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A OMITTED PROOFS

A.1 Proof of Lemma [1]

Proof. We prove the lemma by induction on i. The base case of i = 1 follows from Proposition For the
inductive step, assume the result is true for some ¢ > 1, and we now prove that it also holds for ¢ + 1. That is,
we aim to show that (£i11,...,&1) : FL = UL x -+ x Ul is ((i + 1)/, (i + 1)d')-private, where ¢/ = ¢/k and
8" = 6/k. Let a Ab be the minimum of @ and b and recall that M*" is the behavior of the i-th expert across all
T rounds.

Consider the neighboring databases F' and F”. Pick any set S C UT and a fixed S* = (a',...,a') € (UT)?, then

Pr( 1 (F) €S| (&,...,E)(F) =5
= Pr(MS'(F) € §)
< (e Pr(MS'(F) € S)) A1+ ((¢/,6")-DP of M5")
= (7 Pr(Eis1(F) €S| (&,....&)(F)=S))AL+6.
This is true as long as (&;,...,&1)(F) = S and (&;,...,&)(F’) = S* are non-zero probability events, which is
ensured to be true since the Hedge algorithm places positive probability on all events.

We can write _ y _ _
Pr((é’i, ‘.. 751)(}7) = SZ) =€ PI‘((SH “ae ,81)(F/) = SZ) + /J/(SZ)7

where 1(S%) = Pr((&;, ..., &) (F) = S%) — e Pr((&;,...,E)(F') = 8%). We have u(S) < id’ for any S C (UT)’
since (&;,...,&) is (i€’,1d')-DP by the inductive hypothesis.

Now, consider any set S C (UT)i*1. Then,
Pr((€i+1,gi7 [N ,81)(F) € S)
= > Pr((Ea(F),S) €S| (&, E)(F) = SYPr((Ei, ..., E1)(F) = §7)

Sies’
<) ((ee’ Pr((&1(F'), S € S| &(F') =a')) A1 +5’) Pr((&,...,&)(F) = SY)
Sies’
< Z ((egl Pr((£i41(F'),8") € S| (&, E1)(F') = 5%)) A 1) (eifl Pr((&;,....&)(F) = S) + ,U(Si))
Sies’
+ Z o Pr((€i7 R ,51)(}7‘) — Sz)
Stes’

< 0D N Pr((Ei4a(F'), S) € S| (&, E0)(F) = SO Pr((&i, ..., E)(F') = §) + u(S}) +
SieSs’

< eV Pr((Ei1, &y E1)(F') € 8) + (i + 1)
where 8’ = {S* € (UT)": (a'**, ") € S for some a' € U} and S/, are the elements S* € S’ such that p(S”") > 0.
This concludes the proof.
O
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A.2 Proof of Proposition

Proposition 3. The (1 — 1/e)-regret of Algorithm is bounded by the expected regret of E1,...,E.

Proof. Fix the choices Sy, ..., St of the experts arbitrarily, and let r; the overall regret experience by &;. That

is,

S

T
rf:ﬂgggﬂwfﬁ+a)tﬁ511 §j F(STTH Hap) = fi( S

Define the new function F : 271XV 5 R as

1 T
= f th(At)
t=1

where Ay = {x € U : (t,x) € A}. Clearly, F is submodular, nondecreasing and F(()) = 0. Then,

7 =max F(S'™! @) F(S'™) = (F(S) ~ F(S'™)),

acU
where S5 = |J]_, {t} x S°.

Let OPT C U be the optimal solution of maxg<y Zle f:(S) and consider its extension to [T] x U, i.e.,
OPT = J/_,{t} x OPT.

Claim A.1. Foranyi=1,...,k, max,cy F(gi’1 +a)— F(gi’l) > w.

Proof of Claim[A.]].
F(OPT) — F(§"1)
< F(S"'4+ OPT) - F(S" 1)
< ) FET'+a)-F(ST

GeOPT\Si—!
< k. F i— 1 i—1
< (max PG4 0) - PG ).
O
Using this claim, we can see,
- = F(OPT) — F(§1 ,
F(Sl) _ F(sz—l) Z (O ) (S ) _ ﬁ
k T
Unrolling the recursion, we obtain
T
th (Sy) > (1—)2 f:(OPT) —
t=1 i=1
O

A.3 Proof of Lemma [2]

Lemma 2. Ifr; denotes the regret experience by expert & in Algorithm[3, then

k

(-8 e[S ao] < perieor
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Proof. Observe that at exploration time-steps 7, i.e, when b, = 1, Algorithm [3| plays a set of the form S, =
Si=! + a. Right after this, the algorithm samples a new set S,.; given by the Hedge algorithms and will keep
playing this set until the next exploration time step.

