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Supplement to "Designing Transportable Experiments Under S-admissability"
In Section A we discuss the variance reduction for d ≥ 1 when the sample size is finite. In Section B we show
the proofs of Section 5.1. In Section C we show the proofs of Section 5.2.1. In Section D we show the proofs of
Section 5.2.2. In Section E we show the proofs of Appendix A.

For a random variable R with value r, we write the expectation, variance and covariance conditioning on r as a
short-hand for conditioning on R = r. On the other hand, the expectation, variance and covariance conditioning
on R are functions of R and therefore are random variables. For example,E[τ̂TY |X,Y] is a function of X and Y,
E[τ̂TY |X,y] = E[τ̂TY |X,Y = y] is a function of X, while E[τ̂TY |x,y] = E[τ̂TY |X = x,Y = y] is a value.

Conditioning on x and y, the randomness only comes from Z. Therefore varZρ
(.|x,y), CovZρ

(.|x,y) and
EZρ

(.|x,y) can be written as varZ(.|x,y, ρ = 1), CovZ(.|x,y, ρ = 1) and EZ(.|x,y, ρ = 1) respectively. We
use both notations in the proofs.

For a random variable R, we use Cov(R)−1/2 to denote the Cholesky square root of Cov(R)−1.

We restate the model and some notations here for convenience. Let the model be:

Y 1
i = XT

i β1 + E1
i Y 0

i = XT
i β0 + E0

i

Let ϵ1i and ϵ0i be the values taken by random variables E1
i and E0

i . Let Ci =
Y 0
i +Y 1

i

2 , C̃i =WiCi, C := (C1, · · · , Cn)

and C̃ = (C̃1, · · · , C̃n). Let ci, c̃i, c and c̃ be the values taken by Ci, C̃i,C and C̃. Then

Ci = XT
i β + Ei ci = xTi β + ϵi

C̃i = X̃T
i β + Ẽi c̃i = x̃Ti β + ϵ̃i

where β = β1+β0

2 , Ei = E1
i +E0

i

2 , X̃i = WiXi and Ẽi = WiEi. Let ϵi and ϵ̃i = wiϵi be the value taken by Ei and Ẽi.
Let Ẽ = (Ẽ1, · · · , Ẽn).

A Additional Results: Finite Sample Size Variance Reduction for d ≥ 1

In this section we discuss the finite sample case whenX is a multivariate random variable, which is a generalization
of the result in Section 5.2.1 when d = 1. We show that when the sample size is finite, if β points to all directions
with equal probability, then a balance condition which also consider the target population and is similar to Target
Balance achieves the optimal variance reduction in expectation over β. The proofs are in Appendix E.

We will use the variance decomposition in the matrix form similar to [Harshaw et al., 2019] and provide intuition
about the effect of balancing on the variance. The following lemma is the general case when d ≥ 1 of Lemma 3
in Section 5.2.1.
Lemma A.1. For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) = ρ(x,−Z):

varSY,Zρ
(τ̂TY |x) = βTCovZρ

(V |x)β +
6

n2
σ2
E

n∑
i=1

w2
i ,

for V := 2
n (w · x)TZ = 2

n x̃
TZ.

Since the design affects only the first term in the above expression, we focus on the the random variable V . V
is now a d-dimensional vector and β is unknown.

To understand the first term, we use the same decomposition of βTCovZρ(V |x)β as in [Harshaw et al., 2019]. Let
e1, ..., en and λ1, .., λn be the normalized eigenvectors and corresponding eigenvalues of matrix CovZρ(V |x). Since
CovZρ

(V |x) is symmetric, the eigenvectors form an orthonormal basis so we can write β as a linear combination
of e1, .., en and get:

β = ∥β∥
n∑

i=1

ηiei
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where ηi = ⟨β, ei⟩/ ∥β∥ is the coefficient that captures the alignment of the weighted outcome β with respect to
the eigenvector ei. Therefore:

βTCovZρ(V |x)β = ∥β∥2
n∑

i=1

η2i λi

In the worst case, β can align with the eigenvector of CovZρ
(V |x) with the largest eigenvalue. Therefore a good

design is one with ρ that minimize the largest eigenvalue of CovZρ
(V |x). We leave this for future works. In this

work we consider the average case direction - when β with norm ∥β∥ = l can point in any direction with equal
probability. In that case, we have
Lemma A.2.

E∥β∥=lβ
TCovZρ

(V |x)β =
l2

2
Trace(CovZρ

(V |x)). (4)

We can then ask for the balance event Ω which results in minimizing the trace of CovZ(V |x,Ω), which is shown
in the following lemma. Note that when d = 1, the trace of CovZ(V |x,Ω) is the variance varZ(V |x,Ω), and this
result is the general case of minimizing the variance of a 1-dimensional random variable in Section 5.2.1.
Lemma A.3. Let U ∈ Rd be a random variable such that E[U ] = 0. Let uα be such that P(∥U∥2 < uα) = 1−α.

Let Ω be an event such that P(Ω) ≥ 1− α and E[U |Ω] = 0. Then:

Trace(Cov(U |∥U∥2 < uα) ≤ Trace(Cov(U |Ω))

It follows from Lemma A.1, Lemma A.2 and Lemma A.3 that we can minimize EβvarSY,Z(τ̂
T
Y |x,Ω) by defining

the following balance condition:
Definition 2 (Alternate Target Balance). With a rejection threshold α, define the balance condition

ϕ′αT =

{
1, if ∥V ∥2 < a

0, otherwise

where a be such that P(ϕ′αT = 1|x) = 1− α.

