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S1 A brief introduction to nonparametric Bayes

S1.1 Posterior contraction in nonparametic setting

We first give a brief review of the contraction rate of a posterior distribution under a general nonparametric
regression setting. Given independently and identically distributed samples Y (n) generated from the true density

f0, a regular nonparametric model considers Yi | f
i.i.d.∼ f(·) for some unknown density f ∈ F , where F denotes

a suitable class of the density functions that are absolutely continuous with respect to the Lebesgue measure.
Assigning a nonparametric prior Π(·) over the set F and multiplying it with the likelihood denoted by P (Y (n) | f)
produces the posterior distribution Πn(· | Y (n)) defined as

Πn(f ∈ B | Y (n)) =

∫
B
P (Y (n) | f)dΠ(f)∫
P (Y (n) | f)dΠ(f)

,

for any set B ⊂ F . As the posterior distribution is a random measure conditioning on the given data, we are
interested in studying frequentist properties of such posterior distribution such as the consistency and convergence
rate to the true data generating function f0. In particular, the convergence rate characterizes how fast a posterior
distribution concentrates on the true density f0 as n increases, measured by the decreasing rate of the radius
of a neighborhood centered at the true f0 that received posterior probability converging to 1. We define the
posterior distribution contracts at a rate εn to the true function f0 with respect to certain metric d(·, ·) almost
surely under the true probability measure denoted by Ef0 , if

Ef0{Πn(d(f, f0) > Mεn | Y (n))} → 0, as n→∞,

for some sufficiently large integer M > 0. Ghosal et al. (2000) derived a general approach to obtain the optimal
rate (up to a logarithmic factor) by verifying sufficient conditions regarding the prior measure and the considered
density space F . We now restate Theorem 2.1 of Ghosal et al. (2000).

Theorem S1. If there exist sequences ε̄n, ε̃n → 0 with nmin{ε̄2n, ε̃2n} → ∞ such that there exist constants
C1, C2, C3, C4 > 0 and a sequence of sieve Fn ⊂ F so that,

(Entropy condition) logN(ε̄n,Fn, d) ≤ C1nε̄
2
n, (S1.1)

(Sieve condition) Π(Fcn) ≤ C3 exp{−nε̃2n(C2 + 4)}, (S1.2)

(Prior thickness condition) Π

(
f :

∫
f0 log

f0
f
≤ ε̃2n,

∫
f0 log

(
f0
f

)2

≤ ε̃2n
)
≥ C4 exp{−C2nε̃

2
n}. (S1.3)

then we have
Ef0{Πn(d(f, f0) > Mεn | Y (n))} → 0, a.s. as n→∞,

for some sufficiently large constant M > 0.
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S1.2 Gaussian process and its reproducing kernel Hilbert space

We first review the definition of Gaussian process. A Gaussian process defined on a probability space (Ω,U , P )
is a collection of random variables {X(t), t ∈ T} indexed by some arbitrary set T such that each finite
dimensional subset of random variables has a joint multivariate normal distribution with mean function
µ(t) = E(X(t)) and convaraince kernel function K(s, t) = Cov(X(s), X(t)). For some univaraite function
f : R → R, we endow it with a Gaussian process prior denoted by f ∼ GP (µ(·),K(·, ·)) with µ(x) = E(f(x))
and K(x, x′) = Cov(f(x), f(x′)) for any x, x′ ∈ R. The mean function reflects the expected center of realizations
and the covariance kernel function controls the smoothness of the realizations and correlations of the realization
across covariates. Refer to Rasmussen (2003) for a detailed introduction to Gaussian processes.

We now briefly recall the definition of the reproducing kernel Hilbert space of a Gaussian process prior; a
detailed review can be found in van der Vaart & van Zanten (2008). A Borel measurable random element W
with values in a separable Banach space (B, ‖·‖) (e.g., C[0, 1]) is called Gaussian if the random variable b∗W
is normally distributed for any element b∗ ∈ B∗, the dual space of B. The reproducing kernel Hilbert space
(RKHS) H attached to a zero-mean Gaussian process W is defined as the completion of the linear space of
functions t 7→ EW (t)H relative to the inner product

〈EW (·)H1; EW (·)H2〉H = EH1H2,

where H,H1 and H2 are finite linear combinations of the form
∑
i aiW (si) with ai ∈ R and si in the index set

of W .

Let W = (Wt : t ∈ R) be a Gaussian process with squared exponential covariance kernel. The spectral measure
mw of W is absolutely continuous with respect to the Lebesgue measure λ on R with the Radon-Nikodym
derivative given by

dmw

dλ
(x) =

1

2π1/2
e−x

2/4.

Define a scaled Gaussian process W a = (Wat : t ∈ [0, 1]), viewed as a map in C[0, 1]. Let Ha denote the RKHS
of W a, with the corresponding norm ‖·‖Ha . The unit ball in the RKHS is denoted Ha1 .

S2 Proofs of results in the main document

S2.1 Conventions

Equations in the main document are cited as (1), (2) etc., retaining their numbers, while new equations defined
in this document are numbered (S1), (S2) etc. In this section we collect the proof of Proposition 2.1, Theorems
3.1, 3.2, 4.1 and 4.2.

S2.2 Proof of Proposition 2.1

In this section we prove the results in Proposition 2.1.

