, x) ∈ A}. Clearly, F is submodular, nondecreasing and F (∅) = 0. Then,

ri
T

= max
a∈U

F (S̃i−1 + ã)− F (S̃i−1)− (F (S̃i)− F (S̃i−1)),

where S̃i =
⋃T
t=1{t} × Si.

Let OPT ⊆ U be the optimal solution of max|S|≤k
∑T
t=1 ft(S) and consider its extension to [T ] × U , i.e.,

ÕPT =
⋃T
t=1{t} ×OPT .

Claim A.1. For any i = 1, . . . , k, maxa∈U F (S̃i−1 + ã)− F (S̃i−1) ≥ F (ÕPT )−F (Si−1)
k .

Proof of Claim A.1.

F (ÕPT )− F (S̃i−1)

≤ F (S̃i−1 + ÕPT )− F (S̃i−1)

≤
∑

ã∈ÕPT\S̃i−1

F (S̃i−1 + ã)− F (S̃i−1)

≤ k ·
(

max
a∈U

F (S̃i−1 + ã)− F (S̃i−1)

)
.

�

Using this claim, we can see,

F (S̃i)− F (S̃i−1) ≥ F (ÕPT )− F (S̃i−1)

k
− ri
T
.

Unrolling the recursion, we obtain

T∑
t=1

ft(St) ≥
(

1− 1

e

) T∑
t=1

ft(OPT )−
k∑
i=1

ri.

�

A.3 Proof of Lemma 2

Lemma 2. If ri denotes the regret experience by expert Ei in Algorithm 3, then(
1− 1

e

)
max
|S|≤k

T∑
t=1

ft(S)− E

[
T∑
t=1

ft(St)

]
≤

k∑
i=1

E[ri] + γT.
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Proof. Observe that at exploration time-steps τ , i.e, when bτ = 1, Algorithm 3 plays a set of the form Sτ =
Si−1
τ + a. Right after this, the algorithm samples a new set Sτ+1 given by the Hedge algorithms and will keep

playing this set until the next exploration time step.

For the sake of analysis, we introduce the following set. Let t0 = 0, t1, . . . , tM be the times when a new sample
set is obtained. Note that besides time t0, all times t1, . . . , tM are exploration times. Now, let S′t = Sti for
t = ti+ 1, . . . , ti+1. Note that for times bt = 0, then S′t = St; however, for times bt = 1, then S′t is not necessarily
the same as St = Si−1

t + a. In other words, S′t corresponds to the real full exploitation scheme. Now, as in the
full information setting, we have (

1− 1

e

)
max
|S|≤k

T∑
t=1

ft(S)−
T∑
t=1

ft(S
′
t) ≤

k∑
i=1

ri,

where ri = maxa∈U
∑T
t=1 f

i,a
t −

∑T
t=1 f

i,ait
t . Thus(

1− 1

e

)
max
|S|≤k

T∑
t=1

ft(S)− E

[
T∑
t=1

ft(St)

]

≤
k∑
i=1

E[ri] + E

[
T∑
t=1

ft(S
′
t)− ft(St)

]

≤
k∑
i=1

E[ri] + γT,

since at the end, only the exploration times could contribute to the difference ft(S
′
t)− ft(St) and those are γT

in expectation. �

A.4 Proof of Lemma 3

Lemma 3. If each Ei is a Hedge algorithm with learning rate η = ε

k
√

32(2γT ) log(k/δ)
then E[ri] ≤

16
k2|U | log |U |

√
T log(k/δ)

ε
√
γ + k|U |

γ T · e−8γ2T .

Proof. From the perspective of expert Ei, at every time-step t, she sees the vector f̂ it such that

f̂ i,at = ft(S
i−1
t + a)1{Explore at time t, pick i, pick a}

in its a-th coordinate. Notice that this vector is 0 if no exploration occurs at time t. The expert Ei samples a
new element in U only after exploitation times. Observe that the feedback of Ei is independent of choices made
by Ei. Indeed, this feedback depends only on the set Si−1

t constructed by E1, . . . , Ei−1 and the decision of the

learner to explore, which is independent of the learning task. Therefore, the sequence f̂ i = (f̂ i1, . . . , f̂
i
T ) could be

considered oblivious for Ei and we can apply the guarantee of Hedge over f̂i. That is, for any a ∈ U ,

T∑
t=1

f̂ i,at −
T∑
t=1

x>t f̂
i
t ≤ η

T∑
t=1

x>t (f̂ it )
2 +

log |U |
η

,

where xt ∈ ∆(U) is the non-zero distribution used by expert Ei in the Hedge algorithm and ∆(U) = {x ∈ RU :
‖x‖1 = 1,x ≥ 0} is the probability simplex over elements in U . Notice that exploitation times appear in the
summation with 0 contribution. This expression is not the same as the regret of Ei but we can relate these
quantities as follows. Conditioned on Si−1