Recall that Target Balance use the condition ∥B∥2 < a where B = V CovZ(V )−1/2 is the normalized random
variable of V . Note since that V = 2

n x̃
TZ, Alternate Target Balance also considers the target population in the

design phase. However Alternate Target Balance is not invariant under linear transformations of the covariates
xi’s while Target Balance is.

We have the following Theorem which is a generalization of Theorem 2 in Section 5.2.1.
Theorem A.1. Let ∥β∥ = l and β points in any direction with equal probability and n0 = n1 = n/2.

Let ρ(X,Z) be a function satisfying ρ(X,Z) = ρ(X,−Z) and P(ρ = 1|x) ≥ 1− α. Then

EβvarSY,Zϕ′α
T

(τ̂TY |x) ≤ EβvarSY,Zρ
(τ̂TY |x)

Similar to Section 5.2.1, applying Theorem 2 with ρ being the constant function ρ(x,Z) = 1 for all x,Z, we have:
Corollary A.1. Let ∥β∥ = l and β points in any direction with equal probability. When n0 = n1 = n/2, using
Alternate Target Balance reduces the variance compared to complete randomization in expectation over β.

EβvarSZϕ′
T
,Y(τ̂TY |x) ≤ EβvarSZ,Y(τ̂TY |x)

Recall that the first term in the decomposition in Lemma A.1 is equal to:

βTCovZρ
(V |x)β = γTCovZρ

(B|x)γ = γTCovZ(B|x, ρ = 1)γ
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where γ = βTCovZ(V )1/2 and B = V CovZ(V )−1/2.

When the sample size is large, B converges to a standard normal distribution. Recall that Target Balance is
equal to truncating ∥B∥2 < a. So CovZϕT

(B|x) is the covariance of a standard normal random variable B

truncated by ∥B∥2 < a. From Theorem 3.1 in [Morgan et al., 2012] when B is a standard normal distribution,
Cov(B|x, ϕT = 1) = vCov(B|x) for some v < 1, so the variance is reduced. However we do not need to go
through this analysis because [Li et al., 2018] already has variance reduction results for the case when the sample
size is large. In Section 5.2.2 we use the result from [Li et al., 2018] directly to show that Target Balance achieves
a smaller variance than Source Balance.

B Proofs of Section 5.1

In this section we prove Theorem 1. We made use of the following lemma from Morgan et al. [2012]:

Lemma B.1 (from the proof of Theorem 2.1 in Morgan et al. [2012]). Let A := (A1, ..., An)
T ∈ Rn. Let

n1 = n0 = n/2. For any function ρ(x,A) ∈ {0, 1} satisfying ρ(x,A) = ρ(x, 1−A):

ES
A[Ai|x,y, ρ = 1] =

1

2

We also prove the following lemma in order to prove Theorem 1:

Lemma B.2. For any function ρ(x,A) ∈ {0, 1} satisfying ρ(x,A) = ρ(x, 1−A):

EA|ρ=1[τ̂
T
Y |X,Y] =

1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )

ES
Y,A|ρ=1[τ̂

T
Y |X] =

1

n

n∑
i=1

Wi(β1 − β0)
TXi

Proof. From Lemma B.1, E[Ai|X,Y, ρ = 1] = E[Ai|X, ρ = 1] = 1
2 . Therefore:

EA|ρ=1[τ̂
T
Y |X,Y] =

1

n1

n∑
i=1

EA

[
WiAiY

1
i

∣∣∣∣X,Y, ρ = 1

]
− 1

n0

n∑
i=1

EA

[
Wi(1−Ai)Y

0
i

∣∣∣∣X,Y, ρ = 1

]

=
1

n1

n∑
i=1

WiY
1
i EA

[
Ai

∣∣X,Y, ρ = 1
]
− 1

n0

n∑
i=1

WiY
0
i EA

[
1−Ai

∣∣X,Y, ρ = 1
]

=
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )

ES
A|ρ=1,Y[τ̂TY |X] = ES

Y

[
EA[τ̂TY |X,Y, ρ = 1]|X

]
= ES

Y

[
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )|X

]

=
1

n

n∑
i=1

Wi(β1 − β0)
TXi

Proof of Theorem 1. Let DS and DT be the supports of the source and target distributions. Since pT (X) > 0 →
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pS(X) > 0 and pT (Y |X) = pS(Y |X), we have DT ⊆ DS . Using Lemma B.2:

ES
X,Y,ZϕT

[
τ̂TY
]
=ES

X,YEAϕT
[τ̂TY |X,Y]

=
1

n

n∑
i=1

ES
X,Y

[
Wi(Y

1
i − Y 0

i )
]

=
1

n

n∑
i=1

∫
(x,y)∈DS

(
pT (x)

pS(x)
(y1 − y0)

)
pS(x, y)dxy

=
1

n

n∑
i=1

∫
(x,y)∈DS

(
pT (y|x)pT (x)
pS(y|x)pS(x)

(y1 − y0)

)
pS(x, y)dxy because pT (y|x) = pS(y|x)

=
1

n

n∑
i=1

∫
(x,y)∈DS

(
pT (y, x)

pS(y, x)
(y1 − y0)

)
pS(x, y)dxy

=
1

n

n∑
i=1

∫
(x,y)∈DS

pT (x, y)(y
1 − y0)dxy

=
1

n

n∑
i=1

∫
(x,y)∈DT

pT (x, y)(y
1 − y0)dxy because DT ⊆ DS

=τTY

C Proofs of Section 5.2.1

In this section we prove Lemma 1, Lemma 2, Lemma 3, Theorem 2 and Corollary 1. Note that the results in
this section are the special case when d = 1 of the results in Section A. Lemma 2 is a special case when d = 1 of
Lemma E.1. Lemma 3 is a special case of Lemma A.1 and Theorem 2 is a special case of Theorem A.1. However
in this section we state the full proofs for the case d = 1 so that the readers do not need to read the proofs of
Section A in order to understand Section 5.2.1 in the main paper.

