Supplement to＂Designing Transportable Experiments Under S－admissability＂

In Section $⿴ 囗 十$ we discuss the variance reduction for $d \geq 1$ when the sample size is finite．In Section \mathbb{B} we show the proofs of Section［．］．In Section \mathbb{C} we show the proofs of Section m．2．］．In Section \mathbb{D} we show the proofs of Section 5.2. In Section \mathbb{E} we show the proofs of Appendix $⿴ 囗 十$ ．

For a random variable R with value r ，we write the expectation，variance and covariance conditioning on r as a short－hand for conditioning on $R=r$ ．On the other hand，the expectation，variance and covariance conditioning on R are functions of R and therefore are random variables．For example， $\mathbb{E}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right]$ is a function of \mathbf{X} and \mathbf{Y} ， $\mathbb{E}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{y}\right]=\mathbb{E}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}=\mathbf{y}\right]$ is a function of \mathbf{X} ，while $\mathbb{E}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}\right]=\mathbb{E}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}=\mathbf{x}, \mathbf{Y}=\mathbf{y}\right]$ is a value．

Conditioning on \mathbf{x} and \mathbf{y} ，the randomness only comes from \mathbf{Z} ．Therefore $\operatorname{var}_{\mathbf{Z}_{\rho}}(. \mid \mathbf{x}, \mathbf{y}), \operatorname{Cov}_{\mathbf{Z}_{\rho}}(. \mid \mathbf{x}, \mathbf{y})$ and $\mathbb{E}_{\mathbf{Z}_{\rho}}(. \mid \mathbf{x}, \mathbf{y})$ can be written as $\operatorname{var}_{\mathbf{Z}}(. \mid \mathbf{x}, \mathbf{y}, \rho=1), \operatorname{Cov}_{\mathbf{Z}}(. \mid \mathbf{x}, \mathbf{y}, \rho=1)$ and $\mathbb{E}_{\mathbf{Z}}(. \mid \mathbf{x}, \mathbf{y}, \rho=1)$ respectively．We use both notations in the proofs．
For a random variable R ，we use $\operatorname{Cov}(R)^{-1 / 2}$ to denote the Cholesky square root of $\operatorname{Cov}(R)^{-1}$ ．
We restate the model and some notations here for convenience．Let the model be：

$$
Y_{i}^{1}=X_{i}^{T} \beta_{1}+\mathcal{E}_{i}^{1} \quad Y_{i}^{0}=X_{i}^{T} \beta_{0}+\mathcal{E}_{i}^{0}
$$

Let ϵ_{i}^{1} and ϵ_{i}^{0} be the values taken by random variables \mathcal{E}_{i}^{1} and \mathcal{E}_{i}^{0} ．Let $C_{i}=\frac{Y_{i}^{0}+Y_{i}^{1}}{2}, \tilde{C}_{i}=W_{i} C_{i}, \mathbf{C}:=\left(C_{1}, \cdots, C_{n}\right)$ and $\tilde{\mathbf{C}}=\left(\tilde{C}_{1}, \cdots, \tilde{C}_{n}\right)$ ．Let $c_{i}, \tilde{c}_{i}, \mathbf{c}$ and $\tilde{\mathbf{c}}$ be the values taken by $C_{i}, \tilde{C}_{i}, \mathbf{C}$ and $\tilde{\mathbf{C}}$ ．Then

$$
\begin{array}{rlr}
C_{i} & =X_{i}^{T} \beta+\mathcal{E}_{i} & c_{i}=x_{i}^{T} \beta+\epsilon_{i} \\
\tilde{C}_{i} & =\tilde{X}_{i}^{T} \beta+\tilde{\mathcal{E}}_{i} & \tilde{c}_{i}=\tilde{x}_{i}^{T} \beta+\tilde{\epsilon}_{i}
\end{array}
$$

where $\beta=\frac{\beta_{1}+\beta_{0}}{2}, \mathcal{E}_{i}=\frac{\mathcal{E}_{i}^{1}+\mathcal{E}_{i}^{0}}{2}, \tilde{X}_{i}=W_{i} X_{i}$ and $\tilde{\mathcal{E}}_{i}=W_{i} \mathcal{E}_{i}$ ．Let ϵ_{i} and $\tilde{\epsilon}_{i}=w_{i} \epsilon_{i}$ be the value taken by \mathcal{E}_{i} and $\tilde{\mathcal{E}}_{i}$ ． Let $\tilde{\mathcal{E}}=\left(\tilde{\mathcal{E}}_{1}, \cdots, \tilde{\mathcal{E}}_{n}\right)$ ．

A Additional Results：Finite Sample Size Variance Reduction for $d \geq 1$

In this section we discuss the finite sample case when X is a multivariate random variable，which is a generalization of the result in Section 5.2 when $d=1$ ．We show that when the sample size is finite，if β points to all directions with equal probability，then a balance condition which also consider the target population and is similar to Target Balance achieves the optimal variance reduction in expectation over β ．The proofs are in Appendix \mathbb{E} ．

We will use the variance decomposition in the matrix form similar to［Harshaw et all，［2019］and provide intuition about the effect of balancing on the variance．The following lemma is the general case when $d \geq 1$ of Lemma ${ }^{3}$ in Section 5．2．11．
Lemma A．1．For any function $\rho(\mathbf{x}, \mathbf{Z}) \in\{0,1\}$ satisfying $\rho(\mathbf{x}, \mathbf{Z})=\rho(\mathbf{x},-\mathbf{Z})$ ：

$$
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)=\beta^{T} \operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x}) \beta+\frac{6}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
$$

for $V:=\frac{2}{n}(\mathbf{w} \cdot \mathbf{x})^{T} \mathbf{Z}=\frac{2}{n} \tilde{\mathbf{x}}^{T} \mathbf{Z}$ ．
Since the design affects only the first term in the above expression，we focus on the the random variable $V . V$ is now a d－dimensional vector and β is unknown．

To understand the first term，we use the same decomposition of $\beta^{T} \operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x}) \beta$ as in［Harshaw et al．，［Uly］．Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ and $\lambda_{1}, . ., \lambda_{n}$ be the normalized eigenvectors and corresponding eigenvalues of matrix $C o v_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x})$ ．Since $\operatorname{Cov}_{\mathbf{Z}}^{\rho}(V \mid \mathbf{x})$ is symmetric，the eigenvectors form an orthonormal basis so we can write β as a linear combination of $\mathbf{e}_{1}, . ., \mathbf{e}_{n}$ and get：

$$
\beta=\|\beta\| \sum_{i=1}^{n} \eta_{i} \mathbf{e}_{i}
$$

where $\eta_{i}=\left\langle\beta, \mathbf{e}_{i}\right\rangle /\|\beta\|$ is the coefficient that captures the alignment of the weighted outcome β with respect to the eigenvector \mathbf{e}_{i}. Therefore:

$$
\beta^{T} \operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x}) \beta=\|\beta\|^{2} \sum_{i=1}^{n} \eta_{i}^{2} \lambda_{i}
$$

In the worst case, β can align with the eigenvector of $\operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x})$ with the largest eigenvalue. Therefore a good design is one with ρ that minimize the largest eigenvalue of $\operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x})$. We leave this for future works. In this work we consider the average case direction - when β with norm $\|\beta\|=l$ can point in any direction with equal probability. In that case, we have

Lemma A.2.

$$
\begin{equation*}
\mathbb{E}_{\|\beta\|=l} \beta^{T} \operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x}) \beta=\frac{l^{2}}{2} \operatorname{Trace}\left(\operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x})\right) \tag{4}
\end{equation*}
$$

We can then ask for the balance event Ω which results in minimizing the trace of $\operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega)$, which is shown in the following lemma. Note that when $d=1$, the trace of $\operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega)$ is the variance $\operatorname{var}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega)$, and this result is the general case of minimizing the variance of a 1-dimensional random variable in Section 5.2 .1 .
Lemma A.3. Let $U \in \mathcal{R}^{d}$ be a random variable such that $\mathbb{E}[U]=0$. Let u_{α} be such that $\mathbb{P}\left(\|U\|^{2}<u_{\alpha}\right)=1-\alpha$. Let Ω be an event such that $\mathbb{P}(\Omega) \geq 1-\alpha$ and $\mathbb{E}[U \mid \Omega]=0$. Then:

$$
\operatorname{Trace}\left(\operatorname{Cov}\left(U \mid\|U\|^{2}<u_{\alpha}\right) \leq \operatorname{Trace}(\operatorname{Cov}(U \mid \Omega))\right.
$$

It follows from Lemma $\overline{A . D}$, Lemma $\boxed{A .2}$ and Lemma $\boxed{A .3}$ that we can minimize $\mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Y}, \mathbf{Z}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \Omega\right)$ by defining the following balance condition:
Definition 2 (Alternate Target Balance). With a rejection threshold α, define the balance condition

$$
\phi_{T}^{\prime \alpha}= \begin{cases}1, & \text { if }\|V\|^{2}<a \\ 0, & \text { otherwise }\end{cases}
$$

where a be such that $\mathbb{P}\left(\phi_{T}^{\prime \alpha}=1 \mid \mathbf{x}\right)=1-\alpha$.
Recall that Target Balance use the condition $\|B\|^{2}<a$ where $B=\operatorname{Vov}_{\mathbf{Z}}(V)^{-1 / 2}$ is the normalized random variable of V. Note since that $V=\frac{2}{n} \tilde{\mathbf{x}}^{T} \mathbf{Z}$, Alternate Target Balance also considers the target population in the design phase. However Alternate Target Balance is not invariant under linear transformations of the covariates x_{i} 's while Target Balance is.

