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Supplement to "Designing Transportable Experiments Under S-admissability”

In Section A we discuss the variance reduction for d > 1 when the sample size is finite. In Section B we show
the proofs of Section BI. In Section O we show the proofs of Section B2 In Section O we show the proofs of
Section B22. In Section E we show the proofs of Appendix Al

For a random variable R with value r, we write the expectation, variance and covariance conditioning on r as a

short-hand for conditioning on R = r. On the other hand, the expectation, variance and covariance conditioning

on R are functions of R and therefore are random variables. For example E[#L|X, Y] is a function of X and Y,
E[#L|X,y] = E[#}|X,Y =y] is a function of X, while E[7{ |x,y] = E[#L|X = x,Y =y] is a value.

Conditioning on x and y, the randomness only comes from Z. Therefore varz, (.|x,y), Covz, (.|x,y) and
Ez,(.|x,y) can be written as varz(.|x,y,p = 1),Covz(.|x,y,p = 1) and Ez(.|x,y,p = 1) respectively. We
use both notations in the proofs.

1/2 —1

For a random variable R, we use Cov(R)™*/* to denote the Cholesky square root of Cov(R)

We restate the model and some notations here for convenience. Let the model be:

Vi=X[p+& YV =XBy+E

Let €] and € be the values taken by random variables £ and £?. Let C; = YiO;Yil ,C; =W,C;, C = (Cr,+,Ch)
and C = (Cy,---,Cy). Let ¢;,é,c and & be the values taken by C;, C;, C and C. Then

Ci=XB+& ci =l B+e
Ci=XIp+§& &G =il B+ &

where 8 = 51+B° &= £l J”Sl X’ W; X, and E = W;&;. Let ¢; and €; = w;e; be the value taken by & and 5.
Let € = (517--~ ,Sn).

A Additional Results: Finite Sample Size Variance Reduction for d > 1

In this section we discuss the finite sample case when X is a multivariate random variable, which is a generalization
of the result in Section 652270 when d = 1. We show that when the sample size is finite, if 8 points to all directions
with equal probability, then a balance condition which also consider the target population and is similar to Target
Balance achieves the optimal variance reduction in expectation over 5. The proofs are in Appendix [E.

We will use the variance decomposition in the matrix form similar to [Harshaw efall, 2019] and provide intuition
about the effect of balancing on the variance. The following lemma is the general case when d > 1 of Lemma B
in Section B2,

Lemma A.1. For any function p(x,Z) € {0,1} satisfying p(x,Z) = p(x,—Z):
vm’%zp (%) = ﬁTC’ovz (Vix)p + O'S Zw

for V= 2(w-x)TZ = 2x7'Z.

Since the design affects only the first term in the above expression, we focus on the the random variable V. V
is now a d-dimensional vector and § is unknown.

To understand the first term, we use the same decomposition of 37 Covz, (V|x)8 as in [Harshaw ef all, 2009]. Let
ei,...,e, and Ay, .., A, be the normalized eigenvectors and corresponding eigenvalues of matrix Covz, (V'[x). Since
Covgz,(V[x) is symmetric, the eigenvectors form an orthonormal basis so we can write 3 as a linear combination
of e1,..,e, and get:

B=1IBI1>_ me
=1
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where n; = (8,€;)/ ||B|| is the coefficient that captures the alignment of the weighted outcome /3 with respect to
the eigenvector e;. Therefore:

BT Covz, (VIx)B = (181> > niA:

=1

In the worst case, 3 can align with the eigenvector of Covz, (V'|x) with the largest eigenvalue. Therefore a good
design is one with p that minimize the largest eigenvalue of Covz, (V[x). We leave this for future works. In this
work we consider the average case direction - when § with norm ||3]| = ! can point in any direction with equal
probability. In that case, we have

Lemma A.2.