Proof of Lemma 1. By law of total variance:

varSZρ,X,Y(τ̂TY ) = ES
XvarSY,Zρ

(τ̂TY |X) + varSX
(
ES
Y,Zρ

[τ̂TY |X]
)

Since ρ(x,Z) = ρ(x,−Z), from Lemma B.2:

ES
Y,Zρ

[τ̂TY |X] =
1

n

n∑
i=1

Wi(β1 − β0)
TXi

Therefore:

varSX
(
ES
Y,Zρ

[τ̂TY |X]
)
= varSX

(
1

n

n∑
i=1

Wi(β1 − β0)
TXi)

)

Proof of Lemma 2. By definition:

varZ(τ̂TY |x,y, ρ = 1) = EZ

[
(τ̂TY − EZ[τ̂

T
Y |x,y, ρ = 1])2|x,y, ρ = 1

]
From Lemma B.2

EZ[τ̂
T
Y |x,y, ρ = 1] =

1

n

(
n∑

i=1

wiy
1
i −

n∑
i=1

wiy
0
i

)
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On the other hand conditioning on X = x and Y = y and let y∗i denote the observed outcome of sample i:

τ̂TY =
2

n
(
∑
Zi=1

wiy
∗
i −

∑
Zi=−1

wiy
∗
i )

=
2

n

n∑
i=1

wiAiy
1
i −

2

n

n∑
i=1

wi(1−Ai)y
0
i

Therefore:

varZ(τ̂TY |x,y, ρ = 1) = EZ

( 2

n
(

n∑
i=1

wiAiy
1
i −

n∑
i=1

wi(1−Ai)y
0
i )−

1

n

n∑
i=1

wi(y
1
i − y0i )

)2 ∣∣∣∣x,y, ρ = 1


= EZ

( 1

n
(

n∑
i=1

wi(2Ai − 1)y1i +
1

n

n∑
i=1

wi(2Ai − 1)y0i )

)2 ∣∣∣∣x,y, ρ = 1


=

4

n2
EZ

( n∑
i=1

wiZi
y1i + y0i

2

)2 ∣∣∣∣x,y, ρ = 1


=

4

n2
EZ

( n∑
i=1

Ziwici

)2 ∣∣∣∣x,y, ρ = 1


where ci = y1

i+y0
i

2 .

Proof of Lemma 3. By law of total variance:

varSY,Zρ
(τ̂TY |x) = ES

Y

[
varZρ(τ̂

T
Y |x,Y)|x

]
+ varSY(EZρ [τ̂

T
Y |x,Y]|x)

= ES
Y

[
varZρ

(τ̂TY |x,Y)|x
]
+ varSY

(
1

n

n∑
i=1

wi(Y
1
i − Y 0

i )|x

)

= ES
Y

[
varZρ(τ̂

T
Y |x,Y)|x

]
+

1

n2

n∑
i=1

w2
i var(E1

i − E0
i )

= ES
Y

[
varZρ(τ̂

T
Y |x,Y)|x

]
+

2

n2
σ2
E

n∑
i=1

w2
i

Recall that C̃i = βX̃i + Ẽi. From Lemma 2:

varZ(τ̂TY |x,Y, ρ = 1)

=
4

n2
EZ

( n∑
i=1

ZiC̃i

)2 ∣∣∣∣x,Y, ρ = 1


=

4

n2
EZ

[(
ZT C̃

)2 ∣∣∣∣x,Y, ρ = 1

]
=

4

n2
EZ

[(
ZTβx̃+ ZT Ẽ

)2 ∣∣∣∣x,Y, ρ = 1

]
=

4

n2
β2EZ

[(
ZT x̃

)2 ∣∣∣∣x, ρ = 1

]
+

4

n2
EZ

[(
ZT Ẽ

)2 ∣∣∣∣x,Y, ρ = 1

]
+

4

n2
2EZ

[
x̃TZZT Ẽ

∣∣∣∣x,Y, ρ = 1

]
(5)

Now we consider ES
Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
. The third term in Eq. 5 becomes:

4

n2
2ES

Y

[
EZ

[
x̃TZZT Ẽ

∣∣∣∣x,Y, ρ = 1

] ∣∣∣∣x] = 8

n2
EZ

[
x̃TZZT

∣∣∣∣x, ρ = 1

]
ES
Y[Ẽ|x]

= 0 because ES
Y[Ẽ|x] = 0
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The second term in Eq. 5 becomes:

4

n2
ES
Y

[
EZ

[(
ZT Ẽ

)2 ∣∣∣∣x,Y, ρ = 1

] ∣∣∣∣x]

=
4

n2
ES
Y

EZ

( n∑
i=1

ZiwiEi

)2 ∣∣x,Y, ρ = 1

 ∣∣∣∣x


=
4

n2
ES
Y

[
EZ

[
n∑

i=1

(ZiwiEi)2
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]
+

4

n2
ES
Y

EZ

∑
i ̸=j

(ZiwiEi)(ZjwjEj)
∣∣x,Y, ρ = 1

 ∣∣∣∣x


=
4

n2
ES
Y

[
EZ

[
n∑

i=1

(ZiwiEi)2
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]
+

4

n2

∑
i ̸=j

EZ[ZiZj |x, ρ = 1]wiwjES
Y [EiEj |x]