Proposition 2.1 For f0 ∈ Cβ [0, 1] with β ∈ (2j, 2j + 2] satisfying Assumptions F1 and F2, for fβ defined as
from the iterative procedure (6) we have

‖φσ ∗ fβ − f0‖∞ = O(σβ),

and

φσ ∗ fβ(x) = f0(x)(1 +D(x)O(σβ)), (S2.1)

where

D(x) =

r∑
i=1

ci|lj(x)|
β
i + cr+1,
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for non-negative constants ci, i = 1, . . . , r + 1, and for any x ∈ [0, 1].

Proof. We now show equation (S2.1). Following the proof of Lemma 1 in Kruijer et al. (2010), for any
x, y ∈ [0, 1],

log f0(y) ≤ log f0(x) +

r∑
i=1

lj(x)

j!
(y − x)j + L|y − x|β ,

log f0(y) ≥ log f0(x) +

r∑
i=1

lj(x)

j!
(y − x)j − L|y − x|β .

Define

Buf0,r(x, y) =

r∑
i=1

lj(x)

j!
(y − x)j + L|y − x|β ,

Blf0,r(x, y) =

r∑
i=1

lj(x)

j!
(y − x)j − L|y − x|β .

Then we have

eB
u
f0,r ≤ 1 +Buf0,r +

1

2!
(Buf0,r)

2 + · · ·+M |Buf0,r|
r+1,

eB
l
f0,r ≥ 1 +Blf0,r +

1

2!
(Blf0,r)

2 + · · · −M |Blf0,r|
r+1.

where

M =
1

(r + 1)!
exp

{
sup

x,y∈[0,1],x 6=y

(∣∣∣∣ r∑
j=1

lj(x)

j!
(y − x)j

∣∣∣∣+ L|y − x|β
)}

.

Note that f0 is bounded on [0, 1], we consider the convolution on the whole real line by extending f0 analytically
outside [0, 1]. For β ∈ (1, 2], r = 1 and x ∈ (0, 1),

φσ ∗ f0(x) ≤ f0(x)

∫
eB

u
f0,r

(x,y)φσ(y − x)dy

≤ f0(x)

∫
R
φσ(y − x)[1 + L|y − x|β +M{l21(x)(y − x)2 + 2Ll1(x)(y − x)|y − x|β + L2|y − x|2β}]dy.

(S2.2)

Since lj(x)’s are all continuous on [0, 1], there exist finite constants Mj such that |lj | ≤Mj and |y− x| ≤ 1. The
integral in the last inequality in (S2.2) can be bounded by∫

R
φσ(y − x)[1 + L|y − x|β +M{M2−β

1 |l1(x)(y − x)|β + (L2 + 2M1)|y − x|β}]dy

Therefore,

φσ ∗ f0(x) ≤ f0(x){1 + (r1|l1(x)|β + r2)σβ},

where r1 = MM2−β
1 µ′β , r2 = L(1 +ML+ 2MM1)µ′β , and µ′β = E{|y − x|β}.

In the other direction,

φσ ∗ f0(x) ≥ f0(x)

∫
φσ(y − x)[{1− L|y − x|β −M{l21(x)(y − x)2 − 2Ll1(x)(y − x)|y − x|β + L2|y − x|2β}]dy.

Thus we achieve expression of φσ ∗ fβ in Proposition 2.1.
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For any β > 2 and the integer j such that β ∈ (2j, 2j + 2]. We define φ(i) ∗ f as the i-folded convolution of φ

with f for any integer i ≥ 1. First we calculate φσ ∗ f0(x), φ
(2)
σ ∗ f0(x), . . . , φ

(j)
σ ∗ f0(x), and by Lemma S3.5

we get φσ ∗ fj(x). The calculation of φ
(i)
σ ∗ f0(x) is the same as that of φσ ∗ f0(x) except taking the convolution

with φ√iσ. The terms σ2, σ4, . . . , σ2j caused by the factors containing |y − x|k for k < β in φ
(i)
σ ∗ f0 can be

canceled out by Lemma S3.5. For terms containing |y − x|k for k ≥ β, we take out |y − x|β and bound the rest
by a certain power of |lj(x)| or some constant. Following an induction in Kruijer et al. (2010), we can guarantee
the approximation error of φσ ∗ fβ is at the order of O(σβ).

S2.3 Proof of Theorem 3.1

Theorem 3.1. If Πµ has full sup-norm support on C[0, 1] and Πσ has full support on [0,∞), then the L1

support of the induced prior Π on F contains all densities f0 which have a finite first moment and are non-zero
almost everywhere on their support.

Proof. Let f0 be a density with quantile function µ0 that satisfies the conditions of Theorem 3.1. Observe that

‖µ0‖1 =
∫ 1

t=0
|µ0(t)| dt =

∫∞
−∞ |z| f0(z)dz < ∞ since f0 has a finite first moment, and thus µ0 ∈ L1[0, 1]. Fix

ε > 0. We want to show that Π{Bε(f0)} > 0, where Bε(f0) = {f : ‖f − f0‖1 < ε}.

Note that µ0 /∈ C[0, 1], so that P(‖µ− µ0‖∞ < ε) can be zero for small enough ε. The main idea is to find a
continuous function µ̃0 close to µ0 in L1 norm and exploit the fact that the prior on µ places positive mass to
arbitrary sup-norm neighborhoods of µ̃0. The details are provided below.