2
Ejg=187 Covg, (V]x)5 = %Tmce(Covzp(Wx)). (4)

We can then ask for the balance event € which results in minimizing the trace of Covz(V|x, ), which is shown
in the following lemma. Note that when d = 1, the trace of Covz(V|x, ) is the variance varz(V|x, §2), and this
result is the general case of minimizing the variance of a 1-dimensional random variable in Section B2

Lemma A.3. Let U € R be a random variable such that E[U] = 0. Let u, be such that P(|U||?> < us) =1 —a.
Let Q) be an event such that P(Q}) > 1 — «a and E[U|Q] = 0. Then:

Trace(Cov(U|||U||* < ua) < Trace(Cov(U|Q))

It follows from Lemma BT, Lemma A=A and Lemma [A=3 that we can minimize E/gvar%’z(f'g |x, ) by defining
the following balance condition:

Definition 2 (Alternate Target Balance). With a rejection threshold «, define the balance condition

o [1 FIVIE<a
T 0, otherwise

where a be such that P(¢lf = 1]x) =1 — a.

Recall that Target Balance use the condition ||B||?> < a where B = VCovz(V)~/? is the normalized random
variable of V. Note since that V = %)ETZ, Alternate Target Balance also considers the target population in the
design phase. However Alternate Target Balance is not invariant under linear transformations of the covariates
x;’s while Target Balance is.

We have the following Theorem which is a generalization of Theorem B in Section B2

Theorem A.1. Let ||| =1 and B points in any direction with equal probability and ng = n1 = n/2.
Let p(X,Z) be a function satisfying p(X,Z) = p(X,—Z) and P(p = 1|x) > 1 — a. Then

Egvor§ z,,, (FF1%) < Bgvar§ 4, (1)

Similar to Section B2, applying Theorem B with p being the constant function p(x,Z) = 1 for all x, Z, we have:

Corollary A.1. Let ||B]| =1 and B points in any direction with equal probability. When ny = n1 = n/2, using
Alternate Target Balance reduces the variance compared to complete randomization in expectation over (3.

Egvars,, (#¥]x) < Egvarg y (7¥ )
T

Recall that the first term in the decomposition in Lemma BT is equal to:

BTC'OUZP(V\X)B = ’)/TCOUZP(B|X)’Y =T Covz(B|x,p = 1)y
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where y = 87 Covz(V)'/? and B = VCovg(V)~1/2.

When the sample size is large, B converges to a standard normal distribution. Recall that Target Balance is
equal to truncating ||B||? < a. So Covg op (B|x) is the covariance of a standard normal random variable B
truncated by ||B||? < a. From Theorem 3.1 in [Morgan et all, 2002] when B is a standard normal distribution,
Cov(Blx,¢r = 1) = vCov(B|x) for some v < 1, so the variance is reduced. However we do not need to go
through this analysis because [[Lief all, 2OIR] already has variance reduction results for the case when the sample
size is large. In Section B2 we use the result from [Liefall, POTS] directly to show that Target Balance achieves
a smaller variance than Source Balance.

B Proofs of Section b1

In this section we prove Theorem M. We made use of the following lemma from Morgan et all [2002]:

Lemma B.1 (from the proof of Theorem 2.1 in Morgan et all [2002]). Let A := (Ay,...,A,)T € R™. Let
n1 = ng = n/2. For any function p(x,A) € {0,1} satisfying p(x, A) = p(x,1 — A):

EZ[A1|X7yap = 1] =5

We also prove the following lemma in order to prove Theorem M

Lemma B.2. For any function p(x,A) € {0,1} satisfying p(x, A) = p(x,1 — A):

Eajp—1[7y X, Y] = (Y -Y0)

ln
2
:L; (81 — Bo) T X

EY alp—1 [Ty [X] =

Proof. From Lemma B, E[A4;|X,Y,p=1] =E[4;|X,p=1] = % Therefore:

_ } B nio Zn;EA {Wia — A

—ZWYlEA[A IX,Y,p=1] ——ZWYOEA [1-A|X, Y, p=1]
no

=1

R 1<
B X Y) = 3 Ea WAy

X, Y, p= 1}

PG
n 4

=1
Ei|p:1,Y[7§|X] = ]Eig( []EA[%%X Y,p= 1]|X]

=ES ZW - Y9 IX

= % ; Wi(B1 — Bo)' Xi

Proof of Theorem . Let Dg and D be the supports of the source and target distributions. Since pr(X) > 0 —
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ps(X) > 0 and pr(Y|X) = ps(Y|X), we have Dy C Dg. Using Lemma B72:

E?{,Y,ZM [f;] :Ei YEA¢ [%T|X Y}

= ZEXY Yo)]

:1§:/ S (pT(x) (y' —y )) ps(@,y)dxy

ps(z)

ps(ylz)ps(z)

(
-= Z /E WEDs <pTEy:$) Ty y0)> ps (@, y)dy because pr(y|z) = ps(y|z)
(y, )

(

pr
y —vy) | ps(z,y)dry
(z,y)€Ds (ps y,w)( )> s(@)

1 /
= )y —y0)day
n Z 7y)€Ds
1
= / )(y —y )dxy because D C Dg
’II y)EDT
_T}f

C Proofs of Section b-21

In this section we prove Lemma 0, Lemma B, Lemma B, Theorem B and Corollary 0. Note that the results in
this section are the special case when d = 1 of the results in Section Al. Lemma B is a special case when d = 1 of
Lemma [ET. Lemma B is a special case of Lemma A7 and Theorem B is a special case of Theorem BT. However
in this section we state the full proofs for the case d = 1 so that the readers do not need to read the proofs of
Section @Al in order to understand Section B2 in the main paper.

Proof of Lemma 0. By law of total variance:
varg, x v (#F) = Efpvarg 5, (FF1X) + varg (S g, [#71X])

Since p(x,Z) = p(x,—Z), from Lemma B

IEYZ

S MCERNET

3\'—‘

Therefore:

e (B, 1) = (£ 3200 - )

Proof of Lemma B. By definition:

varz(7y |x,y,p = 1) = Bz [(7% — Ezly |x,y,p = 1])*Ix,y,p = 1]

From Lemma B2

[TY|X y,p= ]- (Z wzy1 ZU&Q?)
i=1
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On the other hand conditioning on X = x and Y =y and let 4] denote the observed outcome of sample ¢:

Z wiy;)

Zi=—1

Therefore:

. 2
o= (D iy -
Zi=1

2 o 2 o
= ;wzflzyf - Z;wi(l - Ay}

r 2
2 n n
AT 1
=1)=E - iAiy; — i(1—A 1—* i Y Y, p=1
LT O EEA1 ) SITED SIENIEED SR S
r 2
=Eg ( ZwﬂA—lyl szM—lyl)) xy,p=1
4 T n 1 0 2
Yi Ty
= 2EZ (Z w’LZI 9 ) XY, p= 1
i=1
4 - ’
= EEZ (Z Ziwicz) xy,p=1
i=1
where ¢; = %
Proof of Lemma 3. By law of total variance:
var%zp (f'ﬂx) = Egg( [varzp (f’ﬂx, Y)\X} + varf((Ezp [%g\x Y]|x)
=E3 [varz, (7], Y)|x] + vary, ( sz Y, x)
1
=E3 [varz, (7 |x, Y)|x| + 3 Z wivar(&} — &)
i=1
= EY [varz, (7} [x,Y)[x] + 05 Zw
Recall that C; = 5)21 + &;. From Lemma D:
varg (74 |x, Y, p = 1)
S )
i=1
4 I N2
— 5z (ZTC) x,Y,p= 1}
4 (T o 75)?
= Bz (z 8%+ Z 5) XY, p=1
4 o T5)2 4 rz)° 4 T T &
— S8z |(Z27%)% |x,p= 1| + —Ez (z 8) %, Y,p=1| + 528z |X"ZZTE|x, Y, p= 1
n n n
Now we consider E5, [varz (7 |x, Y, p = 1)|x]. The third term in Eq. 8 becomes:
4 - - 8 - 5
EQEé [Ez [xTzsz x,Y,p= 1} x} = Bz [xTzzT X,p= 1} E3[E|x]

= 0 because ES[E|x] = 0

(5)
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The second term in Eq. B becomes:

%]Ef( {EZ [(ZT£)2 x}

r 2
4 n
:ﬁEé} Eg <§ Ziwié'i> Ix,Y,p=1
=1

x,Y,pl}

X

4 . 4
= EE% Ez Z(Ziwié'i)2|x,Y, p=1||x|+ EE% Ez Z(Ziwic‘:i)(Zjogj)|X,Y7p =1
L Li=1 I i#j
4 S - 2 4 S
= EEY EZ Z(Zzwl&) |X,Y, p= 1| |x| + ﬁ ZEZ [ZZ'ZJ'|X, p = ]_]U}Z'UJJEY [SZgJ|X}
L Li=1 i i i#£]
4 S