Theorem A.1. Let $\|\beta\|=l$ and β points in any direction with equal probability and $n_{0}=n_{1}=n / 2$.
Let $\rho(\mathbf{X}, \mathbf{Z})$ be a function satisfying $\rho(\mathbf{X}, \mathbf{Z})=\rho(\mathbf{X},-\mathbf{Z})$ and $\mathbb{P}(\rho=1 \mid \mathbf{x}) \geq 1-\alpha$. Then

$$
\mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\phi_{T}^{\prime \alpha}}^{S}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) \leq \mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)
$$

Similar to Section $\mathbf{L . 2 . 1}$, applying Theorem \mathbb{Z} with ρ being the constant function $\rho(\mathbf{x}, \mathbf{Z})=1$ for all \mathbf{x}, \mathbf{Z}, we have:
Corollary A.1. Let $\|\beta\|=l$ and β points in any direction with equal probability. When $n_{0}=n_{1}=n / 2$, using Alternate Target Balance reduces the variance compared to complete randomization in expectation over β.

$$
\mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Z}_{\phi_{T}^{\prime}}^{S}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) \leq \mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Z}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)
$$

Recall that the first term in the decomposition in Lemma A.ll is equal to:

$$
\beta^{T} \operatorname{Cov}_{\mathbf{Z}_{\rho}}(V \mid \mathbf{x}) \beta=\gamma^{T} \operatorname{Cov}_{\mathbf{Z}_{\rho}}(B \mid \mathbf{x}) \gamma=\gamma^{T} \operatorname{Cov}_{\mathbf{Z}}(B \mid \mathbf{x}, \rho=1) \gamma
$$

where $\gamma=\beta^{T} \operatorname{Cov}_{\mathbf{Z}}(V)^{1 / 2}$ and $B=\operatorname{Vov}_{\mathbf{Z}}(V)^{-1 / 2}$.
When the sample size is large, B converges to a standard normal distribution. Recall that Target Balance is equal to truncating $\|B\|^{2}<a$. So $\operatorname{Cov}_{\mathbf{Z}_{\phi_{T}}}(B \mid \mathbf{x})$ is the covariance of a standard normal random variable B truncated by $\|B\|^{2}<a$. From Theorem 3.1 in [Morgan et al., [zण]z] when B is a standard normal distribution, $\operatorname{Cov}\left(B \mid \mathbf{x}, \phi_{T}=1\right)=v \operatorname{Cov}(B \mid \mathbf{x})$ for some $v<1$, so the variance is reduced. However we do not need to go through this analysis because [Li et all, [U\|8] already has variance reduction results for the case when the sample size is large. In Section $[5.2 .2$ we use the result from [Li et al., [20]] directly to show that Target Balance achieves a smaller variance than Source Balance.

B Proofs of Section 5.1

In this section we prove Theorem \mathbb{T}. We made use of the following lemma from Morgan et al. [[2012]:
Lemma B. 1 (from the proof of Theorem 2.1 in Morgan et al. [ZULZ]). Let $\mathbf{A}:=\left(A_{1}, \ldots, A_{n}\right)^{T} \in \mathcal{R}^{n}$. Let $n_{1}=n_{0}=n / 2$. For any function $\rho(\mathbf{x}, \mathbf{A}) \in\{0,1\}$ satisfying $\rho(\mathbf{x}, \mathbf{A})=\rho(\mathbf{x}, 1-\mathbf{A})$:

$$
\mathbb{E}_{\mathbf{A}}^{S}\left[A_{i} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]=\frac{1}{2}
$$

We also prove the following lemma in order to prove Theorem \mathbb{D} :
Lemma B.2. For any function $\rho(\mathbf{x}, \mathbf{A}) \in\{0,1\}$ satisfying $\rho(\mathbf{x}, \mathbf{A})=\rho(\mathbf{x}, 1-\mathbf{A})$:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{A} \mid \rho=1}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right] & =\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right) \\
\mathbb{E}_{\mathbf{Y}, \mathbf{A} \mid \rho=1}^{S}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}\right] & =\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(\beta_{1}-\beta_{0}\right)^{T} X_{i}
\end{aligned}
$$

Proof. From Lemma B..ᅦ, $\mathbb{E}\left[A_{i} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right]=\mathbb{E}\left[A_{i} \mid \mathbf{X}, \rho=1\right]=\frac{1}{2}$. Therefore:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{A} \mid \rho=1}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right] & =\frac{1}{n_{1}} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{A}}\left[W_{i} A_{i} Y_{i}^{1} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right]-\frac{1}{n_{0}} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{A}}\left[W_{i}\left(1-A_{i}\right) Y_{i}^{0} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right] \\
& =\frac{1}{n_{1}} \sum_{i=1}^{n} W_{i} Y_{i}^{1} \mathbb{E}_{\mathbf{A}}\left[A_{i} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right]-\frac{1}{n_{0}} \sum_{i=1}^{n} W_{i} Y_{i}^{0} \mathbb{E}_{\mathbf{A}}\left[1-A_{i} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right) \\
\mathbb{E}_{\mathbf{A} \mid \rho=1, \mathbf{Y}}^{S}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}\right] & =\mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{A}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right] \mid \mathbf{X}\right] \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\left.\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right) \right\rvert\, \mathbf{X}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(\beta_{1}-\beta_{0}\right)^{T} X_{i}
\end{aligned}
$$

Proof of Theorem [. Let D_{S} and D_{T} be the supports of the source and target distributions. Since $p_{T}(X)>0 \rightarrow$

$$
\begin{aligned}
p_{S}(X)>0 \text { and } p_{T}(Y \mid X) & =p_{S}(Y \mid X), \text { we have } D_{T} \subseteq D_{S} \text {. Using Lemma } \mathbb{B} .2 \text { : } \\
\mathbb{E}_{\mathbf{X}, \mathbf{Y}, \mathbf{Z}_{\phi_{T}}}\left[\hat{\tau}_{Y}^{T}\right] & =\mathbb{E}_{\mathbf{X}, \mathbf{Y}}^{S} \mathbb{E}_{\mathbf{A}_{\phi_{T}}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{X}, \mathbf{Y}}^{S}\left[W_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{(x, y) \in D_{S}}\left(\frac{p_{T}(x)}{p_{S}(x)}\left(y^{1}-y^{0}\right)\right) p_{S}(x, y) d x y \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{(x, y) \in D_{S}}\left(\frac{p_{T}(y \mid x) p_{T}(x)}{p_{S}(y \mid x) p_{S}(x)}\left(y^{1}-y^{0}\right)\right) p_{S}(x, y) d x y \text { because } p_{T}(y \mid x)=p_{S}(y \mid x) \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{(x, y) \in D_{S}}\left(\frac{p_{T}(y, x)}{p_{S}(y, x)}\left(y^{1}-y^{0}\right)\right) p_{S}(x, y) d x y \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{(x, y) \in D_{S}} p_{T}(x, y)\left(y^{1}-y^{0}\right) d x y \\
& =\frac{1}{n} \sum_{i=1}^{n} \int_{(x, y) \in D_{T}} p_{T}(x, y)\left(y^{1}-y^{0}\right) d x y \text { because } D_{T} \subseteq D_{S} \\
& =\tau_{Y}^{T}
\end{aligned}
$$

C Proofs of Section 5．2．1

 this section are the special case when $d=1$ of the results in Section $\boxed{\square}$ ．Lemma \boxtimes is a special case when $d=1$ of
 in this section we state the full proofs for the case $d=1$ so that the readers do not need to read the proofs of Section $⿴ 囗 十 \Delta$ in order to understand Section 52 in the main paper．

Proof of Lemma \square ．By law of total variance：

$$
\operatorname{var}_{\mathbf{Z}_{\rho}, \mathbf{X}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T}\right)=\mathbb{E}_{\mathbf{X}}^{S} \operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}\right)+\operatorname{var}_{\mathbf{X}}^{S}\left(\mathbb{E}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}\right]\right)
$$

Since $\rho(\mathbf{x}, \mathbf{Z})=\rho(\mathbf{x},-\mathbf{Z})$ ，from Lemma $\mathbb{B} .2$ ．

$$
\mathbb{E}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}\right]=\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(\beta_{1}-\beta_{0}\right)^{T} X_{i}
$$

Therefore：

$$
\left.\operatorname{var}_{\mathbf{X}}^{S}\left(\mathbb{E}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left[\hat{\tau}_{\mathbf{Y}}^{T} \mid \mathbf{X}\right]\right)=\operatorname{var}_{\mathbf{X}}^{S}\left(\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(\beta_{1}-\beta_{0}\right)^{T} X_{i}\right)\right)
$$

Proof of Lemma 四．By definition：

$$
\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right)=\mathbb{E}_{\mathbf{Z}}\left[\left(\hat{\tau}_{Y}^{T}-\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]\right)^{2} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]
$$

From Lemma $\mathbb{B} .2]$

$$
\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]=\frac{1}{n}\left(\sum_{i=1}^{n} w_{i} y_{i}^{1}-\sum_{i=1}^{n} w_{i} y_{i}^{0}\right)
$$

On the other hand conditioning on $\mathbf{X}=\mathbf{x}$ and $\mathbf{Y}=\mathbf{y}$ and let y_{i}^{*} denote the observed outcome of sample i ：

$$
\begin{aligned}
\hat{\tau}_{Y}^{T} & =\frac{2}{n}\left(\sum_{Z_{i}=1} w_{i} y_{i}^{*}-\sum_{Z_{i}=-1} w_{i} y_{i}^{*}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n} w_{i} A_{i} y_{i}^{1}-\frac{2}{n} \sum_{i=1}^{n} w_{i}\left(1-A_{i}\right) y_{i}^{0}
\end{aligned}
$$