Since ‖φσ ∗ f0 − f0‖1 → 0 as σ → 0, find σ1 such that ‖φσ ∗ f0 − f0‖1 < ε/2 for σ < σ1. Pick any σ0 < σ1. Since
C[0, 1] is dense in L1[0, 1], for any δ > 0, we can find a continuous function µ̃0 such that ‖µ0 − µ̃0‖1 < δ. Now,
‖fµ,σ − fµ̃0,σ‖1 ≤ C ‖µ− µ̃0‖1 /σ for a global constant C. Thus, for δ = ε σ0/4,{

fµ,σ : σ0 <σ < σ1, ‖µ− µ̃0‖∞ < δ
}
⊂
{
fµ,σ : ‖f0 − fµ,σ‖1 < ε

}
,

since ‖f0 − fµ,σ‖1 < ‖f0 − fµ0,σ‖1 + ‖fµ0,σ − fµ̃0,σ‖1 + ‖fµ̃0,σ − fµ,σ‖1 and fµ0,σ = φσ ∗ f0. Thus, Π{Bε(f0)} >
Πµ(‖µ− µ̃0‖∞ < δ) Πσ(σ0 < σ < σ1) > 0, since Πµ has full sup-norm support and Πσ has full support on
[0,∞).

S2.4 Proof of Theorem 3.2

In this section we will give a detailed proof for the adaptive posterior contraction rate result for the NL-LVM
models.

Theorem 3.2. If f0 satisfies Assumptions F1 and F2 and the priors Πµ and Πσ are as in Assump-
tions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to Hellinger metric h
is

εn = n−
β

2β+1 (log n)t, (S2.3)

where t = β(2 ∨ q)/(2β + 1) + 1.

Proof. Following Ghosal et al. (2000), to obtain the posterior convergence rate we need to find sequences ε̄n, ε̃n →
0 with nmin{ε̄2n, ε̃2n} → ∞ such that there exist constants C1, C2, C3, C4 > 0 and sets Fn ⊂ F so that,

logN(ε̄n,Fn, d) ≤ C1nε̄
2
n, (S2.4)

Π(Fcn) ≤ C3 exp{−nε̃2n(C2 + 4)}, (S2.5)

Π

(
fµ,σ :

∫
f0 log

f0
fµ,σ

≤ ε̃2n,
∫
f0 log

(
f0
fµ,σ

)2

≤ ε̃2n
)
≥ C4 exp{−C2nε̃

2
n}. (S2.6)

Then we can conclude that for εn = max{ε̄n, ε̃n} and sufficiently large M > 0, the posterior probability

Πn(fµ,σ : d(fµ,σ, f0) > Mεn|Y1, . . . , Yn)→ 0 a.s.Pf0 ,
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where Pf0 denotes the true probability measure whose the Radon-Nikodym density is f0. To proceed, we consider
the Gaussian process µ ∼WA given A, with A satisfying Assumption P1.

We will first verify (S2.6) along the lines of Ghosal & van der Vaart (2007). Recall fβ is defined as from (6), by
Lemma S3.7 we guarantee that fβ is a well-defined density. Denote by µβ = F−1β the quantile function of fβ ,
then we have fµβ ,σ = φσ ∗ fβ . Note that

h2(f0, fµ,σ) - h2(f0, fµβ ,σ) + h2(fµβ ,σ, fµ,σ). (S2.7)

Under Assumptions F1 and F2 and by Lemma S3.8, one obtains

h2(f0, fµβ ,σ) ≤
∫
f0 log

(
f0
fµβ ,σ

)
- O(σ2β). (S2.8)

From Lemma S3.1 and the following remark, we obtain

h2(fµβ ,σ, fµ,σ) -
‖µ− µβ‖2∞

σ2
. (S2.9)

From Lemma 8 of Ghosal & van der Vaart (2007), one has∫
f0 log

(
f0
fµ,σ

)i
≤ h2(f0, fµ,σ)

(
1 + log

∥∥∥∥ f0
fµ,σ

∥∥∥∥
∞

)i
, (S2.10)

for i = 1, 2.

From (S2.7)-(S2.10), for any b ≥ 1 and ε̃2n = σ2β
n ,

{
σ ∈ [σn, 2σn], ‖µ− µβ‖∞ - σβ+1

n

}
⊂
{∫

f0 log
f0
fµ,σ

- σ2β
n ,

∫
f0 log

(
f0
fµ,σ

)2

- σ2β
n

}
.

Since µβ ∈ Cβ+1[0, 1], from Section 5.1 of van der Vaart & van Zanten (2009),

Πµ(‖µ− µβ‖∞ ≤ 2δn) ≥ C4 exp

{
− C5(1/δn)

1
β+1 log

(
1

δn

)2∨q}
(C6/δn)(p+1)/(β+1),

for δn → 0 and constants C4, C5, C6 > 0. Letting δn = σβ+1
n , we obtain

Πµ(‖µ− µβ‖∞ ≤ 2δn) ≥ exp

{
− C7

(
1

σn

)
log

(
1

σβ+1
n

)2∨q}
,

for some constant C7 > 0. Since σ ∼ IG(aσ, bσ), we have

Πσ(σ ∈ [σn, 2σn]) =
baσσ

Γ(aσ)

∫ 2σn

σn

x−(aσ+1)e−bσ/xdx

≥ baσσ
Γ(aσ)

∫ 2σn

σn

e−2bσ/xdx

≥ baσσ
Γ(aσ)

σn exp{−bσ/σn}

≥ exp{−C8/σn},

for some constant C8 > 0. Hence

Π{σ ∈ [σn, 2σn], ‖µ− µβ‖∞ - σβ+1
n } ≥ exp

{
− C7

(
1

σn

)
log

(
1

σβ+1
n

)2∨q}
exp{−C8/σn}

≥ exp

{
− 2C9

(
1

σn

)
log

(
1

σβ+1
n

)2∨q}
.
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Then (S2.6) will be satisfied with ε̃n = n−β/(2β+1) logt1(n), where t1 = β(2∨ q)/(2β+ 1) and some C9 > 0. Next
we construct a sequence of subsets Fn such that (S2.4) and (S2.5) are satisfied with ε̄n = n−β/(2β+1) logt2 n and
ε̃n for some global constant t2 > 0.