1 , . . . , Si−1
T we obtain,

E[f̂ i,at | Si−1
1 , . . . , Si−1

T ] =
γ

k|U |
f i,at + δt,

where f i,at = f(Si−1
t +a)− f(Si−1

t ) and δit = γ
k|U |f(Si−1

t ). Notice that Si−1
t , . . . , Si−1

T are independent of actions

taken by Ei, so

E[x>t f̂
i
t | Si−1

1 , . . . , Si−1
T ] =

γ

k|U |
E[x>t f

i
t | S1

t , . . . , S
i−1
T ] + δt
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and

E[x>t (f̂ it )
2 | Si−1

1 , . . . , Si−1
T ] = E

[∑
a∈U

xt(a)(f̂ i,at )2 | Si−1
1 , . . . , Si−1

T

]
=
∑
a∈U

E[xt(a) | Si−1
1 , . . . , Si−1

T ]
γ

k|U |
f(Si−1

t + a)2

≤ γ

k|U |
.

Let M be the number of times Algorithm 3 decides to explore. That is, M is distributed as the sum of T
Bernoulli random variables with parameter γ. By concentration bounds,

Pr(M > 2γT ) ≤ e−8γ2T .

Now, let t1, . . . , tM be the times the algorithm decides to explore and let t0 = 0. For i = 1, . . . ,M , we can
assume that expert Ei releases the same vector xt ∈ ∆U during the time interval [ti−1, ti) since she does not get
any feedback during those times. If we consider η = ε

k
√

32(2γT ) log(k/δ)
, then for any a ∈ U we have

γ

k|U |
E

[
T∑
t=1

f i,at −
T∑
t=1

x>t f
i
t

]
= E

[
T∑
t=1

f̂ i,at −
T∑
t=1

x>t f̂
i
t

]

≤

(
η

T∑
t=1

E
[
x>t (f̂ it )

2
]

+
log |U |
η

)
+ T · e−8γ2T

≤
(
η

γ

k|U |
T +

log |U |
η

)
+ T · e−8γ2T

Therefore,

E[ri] = max
a∈U

T∑
t=1

f i,at − E

[
T∑
t=1

x>t f
i
t

]
≤ 16

k2|U | log |U |
√
T log(k/δ)

ε
√
γ

+
k|U |
γ

T · e−8γ2T .

�

B ADDITIONAL RESULTS IN BANDIT SETTING

B.1 O(T 3/4) Regret Bound of Direct Approach in Bandit Setting

In the bandit setting, the direct approach for differential privacy corresponds to sampling a new set from the
Hedge algorithms at each time step. As in the full-information setting, to ensure (ε, δ)-DP, a learning rate of
η = ε

k
√

32T log(k/δ)
is enough.

Similar to Lemma 3, in this setting we have(
1− 1

e

)
max
|S|≤k

T∑
t=1

ft(S)− E

[
T∑
t=1

ft(St)

]
≤

k∑
t=1

E[ri] + γT.

Since,

E[ri] ≤
k|U |
γ

(
η

γ

k|U |
T +

log |U |
η

)
=
k3|U |

√
32T log(kδ)

εγ
+

εk
√
T√

32 log(k/δ)
,
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then we have,(
1− 1

e

)
max
|S|≤k

T∑
t=1

ft(S)− E

[
T∑
t=1

ft(St)

]
≤
k4|U |

√
32T log(kδ)

εγ
+

εk2
√
T√

32 log(k/δ)
+ γT.

This last bound is minimized when γ = Θ(T−1/4) which gives a (1− 1/e)-regret bound of O(T 3/4).

B.2 Trading Off Privacy δ-Term and Space

In this subsection, we show how to trade-off the δ-term e−8T 1/3

by allowing additional space. For each t ∈ T ,
select t as an explore round independently with probability γ. Let M be the number of time-steps selected. Note
that E[M ] = γT . Now, run Algorithm 3 with η = ε

k
√

32(M+1) log(k/δ)
and force the algorithm to explore at the

M sampled time-steps and utilize the rest of the time-steps to exploit.

In this case, and following the proof of Lemma 3 we obtain:

E[ri] ≤
k|U |
γ

E
[
ηM +

log |U |
η

]
≤ k|U |

γ
E

[
6
k log |U |

√
log(k/δ)

ε

√
M + 1

]

≤ k|U |
γ

(
6
k log |U |

√
log(k/δ)

ε

√
E[M ] + 1

)
(Jensen’s inequality)

= 8
k2|U | log |U | log(k/δ)

ε

√
T

γ
.

Using Lemma 2 we obtain the (1− 1/e)-regret bound of

8
k3|U | log |U | log(k/δ)

ε

√
T

γ
+ γT.

This is minimized at γ = Θ(1/T 1/3) with a regret bound of O(T 2/3) and expected space used Θ(T 2/3).

C EXTENSION TO CONTINUOUS FUNCTIONS

In this section we prove Theorem 9. Before this, we present some preliminaries in online convex optimization.

In online convex optimization (OCO), there is compact convex set X ⊆ Rn where the learner makes decisions.
At time-step t, a convex function ft : X → R arrives. Without observing this function, the learner has to select
a point xt ∈ X based on previous functions f1, . . . , ft−1. After the decision has been made, the learner receives
the cost ft(xt) and gains oracle access to ∇ft. The learner’s objective is to minimize the regret:

RT =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

Thakurta and Smith (2013) introduced PFTAL (Private Follow the Approximate Leader) to privately solve the
OCO problem.