Therefore：

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) & =\mathbb{E}_{\mathbf{Z}}\left[\left.\left(\frac{2}{n}\left(\sum_{i=1}^{n} w_{i} A_{i} y_{i}^{1}-\sum_{i=1}^{n} w_{i}\left(1-A_{i}\right) y_{i}^{0}\right)-\frac{1}{n} \sum_{i=1}^{n} w_{i}\left(y_{i}^{1}-y_{i}^{0}\right)\right)^{2} \right\rvert\, \mathbf{x}, \mathbf{y}, \rho=1\right] \\
& =\mathbb{E}_{\mathbf{Z}}\left[\left.\left(\frac{1}{n}\left(\sum_{i=1}^{n} w_{i}\left(2 A_{i}-1\right) y_{i}^{1}+\frac{1}{n} \sum_{i=1}^{n} w_{i}\left(2 A_{i}-1\right) y_{i}^{0}\right)\right)^{2} \right\rvert\, \mathbf{x}, \mathbf{y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\left.\left(\sum_{i=1}^{n} w_{i} Z_{i} \frac{y_{i}^{1}+y_{i}^{0}}{2}\right)^{2} \right\rvert\, \mathbf{x}, \mathbf{y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{i=1}^{n} Z_{i} w_{i} c_{i}\right)^{2} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]
\end{aligned}
$$

where $c_{i}=\frac{y_{i}^{1}+y_{i}^{0}}{2}$ ．
Proof of Lemma 圆．By law of total variance：

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) & =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{z}_{\rho}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}\right) \mid \mathbf{x}\right]+\operatorname{var}_{\mathbf{Y}}^{S}\left(\mathbb{E}_{\mathbf{Z}_{\rho}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}\right] \mid \mathbf{x}\right) \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}_{\rho}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}\right) \mid \mathbf{x}\right]+\operatorname{var}_{\mathbf{Y}}^{S}\left(\left.\frac{1}{n} \sum_{i=1}^{n} w_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right) \right\rvert\, \mathbf{x}\right) \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}_{\rho}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}\right) \mid \mathbf{x}\right]+\frac{1}{n^{2}} \sum_{i=1}^{n} w_{i}^{2} \operatorname{var}\left(\mathcal{E}_{i}^{1}-\mathcal{E}_{i}^{0}\right) \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}_{\rho}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}\right) \mid \mathbf{x}\right]+\frac{2}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
\end{aligned}
$$

Recall that $\tilde{C}_{i}=\beta \tilde{X}_{i}+\tilde{\mathcal{E}}_{i}$ ．From Lemma 『：

$$
\begin{align*}
& \operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{i=1}^{n} Z_{i} \tilde{C}_{i}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \tilde{\mathbf{C}}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \beta \tilde{\mathbf{x}}+\mathbf{Z}^{T} \tilde{\mathcal{E}}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \beta^{2} \mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \tilde{\mathbf{x}}\right)^{2} \mid \mathbf{x}, \rho=1\right]+\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \tilde{\mathcal{E}}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right]+\frac{4}{n^{2}} 2 \mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathbf{x}}^{T} \mathbf{Z} \mathbf{Z}^{T} \tilde{\mathcal{E}} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \tag{5}
\end{align*}
$$

Now we consider $\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]$ ．The third term in Eq．回 becomes：

$$
\begin{aligned}
\frac{4}{n^{2}} 2 \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathbf{x}}^{T} \mathbf{Z} \mathbf{Z}^{T} \tilde{\mathcal{E}} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right] & =\frac{8}{n^{2}} \mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathbf{x}}^{T} \mathbf{Z} \mathbf{Z}^{T} \mid \mathbf{x}, \rho=1\right] \mathbb{E}_{\mathbf{Y}}^{S}[\tilde{\mathcal{E}} \mid \mathbf{x}] \\
& =0 \text { because } \mathbb{E}_{\mathbf{Y}}^{S}[\tilde{\mathcal{E}} \mid \mathbf{x}]=\mathbf{0}
\end{aligned}
$$

The second term in Eq. 回 becomes: $^{\text {b }}$

$$
\begin{aligned}
& \frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \tilde{\mathcal{E}}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{i=1}^{n} Z_{i} w_{i} \mathcal{E}_{i}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\sum_{i=1}^{n}\left(Z_{i} w_{i} \mathcal{E}_{i}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right]+\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\sum_{i \neq j}\left(Z_{i} w_{i} \mathcal{E}_{i}\right)\left(Z_{j} w_{j} \mathcal{E}_{j}\right) \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\sum_{i=1}^{n}\left(Z_{i} w_{i} \mathcal{E}_{i}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right]+\frac{4}{n^{2}} \sum_{i \neq j} \mathbb{E}_{\mathbf{Z}}\left[Z_{i} Z_{j} \mid \mathbf{x}, \rho=1\right] w_{i} w_{j} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathcal{E}_{i} \mathcal{E}_{j} \mid \mathbf{x}\right] \\
& =\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathbb{E}_{\mathbf{Z}}\left[\sum_{i=1}^{n}\left(Z_{i} w_{i} \mathcal{E}_{i}\right)^{2} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right]+0 \text { because } \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathcal{E}_{i} \mathcal{E}_{j} \mid \mathbf{x}\right]=\mathbb{E}_{\mathbf{Y}}^{S}\left[\mathcal{E}_{i} \mid \mathbf{x}\right] \mathbb{E}_{\mathbf{Y}}^{S}\left[\mathcal{E}_{j} \mid \mathbf{x}\right]=0 \\
& \left.\left.=\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\sum_{i=1}^{n}\left(w_{i} \mathcal{E}_{i}\right)^{2}\right] \right\rvert\, \mathbf{x}\right] \text { because } Z_{i}^{2}=1 \\
& =\frac{4}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
\end{aligned}
$$

The first term in Eq. becomes:

$$
\begin{aligned}
\frac{4}{n^{2}} \mathbb{E}_{\mathbf{Y}}^{S}\left[\beta^{2} \mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \tilde{\mathbf{x}}\right)^{2} \mid \mathbf{x}, \rho=1\right] \mid \mathbf{x}\right] & =\frac{4}{n^{2}} \beta^{2} \mathbb{E}_{\mathbf{Z}}\left[\left(\mathbf{Z}^{T} \tilde{\mathbf{x}}\right)^{2} \mid \mathbf{x}, \rho=1\right] \\
& =\frac{4}{n^{2}} \beta^{2} \mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{i=1}^{n} Z_{i} w_{i} x_{i}\right)^{2} \mid \mathbf{x}, \rho=1\right]
\end{aligned}
$$

Putting all 3 terms together:

$$
\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]=\frac{4}{n^{2}} \beta^{2} \mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{i=1}^{n} Z_{i} w_{i} x_{i}\right)^{2} \mid \mathbf{x}, \rho=1\right]+\frac{4}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
$$

Therefore:

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) & =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]+\frac{2}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2} \\
& =\frac{4}{n^{2}} \beta^{2} \mathbb{E}_{\mathbf{Z}}\left[\left(\sum_{i=1}^{n} Z_{i} w_{i} x_{i}\right)^{2} \mid \mathbf{x}, \rho=1\right]+\frac{6}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
\end{aligned}
$$

In order to prove Theorem $\boxed{\Omega}$, we will show that for a random variable U with $\mathbb{E}[U]=0$, among events Ω preserve the expectation $\mathbb{E}[U \mid \Omega]=0$, truncating the tail results in the smallest variance. Note that if $\rho(\mathbf{x}, \mathbf{Z})=\rho(\mathbf{x},-\mathbf{Z})$ it follows from Lemma \mathbb{B}.$] that \mathbb{E}\left[\left.\frac{2}{n} \tilde{\mathbf{x}}^{T} \mathbf{Z} \right\rvert\, \rho=1\right]=\mathbb{E}\left[\frac{2}{n} \tilde{\mathbf{x}}^{T} \mathbf{Z}\right]=0$.
In order to prove Theorem 1 we show how to minimize the variance of a random variable:
Lemma C.1. Let $U \in \mathcal{R}$ be a random variable such that $\mathbb{E}[U]=0$. Let u_{α} be such that $\mathbb{P}\left(U^{2}<u_{\alpha}\right)=1-\alpha$. Let Ω be an event such that $\mathbb{P}(\Omega) \geq 1-\alpha$ and $\mathbb{E}[U \mid \Omega]=0$. Then:

$$
\mathbb{E}\left(U^{2} \mid U^{2}<u_{\alpha}\right) \leq \mathbb{E}\left(U^{2} \mid \Omega\right)
$$

Proof. Let $p(u)$ be the pdf of U. Define $f(u)$ as follow:

$$
f(u)=p(U=u, \Omega)
$$

then:

$$
p(u \mid \Omega)=\frac{p(U=u, \Omega)}{\mathbb{P}(\Omega)}=\frac{f(u)}{1-\alpha}
$$

Therefore:

$$
\mathbb{E}\left[U^{2} \mid \Omega\right]=\int_{u} u^{2} \frac{f(u)}{1-\alpha} d u
$$

We want to minimize $\mathbb{E}\left(U^{2} \mid \Omega\right)$:

$$
\int_{u} u^{2} \frac{f(u)}{1-\alpha} d u
$$

subject to:

$$
\begin{aligned}
& 0 \leq f(u) \leq p(u) \forall u \\
& \mathbb{P}(\Omega)=\int_{u} f(u) d u=1-\alpha
\end{aligned}
$$

This can be done by maximize $f(u)$ so that $f(u)=p(u)$ for the smallest u^{2}, which is equal to set Ω to be the event $U^{2}<u_{\alpha}$.