Now we construct the sieves for F . Letting Ha1 denote the unit ball of RKHS of the Gaussian process with
rescaled parameter a and B1 denote the unit ball of C[0, 1] and given positive sequences Mn, rn, define

Bn = ∪a<rn(MnHa1) + δ̄nB1,

as in van der Vaart & van Zanten (2009), with δ̄n = ε̄nln/K1,K1 = 2(2/π)1/2 and let

Fn = {fµ,σ : µ ∈ Bn, ln < σ < hn}.

First we need to calculate N(ε̄n,Fn, ‖·‖1). Observe that for σ2 > σ1 > σ2/2,

‖fµ1,σ1
− fµ2,σ2

‖1 ≤
(

2

π

)1/2 ‖µ1 − µ2‖∞
σ1

+
3(σ2 − σ1)

σ1
.

Taking κn = min{ε̄n/6, 1} and σnm = ln(1 + κn)m,m ≥ 0, we obtain a partition of [ln, hn] as ln = σn0 < σn1 <
· · · < σnmn−1 < hn ≤ σnmn with

mn =

(
log

hn
ln

)
1

log(1 + κn)
+ 1. (S2.11)

One can show that 3(σnm − σnm−1)/σnm−1 = 3κn ≤ ε̄n/2. Let {µ̃nk , k = 1, . . . , N(δ̄n, Bn, ‖·‖∞)} be a δ̄n-net of Bn.
Now consider the set

{(µ̃nk , σnm) : k = 1, . . . , N(δ̄n, Bn, ‖·‖∞), 0 ≤ m ≤ mn}. (S2.12)

Then for any f = fµ,σ ∈ Fn, we can find (µ̃nk , σ
n
m) such that ‖µ− µ̃nk‖∞ < δ̄n. In addition, if one has σ ∈

(σnm−1, σ
n
m], then ∥∥fµ,σ − fµnk ,σnm∥∥1 ≤ ε̄n.

Hence the set in (S2.12) is an ε̄n-net of Fn and its covering number is given by

mnN(δ̄n, Bn, ‖·‖∞).

From the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for any Mn, rn with rn > 0, we obtain

logN(2δ̄n, Bn, ‖·‖∞) ≤ K2rn

(
log

(
Mn

δ̄n

))2

. (S2.13)

Again from the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for rn > 1 and for M2
n >

16K3rn(log(rn/δ̄n))2, we have

P(WA /∈ Bn) ≤ K4r
p
ne
−K5rn logq rn

K5 logq rn
+ exp{−M2

n/8}, (S2.14)

for constants K3,K4,K5 > 0.

Next we calculate P(σ /∈ [ln, hn]). Observe that

P(σ /∈ [ln, hn]) = P(σ−1 < h−1n ) + P(σ−1 > l−1n )

≤
∞∑

k=ασ

e−bσh
−1
n (bσh

−1
n )k

k!
+

baσσ
Γ(aσ)

∫ ∞
l−1
n

e−bσx/2dx

≤ e−aσ log(hn) +
baσσ

Γ(aσ)
e−bσl

−1
n /2. (S2.15)
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Thus with hn = O(exp{n1/(2β+1)(log n)2t1}), ln = O(n−1/(2β+1)(log n)−2t1), rn = O(n1/(2β+1)(log n)2t1),Mn =
O(n1/(2β+1)(log n)t1+1), (S2.14) and (S2.15) implies

Π(Fcn) = exp{−K6nε̃
2
n},

for some constant K6 > 0, which guarantees that (S2.5) is satisfied with ε̃n = n−β/(2β+1)(log n)t1 .

Also with ε̄n = n−β/(2β+1)(log n)t1+1, it follows from (S2.11) and (S2.13) that

logN(ε̄n,Fn, ‖·‖1) ≤ K7n
1/(2β+1)(log n)2t1+2,

for some constant K7 > 0. Hence max{ε̄n, ε̃n} = n−β/(2β+1)(log n)t1+1.

S2.5 Proof of Theorem 4.1

In this section, we present the detailed proof of the high probability bound for KL divergence between the true
posterior and its α-VB approximation in the case of the GP-IVI.

Theorem 4.1. Under assumptions B1 through B5 it hold that m∗n(Qn) = minq∈Qn
{
D[q||p(· | Y (n))]

}
is bounded in probability with respect to the data generating distribution. Formally, given any ε > 0, there

exists Mε, Nε > 0 such that for n ≥ Nε, we have P(n)
θ∗ (m∗n(Qn) > Mε) ≤ ε.