= EEY Ez Z(Ziwi&-)ﬂx,Y,p = 1| |x| + 0 because ES[£;&;|x] = ES[&|X]ES[E;]x] = 0

i=1

4
- ni]Eg Z(wigi)ZHX] because Z7 = 1

4 n
2 2
= ﬁa £ Z w;
The first term in Eq. B becomes:

4 ES [BQIEZ [(ZTf()2

n2

x7p=1}

x} = %ﬂQEZ [(szc)2

x,p=1]

(Z Ziw;z;)?|x, p = 1]
i=1

n

4 2 2
+p%2wi

i=1

4
= ﬁﬁﬁzz

Putting all 3 terms together:

(Z Ziwiz;)?|x,p =1

=1

. 4
EY [varz (7 [x, Y, p = 1)|x] = —Ez

Therefore:
2 n
Varf(,zp(f'%x) =ES [varz (7} [x,Y,p=1)|x]| + EU‘% Zw?
i=1
6 n
+ ﬁag Z wf
i=1

4
= ﬁﬁzEz

(Z Ziwixi)2|x, p=1
i=1

O

In order to prove Theorem B, we will show that for a random variable U with E[U] = 0, among events ) preserve
the expectation E[U|Q] = 0, truncating the tail results in the smallest variance. Note that if p(x,Z) = p(x, —Z)

it follows from Lemma B that E[2x7Z|p = 1] = E[2xTZ] = 0.

In order to prove Theorem 1 we show how to minimize the variance of a random variable:

Lemma C.1. Let U € R be a random variable such that E[U] = 0. Let u, be such that P(U? < u,) =1 — .

Let Q be an event such that P(2) > 1 — « and E[U|Q] = 0. Then:
E(U?|U? < ua) < E(U?Q)

Proof. Let p(u) be the pdf of U. Define f(u) as follow:

fu) =p(U = u,Q)
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then:

Therefore:

We want to minimize E(U?|():

subject to:
0 < f(u) < p(u) Yu
P(Q) = / flwdu=1-«

This can be done by maximize f(u) so that f(u) = p(u) for the smallest u?, which is equal to set § to be the
event U? < u,. O

Proof of Theorem B. Let V := % > ,wir;Z; and B = Vvar(V)fl/z. From Lemma B:
6 n
_ 2 2
X,p= 1] + ﬁaf ;:1 w;'.

6
X, p = 1} +ﬁJ§Zw§.

i=1

var§ 7 (FLIx) = §%Ez [w

= B%var(V)Eg [32

Since p(x,Z) = p(x,—2Z), from Lemma BT we have Ez[B|x, p = 1] = 0, which satisfies the criteria in Lemma .

Let n := 1 — P(p = 1|x). Then n < a. Let b, be such that P(B? < by|x) = 1 —n and b, be such that
P(B% < by|x) = 1 — . From Lemma CI:

Ez [B?|x,p = 1] > Ez [B*|x, B* < b,]

> Ky [B2 X, B? < ba] because b, > b,
> Ez [B?|x, ¢ = 1]
O
Proof of Corollary . Let p being the constant function p(x,Z) =1 for all x,Z. Then:
vary 7 (7y|x) = vary z (7 [x)
From Theorem B we have:
vary g, (7 [x) < vary gz, (7 [x) = vary z (7 [x)
O

D Discussion on Section b-22

Proof of Lemma |. By law of total variance:

Variﬁy’zp (%)7;) = IE%Y [Varzp (%$|X,Y)} + Var‘)g(’y (Ezp [%$|X7Y])
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Since p(x,Z) = p(x,—Z), from Lemma Bk

Ez[fy|X, Y, p=1] =

S|

> Wiy =YY
i=1
Therefore:

. 1O
VarSg(,Y (]EZ [T}:C|Xa Y,p= 1}) = Vafig(,Y (n Z Wi(Yil - Yio)>

We now prove Lemma B. We use the following result in Harshaw ef all [P2019] to prove Lemma B.