Proof of Theorem 回. Let $V:=\frac{2}{n} \sum_{i} w_{i} x_{i} Z_{i}$ and $B=V \operatorname{var}(V)^{-1 / 2}$. From Lemma [5:

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) & =\beta^{2} \mathbb{E}_{\mathbf{Z}}\left[V^{2} \mid \mathbf{x}, \rho=1\right]+\frac{6}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2} \\
& =\beta^{2} \operatorname{var}(V) \mathbb{E}_{\mathbf{Z}}\left[B^{2} \mid \mathbf{x}, \rho=1\right]+\frac{6}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
\end{aligned}
$$

Since $\rho(\mathbf{x}, \mathbf{Z})=\rho(\mathbf{x},-\mathbf{Z})$, from Lemma \mathbb{B}.$] we have \mathbb{E}_{\mathbf{Z}}[B \mid \mathbf{x}, \rho=1]=0$, which satisfies the criteria in Lemma C.1]. Let $\eta:=1-\mathbb{P}(\rho=1 \mid \mathbf{x})$. Then $\eta \leq \alpha$. Let b_{η} be such that $\mathbb{P}\left(B^{2}<b_{\eta} \mid \mathbf{x}\right)=1-\eta$ and b_{α} be such that $\mathbb{P}\left(B^{2}<b_{\alpha} \mid \mathbf{x}\right)=1-\alpha$. From Lemma C.I:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{Z}}\left[B^{2} \mid \mathbf{x}, \rho=1\right] & \geq \mathbb{E}_{\mathbf{Z}}\left[B^{2} \mid \mathbf{x}, B^{2}<b_{\eta}\right] \\
& \geq \mathbb{E}_{\mathbf{Z}}\left[B^{2} \mid \mathbf{x}, B^{2}<b_{\alpha}\right] \text { because } b_{\eta} \geq b_{\alpha} \\
& \geq \mathbb{E}_{\mathbf{Z}}\left[B^{2} \mid \mathbf{x}, \phi_{T}^{\alpha}=1\right]
\end{aligned}
$$

Proof of Corollary $\mathbb{\square}$. Let ρ being the constant function $\rho(\mathbf{x}, \mathbf{Z})=1$ for all \mathbf{x}, \mathbf{Z}. Then:

$$
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)=\operatorname{var}_{\mathbf{Y}, \mathbf{Z}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)
$$

From Theorem \rrbracket we have:

$$
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\phi}^{\alpha}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) \leq \operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)=\operatorname{var}_{\mathbf{Y}, \mathbf{Z}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)
$$

D Discussion on Section 5.2.2

Proof of Lemma 4 . By law of total variance:

$$
\operatorname{var}_{\mathbf{X}, \mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T}\right)=\mathbb{E}_{\mathbf{X}, \mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}_{\rho}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right)\right]+\operatorname{var}_{\mathbf{X}, \mathbf{Y}}^{S}\left(\mathbb{E}_{\mathbf{Z}_{\rho}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right]\right)
$$

Since $\rho(\mathbf{x}, \mathbf{Z})=\rho(\mathbf{x},-\mathbf{Z})$, from Lemma $\mathbb{B} .2$:

$$
\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right]=\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right)
$$

Therefore:

$$
\operatorname{var}_{\mathbf{X}, \mathbf{Y}}^{S}\left(\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, \rho=1\right]\right)=\operatorname{var}_{\mathbf{X}, \mathbf{Y}}^{S}\left(\frac{1}{n} \sum_{i=1}^{n} W_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right)\right)
$$

We now prove Lemma 5 . We use the following result in Harshaw et al. [2019] to prove Lemma 5 .
Lemma D. 1 (Lemma A1 in Harshaw et all [[2019]). Let y_{i}^{*} denote the observed outcome of sample i :

$$
\frac{2}{n}\left(\sum_{z_{i}=1} y_{i}^{*}-\sum_{z_{i}=-1} y_{i}^{*}\right)-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}^{1}-y_{i}^{0}\right)=\frac{2}{n} \mathbf{c}^{T} \mathbf{z}
$$

where $c_{i}=\frac{y_{i}^{1}+y_{i}^{0}}{2}$ and $\mathbf{c}:=\left(c_{1}, \cdots, c_{n}\right)$.
We will also use the following lemma:
Lemma D.2. Let $Q:=\frac{n-1}{n} \mathbb{E}\left[\mathbf{Z Z}^{T}\right]$. Let \mathbf{I}_{n} denote the $n \times n$ identity matrix and $\mathbf{1}$ denote the n dimensional vector of 1 . Then:

$$
\begin{aligned}
Q & =\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{T} . \\
Q & =Q^{T} \\
Q & =Q^{2}=Q^{T} Q=Q Q^{T} .
\end{aligned}
$$

Let $\mathbf{s} \in \mathcal{R}^{n \times d}$ be a matrix. Then

$$
Q \mathbf{s}=\mathbf{s}-\operatorname{avg}(\mathbf{s})
$$

where avg $(\mathbf{s}) \in \mathcal{R}^{d}$ is the average of rows of \mathbf{s}.
Proof. First we will show that:

$$
\mathbb{E}\left[\mathbf{Z Z}^{T}\right]=\frac{n}{n-1}\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{T}\right)
$$

by showing that $\mathbb{E}\left[Z_{i}^{2}\right]=1$ and $\mathbb{E}\left[Z_{i} Z_{j}\right]=-\frac{1}{n-1}$ when $i \neq j$. First we have that $\mathbb{E}\left[Z_{i}^{2}\right]=1$ because $Z_{i}^{2}=1$. Since there are exactly $n / 2$ samples with value $Z_{i}=1$ and $n / 2$ samples with values $Z_{i}=-1$, note that $\left(\sum_{i=1}^{n} Z_{i}\right)^{2}=0$ and:

$$
\mathbb{E}\left[\left(\sum_{i=1}^{n} Z_{i}\right)^{2}\right]=\mathbb{E}\left[\sum_{i=1}^{n} Z_{i}^{2}\right]+\sum_{i \neq j} \mathbb{E}\left[Z_{i} Z_{j}\right]
$$

Since all pairs (i, j) where $i \neq j$ have equal roles and there are $n(n-1)$ such pairs:

$$
\begin{aligned}
\mathbb{E}\left[Z_{i} Z_{j}\right] & =\frac{\mathbb{E}\left[\left(\sum_{i=1}^{n} Z_{i}\right)^{2}\right]-\mathbb{E}\left[\sum_{i=1}^{n} Z_{i}^{2}\right]}{n(n-1)} \\
& =\frac{0-n}{n(n-1)} \\
& =\frac{-1}{n-1}
\end{aligned}
$$

Since Q is symmetric, $Q=Q^{T}$. We will show that $Q=Q^{2}$:

$$
\begin{aligned}
Q^{2} & =\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{T}\right)\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{T}\right) \\
& =\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{T} \mathbf{I}_{n}-\frac{1}{n} \mathbf{I}_{n} \mathbf{1 1}^{T}+\frac{1}{n^{2}} \mathbf{1 1}^{T} \mathbf{1 1}^{T} \\
& =\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{T}=Q
\end{aligned}
$$

Since $Q=Q^{T}$, we have $Q=Q^{2}=Q Q^{T}=Q^{T} Q$. For the last property:

$$
Q \mathbf{s}=\mathbf{I}_{n} \mathbf{s}-\frac{1}{n} \mathbf{1 1}^{T} \mathbf{s}=\mathbf{s}-\operatorname{avg}(\mathbf{s})
$$

because $\mathbf{I}_{n} \mathbf{s}=\mathbf{s}$ and $\frac{1}{n} \mathbf{1 1}^{T} \mathbf{s}=\operatorname{avg}(\mathbf{s})$

Proof of Lemma 回. For any matrix $\mathbf{s} \in \mathcal{R}^{n \times d}$ we will compute $R_{\mathbf{s}}^{2}:=\operatorname{Corr}\left(\hat{\tau}_{Y}^{T}, \frac{2}{n} \mathbf{Z}^{T} \mathbf{s}\right)$ where for any $Y \in \mathcal{R}, X \in$ $\mathcal{R}^{d}, \operatorname{Corr}(Y, X)$ is defined as:

$$
\begin{aligned}
\operatorname{Corr}(Y, X) & =\operatorname{Corr}\left(Y, X^{T} \beta^{*}\right) \\
& =\frac{\operatorname{Cov}\left(Y, X^{T} \beta^{*}\right)}{\sqrt{\operatorname{var}(Y)} \sqrt{\operatorname{var}\left(X^{T} \beta^{*}\right)}}
\end{aligned}
$$

where $\beta^{*}=\arg \min _{\hat{\beta}} \mathbb{E}\left\|Y-X^{T} \hat{\beta}\right\|^{2}$. Substituting $\mathbf{s}=\mathbf{x}$ and $\mathbf{s}=\tilde{\mathbf{x}}$ will give us $R_{\mathbf{x}}^{2}$ and $R_{\tilde{\mathbf{x}}}^{2}$.
Let $\tilde{\delta}_{i}=\tilde{y}_{i}^{1}-\tilde{y}_{i}^{0}$ and $\tilde{\boldsymbol{\delta}}:=\left(\tilde{\delta}_{1}, \cdots, \tilde{\delta}_{n}\right)$. From Lemma D.D, we have:

$$
\hat{\tau}_{Y}^{T}=\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{c}}+\frac{1}{n} \mathbf{1}^{T} \tilde{\boldsymbol{\delta}}
$$