The objective m∗n(Qn) can be bounded above by D[q||p(Y (n) | θ)] for any q ∈ Qn. Choosing q as a
particular univariate Gaussian centered at the true parameter with variance satisfying our assumptions B1-B5

allows us to bound the KL divergence between the true posterior p(Y (n) | θ) in high P(n)
θ∗ -probability.

Proof. It follows from the definition of m∗n(Qn) that for any q ∈ Qn

m∗n(Qn) ≤ D(q||p(· | Y (n))).

Choose µn to be the quantile function of the distribution N(θ∗, σ2
n). Define the variational distribution

qn(θ) =

∫
φσ(θ − µn(u))du,

where σn satisfies assumption B2. By change of measure,∫
φσ(θ − µn(u))du =

∫
φσ(θ − t)φσn(t− θ∗)dt = N(θ; θ∗, σ2 + σ2

n).

Therefore qn(θ) = N(θ; θ∗, σ2 + σ2
n) ∈ Qn. Denote by En the mean respect to qn. Expanding D(qn||p(Y (n) | θ)),

En
[
log

qn(θ)

p(Y (n) | θ)(θ)

]
= En[log qn] + En[U(θ)] + logm(Y (n))− En [Ln(θ, θ∗)] ,

where Ln(θ, θ∗) =
∑n
i=1 `i(θ, θ

∗). Since the sum of Op(1) terms is Op(1), it suffices to show that each of the
terms in the above sum is Op(1). The first term En[log qn], the differential entropy of qn, is a constant and is

Op(1). A straight forward application of Markov’s inequality along with the fact that E(n)
θ∗ [m(Y (n))] = 1 shows

that logm(Y (n)) is Op(1).

Next, expand each of the functions D(θ∗||θ), µ2(θ∗||θ), and U(θ) using a multivariate Taylor expansion around
θ∗. Applying assumptions B4 and B5 shows

En[U(θ)] ≤ C1(σ2 + σ2
n),

En[µ2(θ∗||θ)] ≤ C2(σ2 + σ2
n), (S2.16)

En[D(θ∗||θ)] ≤ Cu(σ2 + σ2
n), (S2.17)

En[D(θ∗||θ)] ≥ C`(σ2 + σ2
n). (S2.18)
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Markov’s inequality shows that U(θ) is Op(1). We will use Chebychev’s inequality to show En [
∑n
i=1 `i(θ, θ

∗)] is

Op(1). Given ε > 0, choose δ =
[
C2c0/(εC`)

2
]1/2

. Using (S2.16)-(S2.18) and noting that −E(n)
θ∗ {Ln(θ, θ∗)} =

nD(θ∗||θ), we have

P(n)
θ∗

{
En[Ln(θ, θ∗)] ≤ −Cu(1 + δ)n(σ2 + σ2

n)
}
≤ P(n)

θ∗ {En[Ln(θ, θ∗)] ≤ −(1 + δ)nEn[D(θ∗||θ)]}

≤ P(n)
θ∗

{
1√
n
En[Ln(θ, θ∗)− E(n)

θ∗ {Ln(θ∗, θ)}] ≤ −δ
√
nEn[D(θ∗||θ)]

}
≤

Var
(n)
θ∗ (En[`1(θ, θ∗)])

δ2n (En[D(θ∗||θ)])2
≤ En[µ2(θ∗||θ∗)]
δ2n (En[D(θ∗||θ)])2

≤ C2(σ2 + σ2
n)

δ2nC`(σ2 + σ2
n)2
≤ C2

δ2nC2
` (σ2 + σ2

n)
≤ C2

δ2nC2
` σ

2
n

.

Applying assumption B2 we have c
−1/2
0 n−1/2 ≤ σn ≤ n−1/2. This gives

P(n)
θ∗

{∫
Ln(θ, θ∗)qn(θ)dθ ≤ −2Cu(1 + (C2c0/(εC

2
` ))1/2)

}
≤ P(n)

θ∗

{∫
Ln(θ, θ∗)qn(θ)dθ ≤ −Cu(1 + δ)n(σ2 + σ2

n)

}
≤ ε.

Thus En[Ln(θ, θ∗)] is Op(1). This completes the proof.

S2.6 Proof of Theorem 4.2

In this section, we present the detailed proof of the Bayesian risk bound for α-variational inference in the case
of the GP-IVI model. We also present a proof of the corollary for the Hellinger risk bound. The main theorem
and the lemmas are restated here for convenience. Our risk bound is based of the following theorem,

Theorem S2.1 (Yang et al. (2020)). For any ζ ∈ (0, 1), it holds with P(n)
θ∗ -probability at least (1 − ζ) that for

any probability measure q ∈ Q with q � pθ,∫
1

n
Dα[p

(n)
θ ||p

(n)
θ∗ ]q̂(θ)dθ ≤ αΨ(q) + log(1/ζ)

n(1− α)
.

The GP-IVI risk bound is stated as follows.

Theorem 4.2. Assume q̂µ,σ satisfies (14) and q̂µ,σ � pθ. It holds with P(n)
θ∗ -probability at least 1 − 2/

[(D − 1)2(1 + n−2)nε2] that,∫
1

n
D(n)
α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Dα

1− α
ε2 +

1

n(1− α)
log
{
Pθ [Bn(θ∗, ε)]

−1
}

+O(n−1).