Lemma D.1 (Lemma Al in Harshaw ef all [P2009]). Let y; denote the observed outcome of sample i:

n

2 . 1 2
Qo w = D w) D Wiy =cTa

Zizl Zizfl =1
1 (0]
4y
where ¢; = ¥ and ¢ := (c1, -+, cn).

We will also use the following lemma:

Lemma D.2. Let Q) := ”T_I]E[ZZT]. Let I,, denote the n x n identity matriz and 1 denote the n dimensional
vector of 1. Then:

1
Q=1I1,--117.
n

Q=q"
R=Q"=0Q"Q=0Q".
Let s € R4 be a matriz. Then
Qs = s — avy(s)

where avg(s) € R? is the average of rows of s.

Proof. First we will show that:

1

E[ZZT] = <1n - 11T>
n—1 n

by showing that E[Z?] = 1 and E[Z;Z;] = ——; when i # j. First we have that E[Z?] = 1 because Z? = 1. Since

there are exactly n/2 samples with value Z; = 1 and n/2 samples with values Z; = —1, note that (3}, Z;)> =0

and:

n n

E() 2)° = E[Z Z}+ Y ElZ:Z;] .

i=1 Iy
Since all pairs (i, j) where i # j have equal roles and there are n(n — 1) such pairs:

£2,2,) = FCin 20°) B[S, )
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Since Q is symmetric, Q = Q7. We will show that Q = Q?:

1 1
Q2 = (In - EllT)(In - EllT)
1 T 1 T 1 T T
=I,—-—-11'1, — -1I,11 +711 11
n n n
1

=1,--117=¢Q
n
Since Q = QT, we have Q = Q% = QQT = QT Q. For the last property:
Lo 7
QRs=I,s— —11"'s =s —avg(s)
n

because I,s = s and 1117's = avg(s) O

Proof of Lemma @. For any matrix s € R™*? we will compute R2 := Corr(#{, %ZTS) where for any Y € R, X €

Re, Corr(Y, X) is defined as:

Corr(Y,X) = Corr(Y, x7p
. Cov(Y, X7 %)
B Vvar(Y)y/var(X7T 3*)

where 3% = arg ming E[|Y — XT 3|2, Substituting s = x and s = X will give us R2 and RZ.

Let 6; = 5} — 4% and 8 := (61, - ,0,). From Lemma [, we have:
2 1.+~
= "7T¢+ =174
n n

where 1 € R"™ is a vector of 1.

We note that conditioning on y, 174 is a constant independent of Z. Let Q := %E[ZZT] and note that Q@ = Q7
and Q = Q2. First, let us compute f* = arg min Ez|#f — %ZTSBHZ. We have,

9 .
B* = argminEz |7y — —ZTsp|?
B n

2 1 -« 2 -
= argminEz||~Z7¢ + -176 — =Z"s3|?
3 n n n

arg min By | 27¢ — Z"sp’

= argmin(@ - sB)TE[ZZ"](€ — sB)
= argmin(e — s8)" Q& —sp)

= arg Hgn(é —s6)TQTQ(& - sp)

= argmin [|Q¢ — Qsp*.
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Using the fact that @ = QTQ, we have 8* = (sTQs) 'sT Q¢. By definition, we have

Bz [7f 2Z7sp3*| — Bz [#] | Bz [2Z7sp"]
\/Varz #varz (2Z7sB*)
[%TZTSB }

\/Varz yvarz(ZTs(*)
Ez | (2672 + 1176) 27sp"]

\/arz (% +11 T&) varg (ZTs3*)
Ez [
o

COTT(Ty, ZT )=

because E[Z] =0

(€72) Z7sp"]

277T¢) varz(Z7sS*)

[ TZZ7spB* ]
\/V&I‘Z ZT¢) varg (Z7sp*)

For the numerator we have:

Ez [¢"ZZ"sp*] = e"Qsp”
_ fﬁ -7 Qs(s7Qs) 18T Qe

n

ﬁéTQS(STQS)_1STQS(STQS)_1STQ6

n —

- nﬁ 1 (6TQS(STQS)*1STQ) (QS(STQS)*lsTQE:)
(5T Q)(@sB")

_L * (|2
= L ]QsH|

Let u = Qs and v = Q¢ — Qsf. We will show that u and v are orthogonal, therefore ||Qs3*||? =
Qsp*:

u'v = (Q¢ — Qsp*)(Qsp)
— éTQSﬁ* _ 6*TSTQSﬁ*
T Qsp" — QsB
=0.