where $\mathbf{1} \in \mathcal{R}^{n}$ is a vector of 1 .
We note that conditioning on $\mathbf{y}, \mathbf{1}^{T} \tilde{\boldsymbol{\delta}}$ is a constant independent of \mathbf{Z}. Let $Q:=\frac{n-1}{n} \mathbb{E}\left[\mathbf{Z} \mathbf{Z}^{T}\right]$ and note that $Q=Q^{T}$ and $Q=Q^{2}$. First, let us compute $\beta^{*}=\arg \min _{\hat{\beta}} \mathbb{E}_{\mathbf{Z}}\left\|\hat{\tau}_{Y}^{T}-\frac{2}{n} \mathbf{Z}^{T} \mathbf{s} \hat{\beta}\right\|^{2}$. We have,

$$
\begin{aligned}
\beta^{*} & =\arg \min _{\hat{\beta}} \mathbb{E}_{\mathbf{Z}}\left\|\hat{\tau}_{Y}^{T}-\frac{2}{n} \mathbf{Z}^{T} \mathbf{s} \hat{\beta}\right\|^{2} \\
& =\arg \min _{\hat{\beta}} \mathbb{E}_{\mathbf{Z}}\left\|\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{c}}+\frac{1}{n} \mathbf{1}^{T} \tilde{\boldsymbol{\delta}}-\frac{2}{n} \mathbf{Z}^{T} \mathbf{s} \hat{\beta}\right\|^{2} \\
& =\arg \min _{\hat{\beta}} \mathbb{E}_{\mathbf{Z}}\left\|\mathbf{Z}^{T} \tilde{\mathbf{c}}-\mathbf{Z}^{T} \mathbf{s} \hat{\beta}\right\|^{2} \\
& =\arg \min _{\hat{\beta}}(\tilde{\mathbf{c}}-\mathbf{s} \hat{\beta})^{T} \mathbb{E}\left[\mathbf{Z} \mathbf{Z}^{T}\right](\tilde{\mathbf{c}}-\mathbf{s} \hat{\beta}) \\
& =\arg \min _{\hat{\beta}}(\tilde{\mathbf{c}}-\mathbf{s} \hat{\beta})^{T} Q(\tilde{\mathbf{c}}-\mathbf{s} \hat{\beta}) \\
& =\arg \min _{\hat{\beta}}(\tilde{\mathbf{c}}-\mathbf{s} \hat{\beta})^{T} Q^{T} Q(\tilde{\mathbf{c}}-\mathbf{s} \hat{\beta}) \\
& =\arg \min _{\hat{\beta}}\|Q \tilde{\mathbf{c}}-Q \mathbf{s} \beta\|^{2}
\end{aligned}
$$

Using the fact that $Q=Q^{T} Q$, we have $\beta^{*}=\left(\mathbf{s}^{T} Q \mathbf{s}\right)^{-1} \mathbf{s}^{T} Q \tilde{\mathbf{c}}$. By definition, we have

$$
\begin{aligned}
\operatorname{Corr}\left(\hat{\tau}_{Y}^{T}, \frac{2}{n} \mathbf{Z}^{T} \mathbf{s}\right) & =\frac{\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \frac{2}{n} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right]-\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T}\right] \mathbb{E}_{\mathbf{Z}}\left[\frac{2}{n} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right]}{\sqrt{\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T}\right) \operatorname{var}_{\mathbf{Z}}\left(\frac{2}{n} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right)}} \\
& =\frac{\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right]}{\sqrt{\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T}\right) \operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \mathbf{s} \beta^{*}\right)}} \text { because } \mathbb{E}[\mathbf{Z}]=0 \\
& =\frac{\mathbb{E}_{\mathbf{Z}}\left[\left(\frac{2}{n} \tilde{\mathbf{c}}^{T} \mathbf{Z}+\frac{1}{n} \mathbf{1}^{T} \tilde{\boldsymbol{\delta}}\right) \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right]}{\sqrt{\operatorname{var}_{\mathbf{Z}}\left(\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{c}}+\frac{1}{n} \mathbf{1}^{T} \tilde{\boldsymbol{\delta}}\right) \operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \mathbf{s} \beta^{*}\right)}} \\
& =\frac{\mathbb{E}_{\mathbf{Z}}\left[\left(\frac{2}{n} \tilde{\mathbf{c}}^{T} \mathbf{Z}\right) \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right]}{\sqrt{\operatorname{var}_{\mathbf{Z}}\left(\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{c}}\right) \operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \mathbf{s} \beta^{*}\right)}} \\
& =\frac{\mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathbf{c}}^{T} \mathbf{Z} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right]}{\sqrt{\operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \tilde{\mathbf{c}}\right) \operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \mathbf{s} \beta^{*}\right)}}
\end{aligned}
$$

For the numerator we have:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathbf{c}}^{T} \mathbf{Z} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right] & =\tilde{\mathbf{c}}^{T} Q \mathbf{s} \beta^{*} \\
& =\frac{n}{n-1} \tilde{\mathbf{c}}^{T} Q \mathbf{s}\left(\mathbf{s}^{T} Q \mathbf{s}\right)^{-1} \mathbf{s}^{T} Q \tilde{\mathbf{c}} \\
& =\frac{n}{n-1} \tilde{\mathbf{c}}^{T} Q \mathbf{s}\left(\mathbf{s}^{T} Q \mathbf{s}\right)^{-1} \mathbf{s}^{T} Q \mathbf{s}\left(\mathbf{s}^{T} Q \mathbf{s}\right)^{-1} \mathbf{s}^{T} Q \tilde{\mathbf{c}} \\
& =\frac{n}{n-1}\left(\tilde{\mathbf{c}}^{T} Q \mathbf{s}\left(\mathbf{s}^{T} Q \mathbf{s}\right)^{-1} \mathbf{s}^{T} Q\right)\left(Q \mathbf{s}\left(\mathbf{s}^{T} Q \mathbf{s}\right)^{-1} \mathbf{s}^{T} Q \tilde{\mathbf{c}}\right) \\
& =\frac{n}{n-1}\left(\beta^{* T} \mathbf{s}^{T} Q\right)\left(Q \mathbf{s} \beta^{*}\right) \\
& =\frac{n}{n-1}\left\|Q \mathbf{s} \beta^{*}\right\|^{2}
\end{aligned}
$$

Let $u=Q \mathbf{s} \beta$ and $v=Q \tilde{\mathbf{c}}-Q \mathbf{s} \beta$. We will show that u and v are orthogonal, therefore $\left\|Q \mathbf{s} \beta^{*}\right\|^{2}=\|Q \tilde{\mathbf{c}}\|^{2}-\| Q \tilde{\mathbf{c}}-$ $Q \mathbf{s} \beta \|^{2}$:

$$
\begin{aligned}
u^{T} v & =\left(Q \tilde{\mathbf{c}}-Q \mathbf{s} \beta^{*}\right)^{T}\left(Q \mathbf{s} \beta^{*}\right) \\
& =\tilde{\mathbf{c}}^{T} Q \mathbf{s} \beta^{*}-\beta^{* T} \mathbf{s}^{T} Q \mathbf{s} \beta^{*} \\
& =\tilde{\mathbf{c}}^{T} Q \mathbf{s} \beta^{*}-\left\|Q \mathbf{s} \beta^{*}\right\|^{2} \\
& =0
\end{aligned}
$$

Therefore $\left\|Q \mathbf{s} \beta^{*}\right\|^{2}=\|Q \tilde{\mathbf{c}}\|^{2}-\|Q \tilde{\mathbf{c}}-Q \mathbf{s} \beta\|^{2}$.
For the denominator, since $\mathbb{E}[\mathbf{Z}]=0$ we have:

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \tilde{\mathbf{c}}\right) \operatorname{var}_{\mathbf{Z}}\left(\mathbf{Z}^{T} \mathbf{s} \beta^{*}\right) & =\mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathbf{c}}^{T} \mathbf{Z} \mathbf{Z}^{T} \tilde{\mathbf{c}}\right] \mathbb{E}_{\mathbf{Z}}\left[\beta^{* T} \mathbf{s}^{T} \mathbf{Z} \mathbf{Z}^{T} \mathbf{s} \beta^{*}\right] \\
& =\frac{n^{2}}{(n-1)^{2}}\left(\tilde{\mathbf{c}}^{T} Q \tilde{\mathbf{c}}\right)\left(\beta^{* T} \mathbf{s}^{T} Q \mathbf{s} \beta^{*}\right) \\
& =\frac{n^{2}}{(n-1)^{2}}\left(\tilde{\mathbf{c}}^{T} Q^{T} Q \tilde{\mathbf{c}}\right)\left(\beta^{* T} \mathbf{s}^{T} Q^{T} Q \mathbf{s} \beta^{*}\right) \\
& =\frac{n^{2}}{(n-1)^{2}}\|Q \tilde{\mathbf{c}}\|^{2}\left\|Q \mathbf{s} \beta^{*}\right\|^{2}
\end{aligned}
$$

Putting the numerator and denominator together we have:

$$
\begin{aligned}
R_{\mathbf{s}}^{2} & =\operatorname{Corr}\left(\hat{\tau}_{Y}^{T}, \frac{2}{n} \mathbf{Z}^{T} \mathbf{s}\right) \\
& =\frac{\left\|Q \mathbf{s} \beta^{*}\right\|^{2}}{\|Q \tilde{\mathbf{c}}\|\left\|Q \mathbf{s} \beta^{*}\right\|} \\
& =\frac{\left\|Q \mathbf{s} \beta^{*}\right\|}{\|Q \tilde{\mathbf{c}}\|} \\
& =\frac{\sqrt{\|Q \tilde{\mathbf{c}}\|^{2}-\|Q \tilde{\mathbf{c}}-Q \mathbf{s} \beta\|^{2}}}{\|Q \tilde{\mathbf{c}}\|}
\end{aligned}
$$

Substituting $\mathbf{s}=\mathbf{x}$ and $\mathbf{s}=\tilde{\mathbf{x}}$ gives us the expression for $R_{\mathbf{x}}^{2}$ and $R_{\tilde{\mathbf{x}}}^{2}$.