=
4

n2
ES
Y

[
EZ

[
n∑

i=1

(ZiwiEi)2
∣∣x,Y, ρ = 1

] ∣∣∣∣x
]
+ 0 because ES

Y[EiEj |x] = ES
Y[Ei|x]ES

Y[Ej |x] = 0

=
4

n2
ES
Y

[
n∑

i=1

(wiEi)2]
∣∣x] because Z2

i = 1

=
4

n2
σ2
E

n∑
i=1

w2
i

The first term in Eq. 5 becomes:

4

n2
ES
Y

[
β2EZ

[(
ZT x̃

)2 ∣∣∣∣x, ρ = 1

] ∣∣∣∣x] = 4

n2
β2EZ

[(
ZT x̃

)2 ∣∣∣∣x, ρ = 1

]
=

4

n2
β2EZ

[
(

n∑
i=1

Ziwixi)
2
∣∣x, ρ = 1

]
Putting all 3 terms together:

ES
Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
=

4

n2
β2EZ

[
(

n∑
i=1

Ziwixi)
2
∣∣x, ρ = 1

]
+

4

n2
σ2
E

n∑
i=1

w2
i

Therefore:

varSY,Zρ
(τ̂TY |x) = ES

Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+

2

n2
σ2
E

n∑
i=1

w2
i

=
4

n2
β2EZ

[
(

n∑
i=1

Ziwixi)
2
∣∣x, ρ = 1

]
+

6

n2
σ2
E

n∑
i=1

w2
i

In order to prove Theorem 2, we will show that for a random variable U with E[U ] = 0, among events Ω preserve
the expectation E[U |Ω] = 0, truncating the tail results in the smallest variance. Note that if ρ(x,Z) = ρ(x,−Z)
it follows from Lemma B.1 that E[ 2n x̃

TZ|ρ = 1] = E[ 2n x̃
TZ] = 0.

In order to prove Theorem 1 we show how to minimize the variance of a random variable:
Lemma C.1. Let U ∈ R be a random variable such that E[U ] = 0. Let uα be such that P(U2 < uα) = 1 − α.
Let Ω be an event such that P(Ω) ≥ 1− α and E[U |Ω] = 0. Then:

E(U2|U2 < uα) ≤ E(U2|Ω)

Proof. Let p(u) be the pdf of U . Define f(u) as follow:

f(u) = p(U = u,Ω)
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then:

p(u|Ω) = p(U = u,Ω)

P(Ω)
=

f(u)

1− α
.

Therefore:

E[U2|Ω] =
∫
u

u2
f(u)

1− α
du .

We want to minimize E(U2|Ω): ∫
u

u2
f(u)

1− α
du

subject to:

0 ≤ f(u) ≤ p(u) ∀u

P(Ω) =
∫
u

f(u)du = 1− α

This can be done by maximize f(u) so that f(u) = p(u) for the smallest u2, which is equal to set Ω to be the
event U2 < uα.

Proof of Theorem 2. Let V := 2
n

∑
i wixiZi and B = V var(V )−1/2. From Lemma 3:

varSY,Zρ
(τ̂TY |x) = β2EZ

[
V 2

∣∣∣∣x, ρ = 1

]
+

6

n2
σ2
E

n∑
i=1

w2
i .

= β2var(V )EZ

[
B2

∣∣∣∣x, ρ = 1

]
+

6

n2
σ2
E

n∑
i=1

w2
i .

Since ρ(x,Z) = ρ(x,−Z), from Lemma B.1 we have EZ[B|x, ρ = 1] = 0, which satisfies the criteria in Lemma C.1.

Let η := 1 − P(ρ = 1|x). Then η ≤ α. Let bη be such that P(B2 < bη|x) = 1 − η and bα be such that
P(B2 < bα|x) = 1− α. From Lemma C.1:

EZ

[
B2
∣∣x, ρ = 1

]
≥ EZ

[
B2
∣∣x, B2 < bη

]
≥ EZ

[
B2
∣∣x, B2 < bα

]
because bη ≥ bα

≥ EZ

[
B2
∣∣x, ϕαT = 1

]

Proof of Corollary 1. Let ρ being the constant function ρ(x,Z) = 1 for all x,Z. Then:

varSY,Zρ
(τ̂TY |x) = varSY,Z(τ̂

T
Y |x)

From Theorem 2 we have:

varSY,Zϕα
T

(τ̂TY |x) ≤ varSY,Zρ
(τ̂TY |x) = varSY,Z(τ̂

T
Y |x)

D Discussion on Section 5.2.2

Proof of Lemma 4. By law of total variance:

varSX,Y,Zρ
(τ̂TY ) = ES

X,Y

[
varZρ

(τ̂TY |X,Y)
]
+ varSX,Y

(
EZρ

[τ̂TY |X,Y]
)
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Since ρ(x,Z) = ρ(x,−Z), from Lemma B.2:

EZ[τ̂
T
Y |X,Y, ρ = 1] =

1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )

Therefore:

varSX,Y

(
EZ[τ̂

T
Y |X,Y, ρ = 1]

)
= varSX,Y

(
1

n

n∑
i=1

Wi(Y
1
i − Y 0

i )

)

We now prove Lemma 5. We use the following result in Harshaw et al. [2019] to prove Lemma 5.
Lemma D.1 (Lemma A1 in Harshaw et al. [2019]). Let y∗i denote the observed outcome of sample i:

2

n
(
∑
zi=1

y∗i −
∑

zi=−1

y∗i )−
1

n

n∑
i=1

(y1i − y0i ) =
2

n
cT z

where ci = y1
i+y0

i

2 and c := (c1, · · · , cn).