For the sake of analysis, we introduce the following set. Let tg = 0,t1,...,t5 be the times when a new sample
set is obtained. Note that besides time tg, all times t1,...,t) are exploration times. Now, let S; = S;, for
t=t;+1,...,t;+1. Note that for times b; = 0, then S} = S;; however, for times b, = 1, then S; is not necessarily

the same as S; = Sti_l + a. In other words, S corresponds to the real full exploitation scheme. Now, as in the
full information setting, we have

T k
(I P STIEE ST o
t=1 i=1
T i,a l aj
where 7; = maxqev ) 1 f1 Zt 1 fio - Thus

(-2 w05 [T aas)|
i — fi(St)

<ZEm |+ E

=1
k
=1

since at the end, only the exploration times could contribute to the difference f;(S;) — f:(S:) and those are 4T
in expectation. U

A.4 Proof of Lemma [3|

Lemma 3. If each & is a Hedge algorithm with learning rate n = ———=—=— then E[r;] <
k+/32(2vT) log(k/d)
16"2‘U“°g'glf‘7/m°g(k/5) I k\ng Ce—8VT

Proof. From the perspective of expert &;, at every time-step ¢, she sees the vector ft’ such that

Tia i—1
ff, - ft (Sf + a)]-{Explore at time ¢, pick ¢, pick a}

in its a-th coordinate. Notice that this vector is 0 if no exploration occurs at time ¢. The expert & samples a
new element in U only after exploitation times. Observe that the feedback of &; is independent of choices made
by &;. Indeed, this feedback depends only on the set SF1 constructed by &1,...,&_ 1 and the decision of the
learner to explore, which is independent of the learning task. Therefore, the sequence f = f17 R fT) could be
considered oblivious for £ and we can apply the guarantee of Hedge over fi. That is, for any a € U,

d Ti.a T 7i IOg|U‘
th’ th ft<nZXt ftz
t=1

n

where x; € A(U) is the non-zero distribution used by expert & in the Hedge algorithm and A(U) = {x € RY :
Ix]l1 = 1,x > 0} is the probability simplex over elements in U. Notice that exploitation times appear in the
summation with 0 contribution. This expression is not the same as the regret of & but we can relate these

quantities as follows. Conditioned on Si717 ceey Séfl we obtain,
E[fe* | ST Sp ] = k|U|f:“ + e,
where f{* = f(Si™' 4+a) — f(Si1) and & = f(Sl !). Notice that S;~!,..., S ! are independent of actions

taken by &;, so

i | qi— i— v i i—
E[x/; fi | Si74,..., Sk 1]:WE[xjft | S} SET + 6
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and

Elx, ([)2S7 4 S =E | w(a)(f)? [ 817, S5t
acU
z 1 1—1 ’L 1
acU
Y

<
kU]

Let M be the number of times Algorithm [3| decides to explore. That is, M is distributed as the sum of T
Bernoulli random variables with parameter . By concentration bounds,

Pr(M > 29T) < e T,
Now, let t1,...,tas be the times the algorithm decides to explore and let tg = 0. For ¢ = 1,..., M, we can

assume that expert &; releases the same vector x; € Ay during the time interval [t;_1,t;) since she does not get

any feedback during those times. If we consider ) = ————=-—=———, then for any a € U we have
k+/32(2vT) log(k/6)

T T
~2 |y Y]

t=1 t=1

d log |U]| >
< (nZE[xt (ff) } gn >+T-e‘8’yT

Y 1Oé‘;|U| —8~y2T
< —T T- v
< <nk|U + 0 + e

T T
T B DY
t=1 t=1

Therefore,

T T
. ) k2|U|1 /Tlog(k/d)
E[r;] = max E Y —E l E Xjffl <16 [Ullog |Ulf og(k/9) k|U|T e 8T,
ac Yy
t=1 t=1

B ADDITIONAL RESULTS IN BANDIT SETTING

B.1 O(T%/*) Regret Bound of Direct Approach in Bandit Setting

In the bandit setting, the direct approach for differential privacy corresponds to sampling a new set from the
Hedge algorithms at each time step. As in the full-information setting, to ensure (e,d)-DP, a learning rate of

— g 3
= T o2 o70) is enough.

Similar to Lemma [3] in this setting we have

T k
(1‘ ) ﬁéﬁi’ith ~E fost)] <> E[r]+9T.

Since,

KU ( logU|)
Elr;] < T+
il = == e ™

k3|U|+/32T log (ko) N ekvT
ey

321og(k/9)’
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then we have,

1 T
(13 s -

This last bound is minimized when v = ©(T~/4) which gives a (1 — 1/e)-regret bound of O(T3/%).

T

> fulS)

t=1

- kY U|\/32T log(kd) N ek*VT
B ey 32log(k/d)

B.2 Trading Off Privacy J-Term and Space

In this subsection, we show how to trade-off the J-term e 8T by allowing additional space. For each t € T,
select ¢ as an explore round independently with probability . Let M be the number of time-steps selected. Note

that E[M] = 4T. Now, run Algorithm [3| with n = k\/32(M+61)1 =75 and force the algorithm to explore at the

M sampled time-steps and utilize the rest of the time-steps to exploit.

In this case, and following the proof of Lemma [3] we obtain:

Efr] < "V g {UM + bgwq
Y n

k|U|IE 6k10g|U|\/10g(k/5)\/M7+1
€

v

i <6klog Yl E‘ log(k/9) VE[M] + 1) (Jensen’s inequality)

IA

gl

_ 8k2|U| log |U|log(k/d) |T
€ v

Using Lemma [2] we obtain the (1 — 1/e)-regret bound of

3
(U log U] Tog(k/9) /:HT.

e

This is minimized at v = ©(1/T"/?) with a regret bound of O(T?/?) and expected space used O(T2/3).