Proof of Theorem $\mathbf{4}$. We have

$$
\tilde{C}=\tilde{X}^{T} \beta+\tilde{\mathcal{E}}
$$

where $C=\frac{Y^{0}+Y^{1}}{2}, \mathcal{E}=\frac{\mathcal{E}_{0}+\mathcal{E}_{1}}{2}, \beta=\frac{\beta_{0}+\beta_{1}}{2}, \tilde{C}=\frac{p_{T}(X)}{p_{S}(X)} C, \tilde{X}=\frac{p_{T}(X)}{p_{S}(X)} X$ and $\tilde{\mathcal{E}}=\frac{p_{T}(X)}{p_{S}(X)} \mathcal{E}$. Since Y_{i}, X_{i} and W_{i} have finite 8 th moment, \tilde{C}_{i} and \tilde{X}_{i} have finite 4 th moment using Cauchy-Schwartz inequality. Let $S \in \mathcal{R}^{d}$ be a random variable independent of \mathcal{E}_{i} and with finite 4 th moment. Let $\mathbf{S} \in \mathcal{R}^{n \times d}$ be n samples S_{1}, \cdots, S_{n} of S. By the definition of R^{2},

$$
R_{\mathbf{S}}^{2}=\frac{\|Q \tilde{\mathbf{C}}\|^{2}-\min _{\hat{\beta}}\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \hat{\beta}\|^{2}}{\|Q \tilde{\mathbf{C}}\|^{2}}
$$

We will show that $\lim _{n \rightarrow \infty} R_{\tilde{\mathbf{x}}}^{2} \geq \lim _{n \rightarrow \infty} R_{\mathbf{S}}^{2}$ almost surely for any S. It is sufficient to show $\lim \min _{\hat{\beta}} \| Q \tilde{\mathbf{C}}-$ $Q \tilde{\mathbf{X}} \hat{\beta}\left\|^{2} \leq \lim \min _{\hat{\beta}}\right\| Q \tilde{\mathbf{C}}-Q \mathbf{S} \hat{\beta} \|^{2}$ almost surely. From Lemma D.2, note that for any matrix $\mathbf{s} \in \mathcal{R}^{n \times d}$ with n rows, $\frac{n-1}{n} Q \mathbf{s}=\mathbf{s}-\operatorname{avg}(\mathbf{s})$ where $\operatorname{avg}(\mathbf{s}) \in \mathcal{R}^{d}$ is the average of rows of \mathbf{s}. Let $\beta^{*}=\arg \min _{\hat{\beta}} \lim _{n \rightarrow \infty} \frac{1}{n} \| Q \tilde{\mathbf{C}}-$ $Q \mathbf{S} \hat{\beta} \|^{2}$ and $\tilde{\beta}=\arg \min _{\hat{\beta}} \frac{1}{n}\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \hat{\beta}\|^{2}$. If S_{i} and \tilde{C}_{i} have finite 4th moment, by strong law of large number
$\lim _{n \rightarrow \infty} \tilde{\beta}=\beta^{*}$ almost surely. We have:

$$
\begin{aligned}
& \frac{1}{n} \lim _{n \rightarrow \infty} \min _{\hat{\beta}}\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \hat{\beta}\|^{2} \\
& =\frac{1}{n} \lim _{n \rightarrow \infty}\left\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \beta^{*}\right\|^{2}+2\left(Q \tilde{\mathbf{C}}-Q \mathbf{S} \beta^{*}\right)^{T}\left(Q \mathbf{S} \beta^{*}-Q \mathbf{S} \tilde{\beta}\right)+\left\|Q \mathbf{S} \beta^{*}-Q \mathbf{S} \tilde{\beta}\right\|^{2} \\
& =\frac{1}{n} \lim _{n \rightarrow \infty}\left\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \beta^{*}\right\|^{2}+2 \lim _{n \rightarrow \infty}\left(Q \tilde{\mathbf{C}}-Q \mathbf{S} \beta^{*}\right)^{T} Q \mathbf{S} \lim _{n \rightarrow \infty}\left(\beta^{*}-\tilde{\beta}\right)+\lim _{n \rightarrow \infty}\left(\beta^{*}-\tilde{\beta}\right)^{T} \lim _{n \rightarrow \infty} \mathbf{S}^{T} Q \mathbf{S} \lim _{n \rightarrow \infty}\left(\beta^{*}-\tilde{\beta}\right)
\end{aligned}
$$

because \tilde{C}_{i} and S_{i} having finite 4th moment implies $\lim _{n \rightarrow \infty}\left(Q \tilde{\mathbf{C}}-Q \mathbf{S} \beta^{*}\right)^{T} Q \mathbf{S}$ and $\lim _{n \rightarrow \infty} \mathbf{S}^{T} Q \mathbf{S}$ are finite

$$
=\lim _{n \rightarrow \infty} \frac{1}{n}\left\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \beta^{*}\right\|^{2} \text { almost surely }
$$

$$
=\min _{\hat{\beta}} \lim _{n \rightarrow \infty} \frac{1}{n}\|Q \tilde{\mathbf{C}}-Q \mathbf{S} \hat{\beta}\|^{2}
$$

$$
=\min _{\hat{\beta}} \lim _{n \rightarrow \infty} \frac{1}{n} \frac{n^{2}}{(n-1)^{2}}\left\|\frac{n-1}{n} Q \tilde{\mathbf{C}}-\frac{n-1}{n} Q \mathbf{S} \hat{\beta}\right\|^{2}
$$

$$
=\min _{\hat{\beta}} \lim _{n \rightarrow \infty} \frac{1}{n}\|(\tilde{\mathbf{C}}-\mathbf{S} \hat{\beta})-(\operatorname{avg}(\tilde{\mathbf{C}})-\operatorname{avg}(\mathbf{S}) \hat{\beta})\|^{2}
$$

$$
=\min _{\hat{\beta}} \operatorname{var}\left(\tilde{C}-S^{T} \hat{\beta}\right) \text { almost surely if } \tilde{C}_{i} \text { and } S_{i} \text { have finite } 4 \text { th moment }
$$

$$
=\min _{\hat{\beta}} \mathbb{E}\left[\left(\tilde{C}-S^{T} \hat{\beta}\right)^{2}\right]-\left(\mathbb{E}\left[\tilde{C}-S^{T} \hat{\beta}\right]\right)^{2}
$$

$$
=\min _{\hat{\beta}} \mathbb{E}\left[\tilde{X}^{T} \beta-S^{T} \hat{\beta}\right]^{2}+\mathbb{E}\left[\tilde{\mathcal{E}}^{2}\right]-\left(\mathbb{E}\left[\tilde{X}^{T} \beta-S^{T} \hat{\beta}\right]\right)^{2} \text { because } \mathbb{E}[\tilde{\mathcal{E}}]=0 \text { and } \mathcal{E} \text { is independent of } \tilde{X} \text { and } S
$$

$$
=\min _{\hat{\beta}} \operatorname{var}\left(\tilde{X}^{T} \beta-S^{T} \hat{\beta}\right)+\mathbb{E}\left[\tilde{\mathcal{E}}^{2}\right] \geq \mathbb{E}\left[\tilde{\mathcal{E}}^{2}\right]
$$

When $S=\tilde{X}$, this is minimized, therefore:

$$
\lim _{n \rightarrow \infty} R_{\tilde{\mathbf{X}}}^{2} \geq \lim _{n \rightarrow \infty} R_{\mathbf{S}}^{2} \text { almost surely. }
$$

Substituting $\mathbf{S}=\mathbf{X}$:

$$
\lim _{n \rightarrow \infty} R_{\tilde{\mathbf{X}}}^{2} \geq \lim _{n \rightarrow \infty} R_{\mathbf{X}}^{2} \text { almost surely }
$$

Recall that:

$$
\operatorname{as}-\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, M\left(\frac{2}{n} \mathbf{Z}^{T} \mathbf{s}\right) \leq a\right)=\lim _{n \rightarrow \infty} \operatorname{var}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}\right)\left(1-\left(1-v_{d, a}\right) R_{\mathbf{s}}^{2}\right)
$$

where as-var is the variance of the asymptotic sampling distribution. Let $s(a)$ denote the rejection probability $\mathbb{P}\left(\phi_{S}=0 \mid \mathbf{x}\right)=0$ when using threshold a in Source Balance, and $t(a)$ denote the rejection probability $\mathbb{P}\left(\phi_{T}=\right.$ $0 \mid \mathbf{x})=0$ when using threshold a in Target Balance. We have:

$$
\begin{aligned}
\operatorname{as}-\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, \phi_{S}^{s(a)}=1\right) & =\operatorname{as}-\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, M\left(\frac{2}{n} \mathbf{Z}^{T} \mathbf{X}\right) \leq a\right) \\
& =\lim _{n \rightarrow \infty} \operatorname{var}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right)\left(1-\left(1-v_{d, a}\right) R_{\mathbf{X}}^{2}\right) \\
& \geq \lim _{n \rightarrow \infty} \operatorname{var}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}\right)\left(1-\left(1-v_{d, a}\right) R_{\tilde{\mathbf{X}}}^{2}\right) \text { almost surely } \\
& =\operatorname{as}-\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, M\left(\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{X}}\right) \leq a\right) \\
& =\operatorname{as}-\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{X}, \mathbf{Y}, \phi_{T}^{t(a)}=1\right)
\end{aligned}
$$