We will also use the following lemma:
Lemma D.2. Let Q := n−1

n E[ZZT ]. Let In denote the n × n identity matrix and 1 denote the n dimensional
vector of 1. Then:

Q = In − 1

n
11T .

Q = QT

Q = Q2 = QTQ = QQT .

Let s ∈ Rn×d be a matrix. Then
Qs = s− avg(s)

where avg(s) ∈ Rd is the average of rows of s.

Proof. First we will show that:

E[ZZT ] =
n

n− 1

(
In − 1

n
11T

)
by showing that E[Z2

i ] = 1 and E[ZiZj ] = − 1
n−1 when i ̸= j. First we have that E[Z2

i ] = 1 because Z2
i = 1. Since

there are exactly n/2 samples with value Zi = 1 and n/2 samples with values Zi = −1, note that (
∑n

i=1 Zi)
2 = 0

and:

E[(
n∑

i=1

Zi)
2] = E[

n∑
i=1

Z2
i ] +

∑
i̸=j

E[ZiZj ] .

Since all pairs (i, j) where i ̸= j have equal roles and there are n(n− 1) such pairs:

E[ZiZj ] =
E[(
∑n

i=1 Zi)
2]− E[

∑n
i=1 Z

2
i ]

n(n− 1)

=
0− n

n(n− 1)

=
−1

n− 1
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Since Q is symmetric, Q = QT . We will show that Q = Q2:

Q2 = (In − 1

n
11T )(In − 1

n
11T )

= In − 1

n
11T In − 1

n
In11

T +
1

n2
11T11T

= In − 1

n
11T = Q

Since Q = QT , we have Q = Q2 = QQT = QTQ. For the last property:

Qs = Ins−
1

n
11T s = s− avg(s)

because Ins = s and 1
n11

T s = avg(s)

Proof of Lemma 5. For any matrix s ∈ Rn×d we will compute R2
s := Corr(τ̂TY ,

2
nZ

T s) where for any Y ∈ R, X ∈
Rd, Corr(Y,X) is defined as:

Corr(Y,X) = Corr(Y,XTβ∗)

=
Cov(Y,XTβ∗)√

var(Y )
√

var(XTβ∗)

where β∗ = argminβ̂ E∥Y −XT β̂∥2. Substituting s = x and s = x̃ will give us R2
x and R2

x̃.

Let δ̃i = ỹ1i − ỹ0i and δ̃ := (δ̃1, · · · , δ̃n). From Lemma D.1, we have:

τ̂TY =
2

n
ZT c̃+

1

n
1T δ̃

where 1 ∈ Rn is a vector of 1.

We note that conditioning on y, 1T δ̃ is a constant independent of Z. Let Q := n−1
n E[ZZT ] and note that Q = QT

and Q = Q2. First, let us compute β∗ = argminβ̂ EZ∥τ̂TY − 2
nZ

T sβ̂∥2. We have,

β∗ = argmin
β̂

EZ∥τ̂TY − 2

n
ZT sβ̂∥2

= argmin
β̂

EZ∥
2

n
ZT c̃+

1

n
1T δ̃ − 2

n
ZT sβ̂∥2

= argmin
β̂

EZ∥ZT c̃− ZT sβ̂∥2

= argmin
β̂

(c̃− sβ̂)TE[ZZT ](c̃− sβ̂)

= argmin
β̂

(c̃− sβ̂)TQ(c̃− sβ̂)

= argmin
β̂

(c̃− sβ̂)TQTQ(c̃− sβ̂)

= argmin
β̂

∥Qc̃−Qsβ∥2.



Designing Transportable Experiments Under S-admissability

Using the fact that Q = QTQ, we have β∗ = (sTQs)−1sTQc̃. By definition, we have

Corr(τ̂TY ,
2

n
ZT s) =

EZ

[
τ̂TY

2
nZ

T sβ∗]− EZ

[
τ̂TY
]
EZ

[
2
nZ

T sβ∗]√
varZ(τ̂TY )varZ( 2nZT sβ∗)

=
EZ

[
τ̂TY ZT sβ∗]√

varZ(τ̂TY )varZ(ZT sβ∗)
because E[Z] = 0

=
EZ

[(
2
n c̃

TZ+ 1
n1

T δ̃
)
ZT sβ∗

]
√

varZ
(

2
nZ

T c̃+ 1
n1

T δ̃
)

varZ(ZT sβ∗)

=
EZ

[(
2
n c̃

TZ
)
ZT sβ∗]√

varZ
(
2
nZ

T c̃
)

varZ(ZT sβ∗)

=
EZ

[
c̃TZZT sβ∗]√

varZ (ZT c̃) varZ(ZT sβ∗)

For the numerator we have:

EZ

[
c̃TZZT sβ∗] = c̃TQsβ∗

=
n

n− 1
c̃TQs(sTQs)−1sTQc̃

=
n

n− 1
c̃TQs(sTQs)−1sTQs(sTQs)−1sTQc̃

=
n

n− 1

(
c̃TQs(sTQs)−1sTQ

) (
Qs(sTQs)−1sTQc̃

)
=

n

n− 1
(β∗T sTQ)(Qsβ∗)

=
n

n− 1
∥Qsβ∗∥2

Let u = Qsβ and v = Qc̃−Qsβ. We will show that u and v are orthogonal, therefore ∥Qsβ∗∥2 = ∥Qc̃∥2−∥Qc̃−
Qsβ∥2:

uT v = (Qc̃−Qsβ∗)T (Qsβ∗)

= c̃TQsβ∗ − β∗T sTQsβ∗

= c̃TQsβ∗ − ∥Qsβ∗∥2

= 0 .