The desired risk bound follows from bounding the right hand side of Theorem 3.2 of Yang et al. (2020)

α

n(1− α)
Ψ(qµ,σ) :=

α

n(1− α)

[∫
qµ,σ(θ) log

p(Y (n) | θ∗)
p(Y (n) | θ)

dθ +
1

α
D(qµ,σ||pθ)

]
in high P(n)

θ∗ -probability in terms of the local Bayesian complexity logPθ(Bn(θ∗, ε)). By choosing a particular
member of the variational family we can bound both the likelihood ratio integral as well as the KL divergence
between the prior and the variational approximation. The relation between the variational distribution and the
local Bayesian complexity come from the KL divergence term.

Proof. We will construct a special choice of µ as follows. Denote pθ(θ) = f0(θ). Let Bn(θ∗, ε) be as in (12).
Define the truncated densities

f̃0(t) =
f0(t)IBn(θ∗,ε)(t)∫
Bn(θ∗,ε)

f0(u)du
=
f0(t)IBn(θ∗,ε)(t)

Pθ(Bn(θ∗, ε))
, f̃β(t) =

fβ(t)IBn(θ∗,ε)(t)∫
Bn(θ∗,ε)

fβ(u)du
,
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where fβ is constructed by procedure (6) such that ‖φσ∗fβ−f0‖∞ = O(σβ) along with its associated distribution
functions

F̃0(t) =

∫
(−∞,t]∩Bn(θ∗,ε)

f̃0(t)dt, F̃β(t) =

∫
(−∞,t]∩Bn(θ∗,ε)

f̃β(t)dt.

Define the quantile function of F̃β as µ̃(t) = F̃−1β (t). This can be used to define the variational density

qf̃β ,σ(θ) =

∫
[0,1]

φσ(θ − µ̃(η))dη =

∫ ∞
−∞

φσ(θ − t)f̃β(t)dt = φσ ∗ f̃β(θ),

with σ > 0 a bandwidth that will be specified later in the proof. The main tool for the proof will be from
Proposition 2.1

qf̃β ,σ(θ) = φσ ∗ f̃β(θ) ≤ f̃0(θ)(1 +D(θ)O(σβ)). (S2.19)

Denote MD = supBn(θ∗,ε)D(θ) and Kβ(σ) = 1 +MDO(σβ). We will now bound the model-fit term. Denote the
random variable

H(Y (n), f̃β , σ) =

∫
qf̃β ,σ(θ) log[p(Y (n) | θ∗)/p(Y (n) | θ)]dθ.

The mean and variance (with respect to the data generating distribution) of the model-fit term are bounded by
applying (S2.19),

E(n)
θ∗ [H(Y (n), f̃β , σ)] =

∫
D[p(Y (n) | θ∗)||p(Y (n) | θ)]qf̃β ,σ(θ)dθ

≤
∫
D[p(Y (n) | θ∗)||p(Y (n) | θ)]f̃0(θ)(1 +D(θ)O(σβ))dθ

≤ Kβ(σ)

∫
B(θ∗,ε)

D[p(Y (n) | θ∗)||p(Y (n) | θ)] f0(θ)

Pθ[Bn(θ∗, ε)]
dθ

≤ Kβ(σ)nε2,

and

Var
(n)
θ∗ [H(Y (n), µ̃, σ)] ≤

∫
V [p(Y (n) | θ∗)||p(Y (n) | θ)]qf̃β ,σ(θ)dθ

≤
∫
V [p(Y (n) | θ∗)||p(Y (n) | θ)]f̃0(θ)(1 +D(θ)O(σβ))dθ

≤ Kβ(σ)

∫
B(θ∗,ε)

V [p(Y (n) | θ∗)||p(Y (n) | θ)] f0(θ)

Pθ[Bn(θ∗, ε)]
dθ

≤ Kβ(σ)nε2.

It follows from Chebyshev’s inequality that with P(n)
θ∗ -probability at least 1− 1/[(D − 1)2Kβ(σ)nε2]∫

qf̃β ,σ(θ) log

[
p(Y (n) | θ∗)
p(Y (n) | θ)

]
dθ ≤ DKβ(σ)nε2.

Next we will bound the regularization in terms of the local Bayesian complexity. Using (S2.19) we can bound
the KL divergence,

D[qf̃β ,σ||pθ] =

∫
qf̃β ,σ(θ) log

[
qf̃β ,σ(θ)

f0(θ)

]
dθ ≤

∫
log

[
f̃0(θ)(1 +O(D(θ)σβ))

f0(θ)

]
f̃0(θ)(1 +O(D(θ)σβ))dθ.
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Expanding f̃0(θ) and making use of the convention IBn(θ∗,ε)(θ) log(IBn(θ∗,ε)(θ)) = 0 for θ /∈ Bn(θ∗, ε) we have

∫
log

[
f0(θ)IBn(θ∗,ε)(1 +O(D(θ)σβ))

f0(θ)Pθ[Bn(θ∗, ε)]

]
f0(θ)IBn(θ∗,ε)

Pθ[Bn(θ∗, ε)]
(1 +O(D(θ)σβ))dθ

=

∫
Bn(θ∗,ε)

log

[
(1 +O(D(θ)σβ))

Pθ[Bn(θ∗, ε)]

]
f0(θ)

Pθ[Bn(θ∗, ε)]
(1 +O(D(θ)σβ))dθ

≤ Kβ(σ) log

[
Kβ(σ)

Pθ(Bn(θ∗, ε))

] ∫
Bn(θ∗,ε)

f0(θ)

Pθ[Bn(θ∗, ε)]
dθ

= Kβ(σ) log

[
Kβ(σ)

Pθ(Bn(θ∗, ε))

]
.