Now we will show that for any \mathbf{x} and $\tilde{\mathbf{x}}, \lim _{n \rightarrow \infty} s(a)=\lim _{n \rightarrow \infty} t(a)$. Let $U \in \mathcal{R}^{d}$ be a standard multivariate random variable. We have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s(a) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(M\left(\frac{2}{n} \mathbf{Z}^{T} \mathbf{x}\right) \leq a\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\|B_{S}\right\|^{2}<a\right) \text { where } B_{S}=\frac{2}{n} \mathbf{Z}^{T} \mathbf{x} \operatorname{Cov}\left(\frac{2}{n} \mathbf{Z}^{T} \mathbf{x}\right)^{-1 / 2}
\end{aligned}
$$

$=\mathbb{P}\left(\|U\|^{2}<a\right)$ because B_{S} converges in distribution to U by finite central limit theorem

Similarly we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} t(a) & =\lim _{n \rightarrow \infty} \mathbb{P}\left(M\left(\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{x}}\right) \leq a\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\|B_{T}\right\|^{2}<a\right) \text { where } B_{T}:=\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{x}} \operatorname{Cov}\left(\frac{2}{n} \mathbf{Z}^{T} \tilde{\mathbf{x}}\right)^{-1 / 2} \\
& =\mathbb{P}\left(\|U\|^{2}<a\right) \text { because } B_{T} \text { converges in distribution to } U \text { by finite central limit theorem }
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} t(a)=\lim _{n \rightarrow \infty} s(a)$. When the sample size is large, with the same rejection probability, using Target Balance results in a smaller asymptotic variance than Source Balance .

E Proofs of Section A

In this Section we present the proof of Lemma A.1], Lemma A.2., Lemma A.3, Theorem A.D and Corollary A.D. In order to prove Lemma A.1, we first prove the following lemma.
Lemma $\mathbf{E} .1$ (minor changes to Lemma 1 in Harshaw et all, [DUT]]. Let $\tilde{\epsilon}_{i}=\tilde{c}_{i}-\beta^{T} \tilde{x}_{i}$ and $\tilde{\boldsymbol{\epsilon}}=\left(\tilde{\epsilon}_{1}, \cdots, \tilde{\epsilon}_{n}\right)$. For any function $\rho(\mathbf{x}, \mathbf{Z}) \in\{0,1\}$ satisfying $\rho(\mathbf{x}, \mathbf{Z})=\rho(\mathbf{x},-\mathbf{Z})$:

$$
\begin{align*}
\frac{n^{2}}{4} \operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) & =\operatorname{Cov}\left(\tilde{\mathbf{c}}^{T} \mathbf{Z} \mid \rho=1\right) \tag{6}\\
& =\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \rho=1\right] \beta+\operatorname{Cov}\left(\tilde{\boldsymbol{\epsilon}}^{T} \mathbf{Z} \mid \rho=1\right)+2 \beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z}, \tilde{\boldsymbol{\epsilon}}^{T} \mathbf{Z} \mid \rho=1\right) \tag{7}
\end{align*}
$$

Proof of Lemma E. D]. By definition:

$$
\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right)=\mathbb{E}_{\mathbf{Z}}\left[\left(\hat{\tau}_{Y}^{T}-\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]\right)^{2} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]
$$

We have:

$$
\begin{aligned}
\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right] & =\frac{2}{n} \mathbb{E}_{\mathbf{Z}}\left[\sum_{Z_{i}=1} w_{i} y_{i}^{*}-\sum_{Z_{i}=-1} w_{i} y_{i}^{*} \mid \rho=1\right] \\
& =\frac{2}{n} \mathbb{E}\left[\sum_{i=1}^{n} A_{i} w_{i} y_{i}^{1}-\sum_{i=1}^{n}\left(1-A_{i}\right) w_{i} y_{i}^{0} \mid \rho=1\right] \\
& =\frac{2}{n}\left(\sum_{i=1}^{n} \mathbb{E}\left[A_{i} \mid \rho=1\right] w_{i} y_{i}^{1}-\sum_{i=1}^{n} \mathbb{E}\left[1-A_{i} \mid \rho=1\right] w_{i} y_{i}^{0}\right) \\
& \left.=\frac{1}{n}\left(\sum_{i=1}^{n} w_{i} y_{i}^{1}-\sum_{i=1}^{n} w_{i} y_{i}^{0}\right) \text { because } \mathbb{E}\left[A_{i} \mid \rho=1\right]=1 / 2 \text { by Lemma } \mathbb{B} . \mathbf{]}\right]
\end{aligned}
$$

Therefore using Lemma D.D:

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) & =\mathbb{E}_{\mathbf{Z}}\left[\left.\left(\frac{2}{n}\left(\sum_{Z_{i}=1} w_{i} y_{i}^{*}-\sum_{Z_{i}=-1} w_{i} y_{i}^{*}\right)-\frac{1}{n} \sum_{i=1}^{n} w_{i}\left(y_{i}^{1}-y_{i}^{0}\right)\right)^{2} \right\rvert\, \mathbf{x}, \mathbf{y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \mathbb{E}\left[\tilde{\mathbf{c}}^{T} \mathbf{Z} \mathbf{Z}^{T} \tilde{\mathbf{c}} \mid \mathbf{x}, \mathbf{y}, \rho=1\right] \\
& =\frac{4}{n^{2}} \operatorname{Cov}\left(\tilde{\mathbf{c}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) \text { because } \mathbb{E}\left[\tilde{\mathbf{c}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right]=0 \text { from Lemma B.] } \\
& =\frac{4}{n^{2}} \operatorname{Cov}\left((\tilde{\mathbf{x}} \beta+\tilde{\boldsymbol{\epsilon}})^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) \\
& =\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right] \beta+\operatorname{Cov}\left(\tilde{\boldsymbol{\epsilon}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right)+2 \beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z}, \tilde{\boldsymbol{\epsilon}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right)
\end{aligned}
$$

Proof of Lemma A.J. By law of total variance:

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) & =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]+\operatorname{var}_{\mathbf{Y}}^{S}\left(\mathbb{E}_{\mathbf{Z}}\left[\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right] \mid \mathbf{x}\right) \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]+\operatorname{var}_{\mathbf{Y}}^{S}\left(\left.\frac{1}{n} \sum_{i=1}^{n} w_{i}\left(Y_{i}^{1}-Y_{i}^{0}\right) \right\rvert\, \mathbf{x}\right) \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]+\frac{1}{n^{2}} \sum_{i=1}^{n} w_{i}^{2} \operatorname{var}\left(\mathcal{E}_{1}-\mathcal{E}_{0}\right) \\
& =\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right]+\frac{2}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
\end{aligned}
$$

From Lemma $\mathbb{E} .7$:

$$
\begin{aligned}
\frac{n^{2}}{4} \operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) & =\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right] \beta+\operatorname{Cov}\left(\tilde{\boldsymbol{\epsilon}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right)+2 \beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z}, \tilde{\boldsymbol{\epsilon}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) \\
& =\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right] \beta+\tilde{\boldsymbol{\epsilon}}^{T} \operatorname{Cov}(\mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1) \tilde{\boldsymbol{\epsilon}}+2 \beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z}, \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) \tilde{\boldsymbol{\epsilon}}
\end{aligned}
$$

$\underset{\tilde{\boldsymbol{\varepsilon}}}{\text { Recall that }} Y_{i}^{1}=\beta_{1}^{T} X_{i}+\mathcal{E}_{i}^{1}$ and $Y_{i}^{0}=\beta_{1}^{T} X_{i}+\mathcal{E}_{i}^{0}$. Let $\mathcal{E}_{i}=\frac{\mathcal{E}_{i}^{1}+\mathcal{E}_{i}^{0}}{2}$ and $\tilde{\mathcal{E}}=\left(\mathcal{E}_{1}, \cdots, \mathcal{E}_{n}\right)$. Since $\tilde{\boldsymbol{\epsilon}}$ is the value of $\tilde{\mathcal{E}}$ we have:

$$
\begin{aligned}
& \frac{n^{2}}{4} \mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{var}_{\mathbf{Z}}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}, \mathbf{Y}, \rho=1\right) \mid \mathbf{x}\right] \\
& =\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right] \beta+\mathbb{E}_{\mathbf{Y}}^{S}\left[\tilde{\mathcal{E}}^{T} \operatorname{Cov}(\mathbf{Z} \mid \mathbf{x}, \mathbf{Y}, \rho=1) \tilde{\mathcal{E}} \mid \mathbf{x}\right]+2 \beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z}, \mathbf{Z} \mid \mathbf{x}, \mathbf{y}, \rho=1\right) \mathbb{E}[\tilde{\mathcal{E}} \mid \mathbf{x}] \\
& =\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \rho=1\right] \beta+\mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{Cov}\left(\tilde{\mathcal{E}}^{T} \mathbf{Z} \mid \mathbf{x}, \rho=1\right) \mid \mathbf{x}\right] \text { because } \mathbb{E}[\tilde{\mathcal{E}} \mid \mathbf{x}]=0
\end{aligned}
$$

The second term:

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{Y}}^{S}\left[\operatorname{Cov}\left(\tilde{\mathcal{E}}^{T} \mathbf{Z} \mid \mathbf{x}, \rho=1\right) \mid \mathbf{x}\right] \\
& =\mathbb{E}_{\tilde{\mathcal{E}}}\left[\mathbb{E}_{\mathbf{Z}}\left[\tilde{\mathcal{E}}^{T} \mathbf{Z} \mathbf{Z}^{T} \tilde{\mathcal{E}} \mid \mathbf{x}, \rho=1\right] \mid \mathbf{x}\right] \\
& =\mathbb{E}_{\tilde{\boldsymbol{\mathcal { E }}}}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}_{\mathbf{Z}}\left[w_{i} \mathcal{E}_{i} Z_{i} Z_{j} \mathcal{E}_{j} w_{j} \mid \rho=1\right] \mid \mathbf{x}\right] \\
& =\mathbb{E}_{\tilde{\mathcal{E}}}\left[\sum_{i=1}^{n} \mathbb{E}\left[w_{i}^{2} \mathcal{E}_{i}^{2} Z_{i}^{2} \mid \rho=1\right]+\sum_{i \neq j} \mathbb{E}\left[w_{i} \mathcal{E}_{i} Z_{i} Z_{j} \mathcal{E}_{j} w_{j} \mid \rho=1\right] \mid \mathbf{x}\right] \\
& =\mathbb{E}_{\tilde{\mathcal{E}}}\left[\sum_{i=1}^{n} \mathbb{E}\left[w_{i}^{2} \mathcal{E}_{i}^{2} 1 \mid \rho=1\right]+\sum_{i \neq j} \mathbb{E}\left[w_{i} Z_{i} Z_{j} \mathcal{E}_{j} w_{j} \mid \rho=1\right] \mathbb{E}\left[\mathcal{E}_{i} \mid \rho=1\right] \mid \mathbf{x}\right] \text { because } Z_{i}^{2}=1 \\
& =\sum_{i=1}^{n} \mathbb{E}\left[w_{i}^{2} \mathcal{E}_{i}^{2}\right] \text { because } \mathbb{E}\left[\mathcal{E}_{i} \mid \rho=1\right]=0 \\
& =\sum_{i=1}^{n} w_{i}^{2} \sigma_{\mathcal{E}}^{2}
\end{aligned}
$$

Putting all together:

$$
\begin{aligned}
\operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) & =\frac{4}{n^{2}}\left(\beta^{T} \operatorname{Cov}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \rho=1\right] \beta+\sum_{i=1}^{n} w_{i}^{2} \sigma_{\mathcal{E}}^{2}\right)++\frac{2}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2} \\
& =\frac{4}{n^{2}} \beta^{T} \operatorname{Cov}_{\mathbf{Z}}\left(\tilde{\mathbf{x}}^{T} \mathbf{Z} \mid \mathbf{x}, \rho=1\right] \beta+\frac{6}{n^{2}} \sigma_{\mathcal{E}}^{2} \sum_{i=1}^{n} w_{i}^{2}
\end{aligned}
$$

Proof of Lemma A.g. We use the same decomposition of $\beta^{T} \operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega) \beta$ as in [Harshaw et al., [019]. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ and $\lambda_{1}, \ldots, \lambda_{n}$ be the normalized eigenvectors and corresponding eigenvalues of matrix $\operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \mathcal{E})$. Since $\operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \mathcal{E})$ is symmetric, the eigenvectors form an orthonormal basis so we can write β as a linear combination of $\mathbf{e}_{1}, . ., \mathbf{e}_{n}$ and get:

$$
\beta=\|\beta\| \sum_{i=1}^{n} \eta_{i} \mathbf{e}_{i}
$$

where $\eta_{i}=\left\langle\beta, \mathbf{e}_{i}\right\rangle /\|\beta\|$ is the coefficient that captures the alignment of the weighted outcome β with respect to the eigenvector \mathbf{e}_{i}. Therefore:

$$
\beta^{T} \operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega) \beta=\|\beta\|^{2} \sum_{i=1}^{n} \eta_{i}^{2} \lambda_{i}
$$

Then:

$$
\begin{aligned}
\mathbb{E}_{\beta}\left[\beta^{T} \operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega) \beta\right] & =\mathbb{E}_{\beta}\left[\|\beta\|^{2} \sum_{i=1}^{n} \eta_{i}^{2} \lambda_{i}\right] \\
& =l^{2} \sum_{i=1}^{n} \lambda_{i} \mathbb{E}_{\beta}\left[\eta_{i}^{2}\right] \\
& =l^{2} \sum_{i=1}^{n} \lambda_{i} \mathbb{E}_{\theta} \cos ^{2}(\theta) \begin{array}{c}
\text { where } \theta \text { is the angle between } \beta \text { and } \mathbf{e}_{\mathbf{e}} . \text { Since } \beta \text { points to any direction } \\
\\
\end{array}{\frac{l^{2}}{2} \sum_{i=1}^{n} \lambda_{i}}=\frac{l^{2}}{2} \operatorname{Trace}\left(\operatorname{Cov}_{\mathbf{Z}}(V \mid \mathbf{x}, \Omega)\right) .
\end{aligned}
$$

Proof of Lemma .3. Let $p(u)$ be the pdf of U. Define $f(u)$ as follow:

$$
f(u)=p(U=u, \Omega)
$$

Then:

$$
p(u \mid \Omega)=\frac{p(U=u, \Omega)}{\mathbb{P}(\Omega)}=\frac{f(u)}{1-\alpha}
$$

Since $\mathbb{P}(\Omega)=1-\alpha$ we have:

$$
\int_{u} f(u) d u=1-\alpha
$$

We have:

$$
\operatorname{Trace}(\operatorname{Cov}(U \mid \Omega))=\operatorname{Trace}\left(\mathbb{E}\left[U U^{T} \mid \Omega\right]\right)=\operatorname{Trace}\left(\mathbb{E}\left[U U^{T} \mid \Omega\right]=\operatorname{Trace}\left(\mathbb{E}\left[U^{T} U \mid \Omega\right]=\int_{u} u^{T} u \frac{f(u)}{1-\alpha} d u\right.\right.
$$

We want to minimize $\operatorname{Trace}(\operatorname{Cov}(U \mid \Omega))$:

$$
\int_{u} u^{T} u \frac{f(u)}{1-\alpha} d u
$$

subject to:

$$
\begin{gathered}
0 \leq f(u) \leq p(u) \forall u \\
\int_{u} f(u) d u=1-\alpha
\end{gathered}
$$

This can be done by maximize $f(u)$ so that $f(u)=p(u)$ for the smallest $u^{T} u$, which is equal to set Ω to be the event $\|U\|^{2}<u_{\alpha}$.

Proof of Theorem $\mathbb{A} . \boldsymbol{D}$. Let $\eta:=1-\mathbb{P}(\rho=1 \mid \mathbf{x})$. Then $\eta \leq \alpha$. Let v_{η} be such that $\mathbb{P}\left(\|V\|^{2}<v_{\eta} \mid \mathbf{x}\right)=1-\eta$.

From Lemma A.I:

$$
\begin{align*}
\mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\rho}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) & =\frac{4}{n^{2}} \mathbb{E}_{\beta} \beta^{T} \operatorname{Cov}(V \mid \mathbf{x}, \rho=1) \beta+\frac{6}{n^{2}} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} \tag{8}\\
& =\frac{4}{n^{2}} \frac{l^{2}}{2} \operatorname{Trace}(\operatorname{Cov}(V \mid \mathbf{x}, \rho=1))+\frac{6}{n^{2}} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} \tag{9}\\
& \geq \frac{4}{n^{2}} \frac{l^{2}}{2} \operatorname{Trace}\left(\operatorname{Cov}\left(V \mid \mathbf{x},\|V\|^{2}<v_{\eta}\right)\right)+\frac{6}{n^{2}} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} \tag{10}\\
& \geq \frac{4}{n^{2}} \frac{l^{2}}{2} \operatorname{Trace}\left(\operatorname{Cov}\left(V \mid \mathbf{x},\|V\|^{2}<v_{\alpha}\right)\right)+\frac{6}{n^{2}} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} \text { because } v_{\eta} \geq v_{\alpha} \tag{11}\\
& \geq \frac{4}{n^{2}} \frac{l^{2}}{2} \operatorname{Trace}\left(\operatorname{Cov}\left(V \mid \mathbf{x}, \phi_{T}^{\alpha \prime}=1\right)\right)+\frac{6}{n^{2}} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} \tag{12}\\
& \geq \frac{4}{n^{2}} \mathbb{E}_{\beta} \beta^{T} \operatorname{Cov}\left(V \mid \mathbf{x}, \phi_{T}^{\alpha \prime}=1\right) \beta+\frac{6}{n^{2}} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} \tag{13}\\
& \geq \mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Y}, \mathbf{Z}_{\phi}{ }_{T}^{\prime \prime}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) \tag{14}
\end{align*}
$$

Proof of Corollary $\boldsymbol{A .} \boldsymbol{\lambda}$. Let ρ being the constant function $\rho(\mathbf{x}, \mathbf{Z})=1$ for all \mathbf{x}, \mathbf{Z}. Then:

$$
\operatorname{var}_{\mathbf{Z}_{\rho}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)=\operatorname{var}_{\mathbf{Z}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)
$$

From Theorem A.ll we have:

$$
\mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Z}_{\phi_{T}^{\prime}}}^{S}, \mathbf{Y}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right) \leq \mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Z}_{\rho}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)=\mathbb{E}_{\beta} \operatorname{var}_{\mathbf{Z}, \mathbf{Y}}^{S}\left(\hat{\tau}_{Y}^{T} \mid \mathbf{x}\right)
$$