Therefore ∥Qsβ∗∥2 = ∥Qc̃∥2 − ∥Qc̃−Qsβ∥2.

For the denominator, since E[Z] = 0 we have:

varZ
(
ZT c̃

)
varZ(ZT sβ∗) = EZ[c̃

TZZT c̃]EZ[β
∗T sTZZT sβ∗]

=
n2

(n− 1)2
(c̃TQc̃)(β∗T sTQsβ∗)

=
n2

(n− 1)2
(c̃TQTQc̃)(β∗T sTQTQsβ∗)

=
n2

(n− 1)2
∥Qc̃∥2∥Qsβ∗∥2
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Putting the numerator and denominator together we have:

R2
s = Corr(τ̂TY ,

2

n
ZT s)

=
∥Qsβ∗∥2

∥Qc̃∥∥Qsβ∗∥

=
∥Qsβ∗∥
∥Qc̃∥

=

√
∥Qc̃∥2 − ∥Qc̃−Qsβ∥2

∥Qc̃∥

Substituting s = x and s = x̃ gives us the expression for R2
x and R2

x̃.

Proof of Theorem 4. We have

C̃ = X̃Tβ + Ẽ

where C = Y 0+Y 1

2 , E = E0+E1

2 , β = β0+β1

2 , C̃ = pT (X)
pS(X)C, X̃ = pT (X)

pS(X)X and Ẽ = pT (X)
pS(X)E . Since Yi, Xi and Wi

have finite 8th moment, C̃i and X̃i have finite 4th moment using Cauchy-Schwartz inequality. Let S ∈ Rd be
a random variable independent of Ei and with finite 4th moment. Let S ∈ Rn×d be n samples S1, · · · , Sn of S.
By the definition of R2,

R2
S =

∥QC̃∥2 −minβ̂ ∥QC̃−QSβ̂∥2

∥QC̃∥2
.

We will show that limn→∞R2
X̃

≥ limn→∞R2
S almost surely for any S. It is sufficient to show limminβ̂ ∥QC̃ −

QX̃β̂∥2 ≤ limminβ̂ ∥QC̃ −QSβ̂∥2 almost surely. From Lemma D.2, note that for any matrix s ∈ Rn×d with n

rows, n−1
n Qs = s − avg(s) where avg(s) ∈ Rd is the average of rows of s. Let β∗ = argminβ̂ limn→∞

1
n∥QC̃ −

QSβ̂∥2 and β̃ = argminβ̂
1
n∥QC̃−QSβ̂∥2. If Si and C̃i have finite 4th moment, by strong law of large number
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limn→∞ β̃ = β∗ almost surely. We have:

1

n
lim
n→∞

min
β̂

∥QC̃−QSβ̂∥2

=
1

n
lim
n→∞

∥QC̃−QSβ∗∥2 + 2(QC̃−QSβ∗)T (QSβ∗ −QSβ̃) +
∥∥∥QSβ∗ −QSβ̃

∥∥∥2
=

1

n
lim
n→∞

∥QC̃−QSβ∗∥2 + 2 lim
n→∞

(QC̃−QSβ∗)TQS lim
n→∞

(β∗ − β̃) + lim
n→∞

(β∗ − β̃)T lim
n→∞

STQS lim
n→∞

(β∗ − β̃)

because C̃i and Si having finite 4th moment implies lim
n→∞

(QC̃−QSβ∗)TQS and lim
n→∞

STQS are finite

= lim
n→∞

1

n
∥QC̃−QSβ∗∥2 almost surely

= min
β̂

lim
n→∞

1

n
∥QC̃−QSβ̂∥2

= min
β̂

lim
n→∞

1

n

n2

(n− 1)2

∥∥∥∥n− 1

n
QC̃− n− 1

n
QSβ̂

∥∥∥∥2
= min

β̂
lim
n→∞

1

n
∥(C̃− Sβ̂)− (avg(C̃)− avg(S)β̂)∥2

= min
β̂

var(C̃ − ST β̂) almost surely if C̃i and Si have finite 4th moment

= min
β̂

E[(C̃ − ST β̂)2]−
(
E[C̃ − ST β̂]

)2
= min

β̂
E[X̃Tβ − ST β̂]2 + E[Ẽ2]−

(
E[X̃Tβ − ST β̂]

)2
because E[Ẽ ] = 0 and E is independent of X̃ and S

= min
β̂

var(X̃Tβ − ST β̂) + E[Ẽ2] ≥ E[Ẽ2]

When S = X̃, this is minimized, therefore:

lim
n→∞

R2
X̃

≥ lim
n→∞

R2
S almost surely.

Substituting S = X:

lim
n→∞

R2
X̃

≥ lim
n→∞

R2
X almost surely.