Combining the bounds from both parts, we have with probability at least 1− 1/[(D − 1)2Kβ(σ)nε2] that

Ψ(qf̃β ,σ) ≤ DKβ(σ)nε2 + α−1Kβ(σ) logKβ(σ) + α−1Kβ(σ) log
{
Pθ[Bn(θ∗, ε)]−1

}
.

Choosing ζ = 1/[(D− 1)2Kβ(σ)nε2]. It follows from the union bound for probabilities, we have with probability
at least 1− 2/[(D − 1)2Kβ(σ)nε2] that∫

1

n
D(n)
α (θ, θ∗)q̂µ,σ(θ)dθ ≤

αDKβ(σ)nε2 +Kβ(σ) logKβ(σ) +Kβ(σ) log
{
Pθ[Bn(θ∗, ε)]−1

}
+ log((D − 1)2Kβ(σ)nε2)

n(1− α)

≤ Kβ(σ)

(
Dα

1− α
ε2 +

1

n(1− α)
log
{
Pθ[Bn(θ∗, ε)]−1

}
+O(n−1)

)
.

Recall that Kβ(σ) = 1 +O(σβ). Choosing σ = n−2/β gives∫
1

n
D(n)
α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Kβ(σ)

(
Dα

1− α
ε2 +

1

n(1− α)
log
{
Pθ[Bn(θ∗, ε)]−1

}
+O(n−1)

)
≤ Dα

1− α
ε2 +

1

n(1− α)
log
{
Pθ[Bn(θ∗, ε)]−1

}
+O(n−1) +O(n−2).

Corollary 4.1. Suppose the prior density pθ satisfies Assumption A1 and q̂ satisfies (14). It holds with
probability tending to one as n→∞ that,{∫

h2(p(· | θ), p(· | θ∗))q̂µ,σ(θ)dθ

}1/2

≤ O(n−1),

demonstrating that the risk bound is parametric even when a flexible class of variational approximation is used.

Proof. For IID data n−1D
(n)
α (θ, θ∗) = Dα[pθ||pθ∗ ]. Applying Theorem 4.2 with ε = n−1 and Assumption A1

yields, ∫
1

n
D(n)
α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Dα

1− α
ε2 +

1

n(1− α)
log
{
Pθ[Bn(θ∗, ε)]−1

}
+O(n−1)

≤ Dα− 1

n2(1− α)
+O(n−1) = O(n−2) +O(n−1).

Combining the above with the fact that max{1, (1− α)−1α}h2(p, q) ≤ Dα[p||q] competes the proof.



Plummer, Zhou, Bhattacharya, Dunson, Pati

S3 Auxiliary results

In this section, we summarize results used in the proofs of main theorems in the main document. First to
guarantee that the model (2) leads to the optimal rate of convergence, we start from deriving sharp bounds for
the Hellinger distance between fµ1,σ1

and fµ2,σ2
for µ1, µ2 ∈ C[0, 1] and σ1, σ2 > 0. We summarize the result in

the following Lemma S3.1.

Lemma S3.1. For µ1, µ2 ∈ C[0, 1] and σ1, σ2 > 0,

h2(fµ1,σ1
, fµ2,σ2

) ≤ 1−

√
2σ1σ2
σ2
1 + σ2

2

exp

{
−
‖µ1 − µ2‖2∞
4(σ2

1 + σ2
2)

}
. (S3.1)

Proof. Note that by Hölder’s inequality,

fµ1,σ1(y)fµ2,σ2(y) ≥
{∫ 1

0

√
φσ1(y − µ1(x))

√
φσ2(y − µ2(x))dx

}2

.

Hence,

h2(fµ1,σ1
, fµ2,σ2

) ≤
∫ [ ∫ 1

0

φσ1
(y − µ1(x))dx+

∫ 1

0

φσ2
(y − µ2(x))dx

− 2

∫ 1

0

√
φσ1(y − µ1(x))

√
φσ2(y − µ2(x))dx

]
dy.

By changing the order of integration (applying Fubini’s theorem since the function within the integral is jointly
integrable) we get

h2(fµ1,σ1
, fµ2,σ2

) ≤
∫ 1

0

h2(fµ1(x),σ1
, fµ2(x),σ2

)dx

=

∫ 1

0

[
1−

√
2σ1σ2
σ2
1 + σ2

2

exp

{
− (µ1(x)− µ2(x))2

4(σ2
1 + σ2

2)

}]
dx

≤ 1−

√
2σ1σ2
σ2
1 + σ2

2

exp

{
−
‖µ1 − µ2‖2∞
4(σ2

1 + σ2
2)

}
.

Remark S3.2. When σ1 = σ2 = σ, h2(fµ1,σ, fµ2,σ) ≤ 1 − exp
{
‖µ1 − µ2‖2∞ /8σ2

}
, which implies that

h2(fµ1,σ, fµ2,σ) - ‖µ1 − µ2‖2∞ /σ2.

Remark S3.3. The standard inequality h2(fµ1,σ1
, fµ2,σ2

) ≤ ‖fµ1,σ1
− fµ2,σ2

‖1 relating the Hellinger distance to
the total variation distance leads to the cruder bound

h2(fµ1,σ1 , fµ2,σ2) ≤ C1
‖µ1 − µ2‖∞

(σ1 ∧ σ2)
+ C2

|σ2 − σ1|
(σ1 ∧ σ2)

,

which is linear in ‖µ1 − µ2‖∞. This bound is less sharp than what is obtained in Lemma S3.1 and does not
suffice for obtaining the optimal rate of convergence.