Therefore ||QsB*||? = ||Q¢||* — | Q¢ — Qsp|?.

For the denominator, since E[Z] = 0 we have:

varg, (ZT¢€) varz(ZTsp*) = By [eT ZZTE|E4 3 sT 227 s 5%
2

= 5 (€7 Qe)( ST Qs

= — s (E7QTQY)(5"sTQTQsB")

= o QelPlQss

lQe|* - [|Qe —
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Putting the numerator and denominator together we have:

2
R% = Corr(7, EZTS)

s
lQellQss]
_llQss’l
Qe
_ VIQEP —[@é — Qsp?
Qe

Substituting s = x and s = X gives us the expression for RZ and RZ. O

Proof of Theorem [. We have

where C = %, £ = %, B = ﬂogﬁl, C = zgggC,X = ZEQX and £ = ’;gg;é’ Since Y;, X; and W;

have finite 8th moment, C; and X; have finite 4th moment using Cauchy-Schwartz inequality. Let S € R? be

a random variable independent of & and with finite 4th moment. Let S € R™*¢ be n samples Sy, --- , S, of S.
By the definition of R?,

R IQC|1? — ming [|QC — QSB|?
® 1QC=2 '

We will show that lim,_, oo R% > lim, 00 RE almost surely for any S. It is sufficient to show lim min QC —
QXA|? < lim min g |QC — QSp||? almost surely. From Lemma D2, note that for any matrix s € R"*¢ with n
rows, ”T_le = s — avg(s) where avg(s) € R? is the average of rows of s. Let 8* = arg min limy,—, o %HQC -
QSp|? and § = arg min g L1QC - QSB||2. If S; and C; have finite 4th moment, by strong law of large number
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lim,, oo B = * almost surely. We have:

— lim m1n||QC QSB|?

n n—oo
. B ~ 12
= lim QG - Q8P| +2(QC - @857 (Qsp° ~ @s) + @ss - s
1 . . . . .
— = lim [QC — QSB*|2 +2 lim (QC — QSA")TQS lim (8" — §) + lim (8" — §)” lim STQS lim (3" — )
n n—oo n—oo n—oo n—oo n—oo n—oo
because C; and S; having finite 4th moment implies 1i_{n (QC — QSB*)TQRS and le ST QS are finite

1. -
lim —||QC — QSf*||? almost surely
n—oo N

1 ~ A
— min lim —[QC — @SB
IB n—oo N,

n2

=min lim ———
p n—oon (n—1)2

= min lim (€ - $9) — (avg(C) ~ ave(S)9)|

= min var(C' — 87 3) almost surely if C; and S; have finite 4th moment
B

- InﬁinE[(é - S5"8)* - (E[é - STB])

~ ~ ~ ~ A0\ 2 ~ ~
=minE[XTB3 — STH]? + E[£?] - (IE[XTB - ST6]> because E[£] = 0 and & is independent of X and S
B

= minvar(X7 3 — STB) + E[£?] > E[£?]
B

When S = X, this is minimized, therefore:

lim R > lim RZ almost surely.

n— o0 n—oo

Substituting S = X:

lim R > hm R% almost surely.
n— oo

Recall that:

2
as-varg, (ﬁﬂx,y,M (ZTS> < a) = lim var(7 |x,¥)(1 — (1 —vgq.)R2),
n —00

n

where as-var is the variance of the asymptotic sampling distribution. Let s(a) denote the rejection probability
P(¢s = 0|x) = 0 when using threshold a in Source Balance, and #(a) denote the rejection probability P(¢r =
0|x) = 0 when using threshold a in Target Balance. We have:

s(a ~ 2
as-varg (%$|X,Y7¢‘S( ) = 1) = as-varg (T$|X,Y,M (ZTX> < a)