C EXTENSION TO CONTINUOUS FUNCTIONS

In this section we prove Theorem [9] Before this, we present some preliminaries in online convex optimization.

In online convex optimization (OCO), there is compact convex set X C R™ where the learner makes decisions.
At time-step t, a convex function f; : X — R arrives. Without observing this function, the learner has to select
a point x; € X based on previous functions fi,..., f;—1. After the decision has been made, the learner receives
the cost fi(x;) and gains oracle access to V f;. The learner’s objective is to minimize the regret:

T T
R =3 filx) —mind_ fi(x).
t=1 t=1

Thakurta and Smith| (2013) introduced PFTAL (Private Follow the Approximate Leader) to privately solve the
OCO problem.

Theorem 10 (Thakurta and Smith| (2013)). PFTAL is (¢,0)-DP and for any input stream of convexr and
L-Lipschitz functions fi,..., fr has expected regret

= 2
\/nlog?s T(L+\/ nlog? BT ginm X)
VT

g

E[Ry] <O
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Similar to the Hedge algorithm, we utilize PFTAL as a black-box in Algorithm
Now, we present the proof of Theorem [J]in two parts, and prove each separately.
Lemma 4 (Privacy guarantee). Algorithm[{]is (g,0)-DP.

Lemma 5 (Regret guarantee). Let R = supycy ||2||2, G be a bound on the gradients ||V fi(x:)||2, and B be the
smoothness parameter of fi,..., fr. Then Algorithm [ has (1 — 1/e)-regret

E [(1 — D) maxeer 30y fulx) — 30, ft(xt)} =0 <T3/4\/10§§27'5T <ﬁ<G+ i iongsTdiam Y) + 5R2>> .

Proof of Lemma As with the analysis of Algorithm [2| we show that (Ex_1,...,&) is (&,0)-DP. If each
&, were (¢/K,0)-DP, then the result would immediately follow by simple composition. However, we cannot
guarantee that each & is (¢/K,0)-DP since & obtains as input the privatized output from &y, ...,E;—1 in the

linear function ¢4 (v) = Vf;(xF¥) v, where x¥ is computed by &, ...,&,_1, while at the same time is accessing

again the function f; (and so the database) via this linear function in the gradient V f;. This clearly breaks the
privacy that could have been gained via a simple post-processing argument and therefore and alternative method
is needed.

We do not show that each & is (¢/K,0)-DP but the group (Ex_1,...,&) is (¢,0)-DP. The proof of the following
lemma follows the same steps as the proof of Lemmal[l} The proof is slightly simpler since there is no d-privacy
term included but it requires some care since the distributions are continuous in this case.

Lemma 6. For any i > 1, the group (&i_1,...,&) : FL — (XT) is ie/K-DP.

Proof. We proceed by induction in i. The base case i = 1 follows immediately from privacy of PFTAL in
Thakurta and Smith| (2013)) because & is the only algorithm that has not its distribution perturbed by any other
algorithm. For the inductive step, assume the result is true for some i > 1 and let us prove it for ¢ + 1.

Let xt',...,x; € XT and X;_; = (xI",...,x¥). Then, for any x! € X7 we have
Pr(é‘l(F) = XzT | (5,‘,1, cee ,5())(F) = Xifl) < €E/K PI‘((C:Z(FI) = XZT | (gifl, v ,50)(F/) = Xifl)

by the guarantee of PFTAL. Note that we are referring to the PMF and not the CDF of the distribution. This
is because PFTAL utilizes Gaussian noise. With this, for X; = (x7,...,x{") we have,

= Pr(EZ(F) = XlT | (51_1, ‘e ,50)(F) = Xi—l) Pr((&-_l, [N ,S())(F) = Xi—l)
S es/K Pr(&(F/) = XlT | (52‘_1, ce ,go)(F/) = Xi—l) . eiE/K Pr((Ei_l, [N 750)(}’—‘/) = X—i—l)7

where we utilized induction and the previous inequality. This completes the proof. O

Proof of Lemma Let G = supi=1,.. 7 ||V fi(x)|l2. Let r; be the regret experienced by algorithm &; in
xeX

Algorithm [

The following result appears in the proof of Theorem 1 in|Chen et al.| (2018b).

Lemma 7 (Chen et al| (2018b)). Assume f; is monotone DR-submodular and B-smooth for every t. Then
Algorithm []] ensures

1 T T | K1 BRT
(17 w0 = ot < e 3o Py

where R = sup,cy ||x||2 and r; is the regret of algorithm &;.
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Using this result, we obtain

T T 1 K-1 ﬂR2
_Z _ < = [adulil
E l(l e) glea%cz;ft(x) ;ft(xt)] Sk L E[r;] + oK
2
Vnlog?® T (G + "L‘}%;;T diam 2\,’) BR2T

T
= e/K VT + 2K

log?-®

1/4
We can find the regret by setting K = (%) .
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