Theorem 10 (Thakurta and Smith (2013)). PFTAL is (ε, 0)-DP and for any input stream of convex and
L-Lipschitz functions f1, . . . , fT has expected regret

E [RT ] ≤ O

√n log2.5 T

(
L+

√
n log2.5 T

εT diamX
)2

ε

√
T

 .
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Similar to the Hedge algorithm, we utilize PFTAL as a black-box in Algorithm 4.

Now, we present the proof of Theorem 9 in two parts, and prove each separately.

Lemma 4 (Privacy guarantee). Algorithm 4 is (ε, 0)-DP.

Lemma 5 (Regret guarantee). Let R = supx∈X ‖x‖2, G be a bound on the gradients ‖∇ft(xt)‖2, and β be the
smoothness parameter of f1, . . . , fT . Then Algorithm 4 has (1− 1/e)-regret

E
[(

1− 1
e

)
maxx∈X

∑T
t=1 ft(x)−

∑T
t=1 ft(xt)

]
= O

(
T 3/4

√
log2.5 T

(√
n
(
G+
√

n

εT3/4
log2.5 T diamX

)2

ε + βR2

))
.

Proof of Lemma 4 As with the analysis of Algorithm 2, we show that (EK−1, . . . , E0) is (ε, 0)-DP. If each
Ek were (ε/K, 0)-DP, then the result would immediately follow by simple composition. However, we cannot
guarantee that each Ek is (ε/K, 0)-DP since Ek obtains as input the privatized output from E0, . . . , Ek−1 in the
linear function `k(v) = ∇ft(xkt )>v, where xkt is computed by E0, . . . , Ek−1, while at the same time is accessing
again the function ft (and so the database) via this linear function in the gradient ∇ft. This clearly breaks the
privacy that could have been gained via a simple post-processing argument and therefore and alternative method
is needed.

We do not show that each Ek is (ε/K, 0)-DP but the group (EK−1, . . . , E0) is (ε, 0)-DP. The proof of the following
lemma follows the same steps as the proof of Lemma 1. The proof is slightly simpler since there is no δ-privacy
term included but it requires some care since the distributions are continuous in this case.

Lemma 6. For any i ≥ 1, the group (Ei−1, . . . , E0) : FT → (X T )i is iε/K-DP.

Proof. We proceed by induction in i. The base case i = 1 follows immediately from privacy of PFTAL in
Thakurta and Smith (2013) because E0 is the only algorithm that has not its distribution perturbed by any other
algorithm. For the inductive step, assume the result is true for some i ≥ 1 and let us prove it for i+ 1.

Let xT0 , . . . ,x
T
i−1 ∈ X T and Xi−1 = (xTi−1, . . . ,x

T
1 ). Then, for any xTi ∈ X T we have

Pr(Ei(F ) = xTi | (Ei−1, . . . , E0)(F ) = Xi−1) ≤ eε/K Pr(Ei(F ′) = xTi | (Ei−1, . . . , E0)(F ′) = Xi−1)

by the guarantee of PFTAL. Note that we are referring to the PMF and not the CDF of the distribution. This
is because PFTAL utilizes Gaussian noise. With this, for Xi = (xTi , . . . ,x

T
0 ) we have,

Pr((Ei, . . . , E0)(F ) = Xi)

= Pr(Ei(F ) = xTi | (Ei−1, . . . , E0)(F ) = Xi−1) Pr((Ei−1, . . . , E0)(F ) = Xi−1)

≤ eε/K Pr(Ei(F ′) = xTi | (Ei−1, . . . , E0)(F ′) = Xi−1) · eiε/K Pr((Ei−1, . . . , E0)(F ′) = Xi−1),

where we utilized induction and the previous inequality. This completes the proof. �

Proof of Lemma 5 Let G = supt=1,...,T
x∈X

‖∇ft(x)‖2. Let ri be the regret experienced by algorithm Ei in

Algorithm 4.

The following result appears in the proof of Theorem 1 in Chen et al. (2018b).

Lemma 7 (Chen et al. (2018b)). Assume ft is monotone DR-submodular and β-smooth for every t. Then
Algorithm 4 ensures (

1− 1

e

)
max
x∈X

T∑
t=1

ft(x)−
T∑
t=1

ft(xt) ≤
1

K

K−1∑
i=0

ri +
βR2T

2K
.

where R = supx∈X ‖x‖2 and ri is the regret of algorithm Ei.
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Using this result, we obtain

E

[(
1− 1

e

)
max
x∈X

T∑
t=1

ft(x)−
T∑
t=1

ft(xt)

]
≤ 1

K

K−1∑
i=0

E[ri] +
βR2

2K

≤ O


√
n log2.5 T

(
G+

√
n log2.5 T
εT/K diamX

)2

ε/K

√
T +

βR2T

2K

 .

We can find the regret by setting K =
(

T
log2.5 T

)1/4

.
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