= lim var(#|X,Y)(1 — (1 — vgq)R%
n—oo

> lim var(7y |X, Y)(1 — (1 — vq,q)R%) almost surely
n—oo

)

)

zas—varz( |X,Y,M< ZTX> )
(+

as-varg X, Y, i = )
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Now we will show that for any x and X, lim,, o s(a) = lim,, o t(a). Let U € R? be a standard multivariate
random variable. We have:

lim s(a) = lim P(M (isz) <a)

n— oo n—0o0
2 2
= lim P(||Bs|?> < a) where Bs = —ZTxCov(=Z"x)~1/?
n—00 n n

=P(||U||* < a) because Bg converges in distribution to U by finite central limit theorem

Similarly we have:

lim t(a) = lim P(M (ZzTi) <a)

n—00 n—00
Iin (||Br||? < a) where By := —ZT%Cov(=Z"%)~1/?
n—00 o -

=P(||U||* < a) because By converges in distribution to U by finite central limit theorem

Therefore lim,,_, o, t(a) = lim,,_,+, s(a). When the sample size is large, with the same rejection probability, using
Target Balance results in a smaller asymptotic variance than Source Balance . O

E Proofs of Section Al

In this Section we present the proof of Lemma BT, Lemma B2, Lemma B=3, Theorem AT and Corollary BT.

In order to prove Lemma BT, we first prove the following lemma.

Lemma E.1 (minor changes to Lemma 1 in [Harshaw ef all, 2019)). Let & = & — 37%; and € = (€1, ,&,).
For any function p(x,Z) € {0,1} satisfying p(x,Z) = p(x,—Z):
n2
Zvarz(f'%x,y,p =1)=Cov(eTZp=1) (6)
= TCou(xTZ|p =1)3 + Cov(e"Z|p = 1) + 287 Cov(XTZ,e" Z|p = 1) (7)

Proof of Lemma [EZ. By definition:

varg(7y |x,y,p = 1) = Bz [(7% — Ezly |x,y,p = 1)’ 1%, y,p = 1]

=

ZA“’Z% Z( Ai)wiygpzll
=1
=1

i=1

We have:

~ 2 * *
Ez[7y [x,y,p = 1] = Bz lz wiY; — Z w;Y;

Zi=—1

3

S|

= (Z wiyr — wa?) because E[4;|p = 1] = 1/2 by Lemma BT
— —
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Therefore using Lemma D

xy,p=1

2
varz (¢ %, y,p = 1) ( Z wy; — Z w;y;) sz -y >

Z,=—1
4 TooT

= EE[C 77 C|X5y7p = 1]
4

= ﬁCov(éTZ|x,y,p = 1) because E[¢TZ|x,y,p = 1] = 0 from Lemma B
4 - T

= ECOU((XB + 6) Z‘X7Yap = 1)

= BT Cov(x"Z|x,y,p =118+ Cov(e" ZIx,y,p = 1) + 28" Cov(x"Z,&" Z|x,y,p = 1)

Proof of Lemma 1. By law of total variance:

Varf()zp (%$|x) = E‘S{ [Varz(f'%x,Y,p = 1)|x] + varf((Ez[f'ﬂx Y,p=1]|x)
=ES [varz(ry|x Y.p=1)x] + vary ( sz Y )
= Ey [varz (7 |x, Y, p = 1)lx] + E Z wivar(€) — &)

i=1

=EY [varz (7 |x, Y, p = 1)|x] + —US Zw

From Lemma [E:

n2

Zvarz(ﬁf\xy,p =1)=pTCou(xTZ|x,y,p =18+ Cov(e" Z|x,y, p = 1) + 28T Cov(xTZ,é" Z|x,y, p = 1)
= BTCou(xTZ|x,y,p =18 + € Cov(Z|x,y,p = 1)é + 28T Cov(XTZ,Z|x,y,p = 1)€

Recall that V' = BT X; + &} and Y? = BT X, + &Y. Let & = S and & = (&1, ,&n). Since € is the value of
£ we have:

2
n A

IEf{ [varz (7} [x, Y, p = 1)[x]