Recall that:

as-varZ
(
τ̂TY |x,y,M

(
2

n
ZT s

)
≤ a

)
= lim

n→∞
var(τ̂TY |x,y)(1− (1− vd,a)R

2
s),

where as-var is the variance of the asymptotic sampling distribution. Let s(a) denote the rejection probability
P(ϕS = 0|x) = 0 when using threshold a in Source Balance, and t(a) denote the rejection probability P(ϕT =
0|x) = 0 when using threshold a in Target Balance. We have:

as-varZ
(
τ̂TY |X,Y, ϕs(a)S = 1

)
= as-varZ

(
τ̂TY |X,Y,M

(
2

n
ZTX

)
≤ a

)
= lim

n→∞
var(τ̂TY |X,Y)(1− (1− vd,a)R

2
X)

≥ lim
n→∞

var(τ̂TY |X,Y)(1− (1− vd,a)R
2
X̃
) almost surely

= as-varZ
(
τ̂TY |X,Y,M

(
2

n
ZT X̃

)
≤ a

)
= as-varZ

(
τ̂TY |X,Y, ϕt(a)T = 1

)
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Now we will show that for any x and x̃, limn→∞ s(a) = limn→∞ t(a). Let U ∈ Rd be a standard multivariate
random variable. We have:

lim
n→∞

s(a) = lim
n→∞

P(M
(
2

n
ZTx

)
≤ a)

= lim
n→∞

P(∥BS∥2 < a) where BS =
2

n
ZTxCov(

2

n
ZTx)−1/2

= P(∥U∥2 < a) because BS converges in distribution to U by finite central limit theorem

Similarly we have:

lim
n→∞

t(a) = lim
n→∞

P(M
(
2

n
ZT x̃

)
≤ a)

= lim
n→∞

P(∥BT ∥2 < a) where BT :=
2

n
ZT x̃Cov(

2

n
ZT x̃)−1/2

= P(∥U∥2 < a) because BT converges in distribution to U by finite central limit theorem

Therefore limn→∞ t(a) = limn→∞ s(a). When the sample size is large, with the same rejection probability, using
Target Balance results in a smaller asymptotic variance than Source Balance .

E Proofs of Section A

In this Section we present the proof of Lemma A.1, Lemma A.2, Lemma A.3, Theorem A.1 and Corollary A.1.

In order to prove Lemma A.1, we first prove the following lemma.

Lemma E.1 (minor changes to Lemma 1 in [Harshaw et al., 2019]). Let ϵ̃i = c̃i − βT x̃i and ϵ̃ = (ϵ̃1, · · · , ϵ̃n).
For any function ρ(x,Z) ∈ {0, 1} satisfying ρ(x,Z) = ρ(x,−Z):

n2

4
varZ(τ̂TY |x,y, ρ = 1) = Cov(c̃TZ|ρ = 1) (6)

= βTCov(x̃TZ|ρ = 1]β + Cov(ϵ̃TZ|ρ = 1) + 2βTCov(x̃TZ, ϵ̃TZ|ρ = 1) (7)

Proof of Lemma E.1. By definition:

varZ(τ̂TY |x,y, ρ = 1) = EZ

[
(τ̂TY − EZ[τ̂

T
Y |x,y, ρ = 1])2|x,y, ρ = 1

]
We have:

EZ[τ̂
T
Y |x,y, ρ = 1] =

2

n
EZ

[∑
Zi=1

wiy
∗
i −

∑
Zi=−1

wiy
∗
i

∣∣∣∣ρ = 1

]

=
2

n
E

[
n∑

i=1

Aiwiy
1
i −

n∑
i=1

(1−Ai)wiy
0
i

∣∣∣∣ρ = 1

]

=
2

n

(
n∑

i=1

E[Ai|ρ = 1]wiy
1
i −

n∑
i=1

E[1−Ai|ρ = 1]wiy
0
i

)

=
1

n

(
n∑

i=1

wiy
1
i −

n∑
i=1

wiy
0
i

)
because E[Ai|ρ = 1] = 1/2 by Lemma B.1
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Therefore using Lemma D.1:

varZ(τ̂TY |x,y, ρ = 1) = EZ

( 2

n
(
∑
Zi=1

wiy
∗
i −

∑
Zi=−1

wiy
∗
i )−

1

n

n∑
i=1

wi(y
1
i − y0i )

)2 ∣∣∣∣x,y, ρ = 1


=

4

n2
E[c̃TZZT c̃|x,y, ρ = 1]

=
4

n2
Cov(c̃TZ|x,y, ρ = 1) because E[c̃TZ|x,y, ρ = 1] = 0 from Lemma B.1

=
4

n2
Cov((x̃β + ϵ̃)TZ|x,y, ρ = 1)

= βTCov(x̃TZ|x,y, ρ = 1]β + Cov(ϵ̃TZ|x,y, ρ = 1) + 2βTCov(x̃TZ, ϵ̃TZ|x,y, ρ = 1)

Proof of Lemma A.1. By law of total variance:

varSY,Zρ
(τ̂TY |x) = ES

Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+ varSY(EZ[τ̂

T
Y |x,Y, ρ = 1]|x)

= ES
Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+ varSY

(
1

n

n∑
i=1

wi(Y
1
i − Y 0

i )|x

)

= ES
Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+

1

n2

n∑
i=1

w2
i var(E1 − E0)

= ES
Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
+

2

n2
σ2
E

n∑
i=1

w2
i

From Lemma E.1:

n2

4
varZ(τ̂TY |x,y, ρ = 1) = βTCov(x̃TZ|x,y, ρ = 1]β + Cov(ϵ̃TZ|x,y, ρ = 1) + 2βTCov(x̃TZ, ϵ̃TZ|x,y, ρ = 1)

= βTCov(x̃TZ|x,y, ρ = 1]β + ϵ̃TCov(Z|x,y, ρ = 1)ϵ̃+ 2βTCov(x̃TZ,Z|x,y, ρ = 1)ϵ̃

Recall that Y 1
i = βT

1 Xi + E1
i and Y 0

i = βT
1 Xi + E0

i . Let Ei = E1
i +E0

i

2 and Ẽ = (E1, · · · , En). Since ϵ̃ is the value of
Ẽ we have:

n2

4
ES
Y

[
varZ(τ̂TY |x,Y, ρ = 1)|x

]
= βTCov(x̃TZ|x,y, ρ = 1]β + ES

Y[ẼT
Cov(Z|x,Y, ρ = 1)Ẽ|x] + 2βTCov(x̃TZ,Z|x,y, ρ = 1)E[Ẽ|x]