=BT Cov(xTZ|x,y,p = 1]8 + ]E%[Z:TCOU(Z|X7Y,;) = 1DEx] +287Cov(xTZ,Z|x,y, p = 1)E[E|X]
= BTCov(XTZIx, p = 1) + ES [Cov(€" Z|x, p = 1)|x] because E[E|x] = 0
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The second term:

ES [Cou(€" ZIx, p = 1)|x]
~T ~
= Eg[E2[€" ZZ7E|x, p = 1]|x]

=Eg | Y Eg[wii ZiZ;E5w;ilp = 1]|x

i=1 j=1

=Bz | > Ew?e?Z2p =11+ Ew&iZiZ;Ew;lp = 1]|x

= i#]
=Eg ZE[W?&?HP =1]+ ZE[wiZingjwj|p = 1JE[&]|p = 1]|x| because Z? =1
L=t i#]

= ZE[waZQ] because E[&;|p=1]=0

=1

n
_ 2 _2
—E w;0g
i=1

Putting all together:

4 N < 2 5w
var%zp(%%x) =3 (BTCOU(XTZ|x,p =1|5+ wacé) + —&—ﬁag Zw?
i=1

i=1

= —5TCOUZ( TZ|x,p=1]3 + ngw

Proof of Lemma A2. We use the same decomposition of 87 Covz(V|x,)3 as in [Harshaw ef all, 2019]. Let
ey, ...,e, and A1,.., A, be the normalized eigenvectors and corresponding eigenvalues of matrix COUZ(V|X, ).
Since Covz(V|x,5) is symmetric, the eigenvectors form an orthonormal basis so we can write 8 as a linear
combination of ey, .., e, and get:

B=1B1Y_me
i=1

where n; = (8, e;)/ ||8|| is the coefficient that captures the alignment of the weighted outcome 3 with respect to
the eigenvector e;. Therefore:

BT Covz(VIx, )8 = 181> > nAi

i=1
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Then:

Eg [BT Covz(V]x,Q)8] = Egs

MWZ#%
=1

=1 " \Es[n?]
=1

2 En: \E 2(9) where 6 is the angle between § and e;. Since 8 points to any direction
o — i with equal probability, § is uniformly distributed in [0, 27].

2
-3\

2

i=1

2
= %’I‘race(Covz(V|X7 Q)).

Proof of Lemma [A=3. Let p(u) be the pdf of U. Define f(u) as follow:

f(u) =p(U = u,Q)

Then:

Since P(2) = 1 — o we have:

Lfmﬂuzl—a

We have:

Trace(Cov(U|Q)) = Trace(E[UUT|Q)) = Trace(E[UUT|Q] = Trace(E[UTU|Q] = / ulu if(_uldu

u

We want to minimize Trace(Cov(U|2)):

11—«

/uTuMdu

subject to:
0 < f(u) < p(u) Vu
/ flwdu=1-a

This can be done by maximize f(u) so that f(u) = p(u) for the smallest u”u, which is equal to set Q to be the
event ||U]|* < uq. O

Proof of Theorem 1. Let n := 1 —P(p = 1|x). Then n < a. Let v, be such that P(|V|* < v,|x) =1 — 7.
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From Lemma BT:

n

. 4 6
Egvary z, (7 1x) = —EgfT Cov(VIx,p= 1)+ —0° > w]
i=1

412 6 ov
= EETrace(Cov(Wx, p=1)+ EOQ ;wf
> iﬁ’I&“ace(Cov(V|x VI < vy)) + E02 zn:w2
“n22 ’ " n? ‘

412 6 o
EETrace(Cov(Wx, IV < va)) + ﬁaz ;wf because vy, > vq

Y

v

4 12 al 6 2 2
EgTrace(Cov(Wx,d)T =1))+ 30 Zwi

4 T al 6 2 - 2
> BB Cou(Vix, 67 = )8+ 0 ;wi

s ~
> Eﬁvary,zd,%, (T$|X)

Proof of Corollary A. Let p being the constant function p(x,Z) = 1 for all x, Z. Then:
varg, v (7y|x) = varz y (75 [x)
From Theorem BT we have:

Egvarz,, v (7y [x) < Egvarg, v (7 [x) = Egvarg,y (7y[x)
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