= βTCov(x̃TZ|x, ρ = 1]β + ES
Y[Cov(ẼT

Z|x, ρ = 1)|x] because E[Ẽ|x] = 0
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The second term:

ES
Y[Cov(ẼT

Z|x, ρ = 1)|x]

= EẼ [EZ[Ẽ
T
ZZT Ẽ|x, ρ = 1]|x]

= EẼ

 n∑
i=1

n∑
j=1

EZ[wiEiZiZjEjwj |ρ = 1]|x


= EẼ

 n∑
i=1

E[w2
i E2

i Z
2
i |ρ = 1] +

∑
i ̸=j

E[wiEiZiZjEjwj |ρ = 1]|x


= EẼ

 n∑
i=1

E[w2
i E2

i 1|ρ = 1] +
∑
i̸=j

E[wiZiZjEjwj |ρ = 1]E[Ei|ρ = 1]|x

 because Z2
i = 1

=

n∑
i=1

E[w2
i E2

i ] because E[Ei|ρ = 1] = 0

=

n∑
i=1

w2
i σ

2
E

Putting all together:

varSY,Zρ
(τ̂TY |x) = 4

n2

(
βTCov(x̃TZ|x, ρ = 1]β +

n∑
i=1

w2
i σ

2
E

)
++

2

n2
σ2
E

n∑
i=1

w2
i

=
4

n2
βTCovZ(x̃

TZ|x, ρ = 1]β +
6

n2
σ2
E

n∑
i=1

w2
i

Proof of Lemma A.2. We use the same decomposition of βTCovZ(V |x,Ω)β as in [Harshaw et al., 2019]. Let
e1, ..., en and λ1, .., λn be the normalized eigenvectors and corresponding eigenvalues of matrix CovZ(V |x, E).
Since CovZ(V |x, E) is symmetric, the eigenvectors form an orthonormal basis so we can write β as a linear
combination of e1, .., en and get:

β = ∥β∥
n∑

i=1

ηiei

where ηi = ⟨β, ei⟩/ ∥β∥ is the coefficient that captures the alignment of the weighted outcome β with respect to
the eigenvector ei. Therefore:

βTCovZ(V |x,Ω)β = ∥β∥2
n∑

i=1

η2i λi
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Then:

Eβ

[
βTCovZ(V |x,Ω)β

]
= Eβ

[
∥β∥2

n∑
i=1

η2i λi

]

= l2
n∑

i=1

λiEβ [η
2
i ]

= l2
n∑

i=1

λiEθcos
2(θ)

where θ is the angle between β and ei. Since β points to any direction
with equal probability, θ is uniformly distributed in [0, 2π].

=
l2

2

n∑
i=1

λi

=
l2

2
Trace(CovZ(V |x,Ω)).

Proof of Lemma A.3. Let p(u) be the pdf of U . Define f(u) as follow:

f(u) = p(U = u,Ω)

Then:

p(u|Ω) = p(U = u,Ω)

P(Ω)
=

f(u)

1− α

Since P(Ω) = 1− α we have: ∫
u

f(u)du = 1− α

We have:

Trace(Cov(U |Ω)) = Trace(E[UUT |Ω]) = Trace(E[UUT |Ω] = Trace(E[UTU |Ω] =
∫
u

uTu
f(u)

1− α
du

We want to minimize Trace(Cov(U |Ω)): ∫
u

uTu
f(u)

1− α
du

subject to:

0 ≤ f(u) ≤ p(u) ∀u∫
u

f(u)du = 1− α

This can be done by maximize f(u) so that f(u) = p(u) for the smallest uTu, which is equal to set Ω to be the
event ∥U∥2 < uα.

Proof of Theorem A.1. Let η := 1 − P(ρ = 1|x). Then η ≤ α. Let vη be such that P(∥V ∥2 < vη|x) = 1 − η.
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From Lemma A.1:

EβvarSY,Zρ
(τ̂TY |x) = 4

n2
Eββ

TCov(V |x, ρ = 1)β +
6

n2
σ2

n∑
i=1

w2
i (8)

=
4

n2
l2

2
Trace(Cov(V |x, ρ = 1)) +

6

n2
σ2

n∑
i=1

w2
i (9)

≥ 4

n2
l2

2
Trace(Cov(V |x, ∥V ∥2 < vη)) +

6

n2
σ2

n∑
i=1

w2
i (10)

≥ 4

n2
l2

2
Trace(Cov(V |x, ∥V ∥2 < vα)) +

6

n2
σ2

n∑
i=1

w2
i because vη ≥ vα (11)

≥ 4

n2
l2

2
Trace(Cov(V |x, ϕαT

′ = 1)) +
6

n2
σ2

n∑
i=1

w2
i (12)

≥ 4

n2
Eββ

TCov(V |x, ϕαT
′ = 1)β +

6

n2
σ2

n∑
i=1

w2
i (13)

≥ EβvarSY,Zϕα
T

′ (τ̂
T
Y |x) (14)

Proof of Corollary A.1. Let ρ being the constant function ρ(x,Z) = 1 for all x,Z. Then:

varSZρ,Y(τ̂TY |x) = varSZ,Y(τ̂TY |x)

From Theorem A.1 we have:

EβvarSZϕ′
T
,Y(τ̂TY |x) ≤ EβvarSZρ,Y(τ̂TY |x) = EβvarSZ,Y(τ̂TY |x)
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