In order to apply Lemma 8 in Ghosal & van der Vaart (2007) to control the Kullback–Leibler divergence between
the true density f0 and the model fµ,σ, we derive an upper bound for log ‖f0/fµ,σ‖∞ in Lemma S3.4.

Lemma S3.4. If f0 satisfies Assumption F2,

log

∥∥∥∥ f0
fµ,σ

∥∥∥∥
∞
≤ C +

‖µ− µ0‖2∞
σ2

(S3.2)

for some constant C > 0.
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Proof. Note that

fµ,σ(y) =
1√
2πσ

∫ 1

0

exp

{
− (y − µ(x))2

2σ2

}
dx

≥ 1√
2πσ

∫ 1

0

exp

{
− (y − µ0(x))2

σ2

}
dx exp

{
−
‖µ− µ0‖2∞

σ2

}
≥ Cφσ/√2 ∗ f0(y) exp

{
−
‖µ− µ0‖2∞

σ2

}
≥ Cf0(y) exp

{
−
‖µ− µ0‖2∞

σ2

}
,

where the last inequality follows from Lemma 6 of Ghosal & van der Vaart (2007) since f0 is compactly supported
by Assumption F2. This provides the desired inequality.

Lemma S3.5. Let j ≥ 0 be the integer such that β ∈ (2j, 2j + 2], and the sequence of fj is constructed by the

procedure in (6). Then we have fβ =
∑j
i=0(−1)i

(
j+1
i+1

)
φ
(i)
σ ∗ f0, where φ

(i)
σ ∗ f0 = φσ ∗ · · · ∗ φσ ∗ f0, the i-fold

convolution of φσ with f0.

Proof. Consider fj constructed by (6). When j = 1, f1 = 2f0−φσ ∗f0, so the form holds. By induction, suppose
this form holds for j > 1, then

fj+1 = f0 − (φσ ∗ fj − fj)

= f0 +

j∑
i=0

(−1)i+1

(
j + 1

i+ 1

)
φ(i+1)
σ ∗ f0 +

j∑
i=0

(−1)i
(
j + 1

i+ 1

)
φ(i)σ ∗ f0

= (j + 2)f0 +

j+1∑
i=1

(−1)i
(
j + 1

i+ 1

)
φ(i)σ ∗ f0 +

j∑
i=1

(−1)i
(
j + 1

i

)
φ(i)σ ∗ f0

= (j + 2)f0 +

j∑
i=1

(−1)i
((

j + 1

i+ 1

)
+

(
j + 1

i

))
φ(i)σ ∗ f0 + (−1)j+1φ(i+1)

σ ∗ f0

= (j + 2)f0 +

j∑
i=1

(−1)i
(
j + 2

i+ 1

)
φ(i)σ ∗ f0 + (−1)j+1φ(i+1)

σ ∗ f0

=

j+1∑
i=0

(−1)i
(
j + 2

i+ 1

)
φ(i)σ ∗ f0.

It holds for j + 1, which completes the proof.

Lemma S3.6. Let f0 satisfy Assumptions F1 and F2. With Aσ = {x : f0(x) ≥ σH}, we have∫
Acσ

f0(x)dx = O(σ2β),

∫
Acσ

φσ ∗ fj(x)dx = O(σ2β), (S3.3)

for all non-negative integer j, sufficiently small σ and sufficiently large H.

Proof. Under Assumption F2 there exists (a, b) ⊂ [0, 1] such that Acσ ⊂ [0, a) ∪ (b, 1] if we choose σ sufficiently
small, so that f0(x) ≤ σH for x ∈ Acσ. Therefore,

∫
Acσ
f0(x) ≤ σH ≤ O(σ2β) if we choose H ≥ 2β. Using

Proposition 2.1, ∫
Acσ

φσ ∗ fj(x)dx =

∫
Acσ

f0(x){1 +O(D(x)σβ)} ≤ O(σH).

With bounded D(x) and H ≥ 2β it is easy to bound the second integral in (S3.3) by O(σ2β).
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Lemma S3.7. Suppose f0 satisfies Assumptions F1 and F2. For β > 2 and the integer j such that β ∈
(2j, 2j + 2], fβ is a density function.

Proof. To show fβ is a density function, it suffices to show fβ is non-negative, since a simple calculation shows
that

∫
fβ = 1 for j ≥ 0. Following the proof of Lemma 2 in Kruijer et al. (2010), we treat log f0 as a function in

C2[0, 1] and obtain the same form of φσ ∗ f0 as in (S2.1). For small enough σ we can find ρ1 ∈ (0, 1) very close
to 0 such that

φσ ∗ f0(x) = f0(x)(1 +O(D(2)(x)σ2)) < f0(x)(1 + ρ1),

where D(2) contains |l1(x)| and |l2(x)| to certain power, so D(2) is bounded. Then we have

f1(x) = 2f0(x)−Kσf0(x) > 2f0(x)− f0(x)(1 + ρ1) = f0(x)(1− ρ1).

Then we treat log f0 as a function with β = 4, j = 1. Similarly, we can get

φσ ∗ f1(x) = f0(x)(1 +O(D(4)(x)σ4)),

where D(4) contains |l1(x)|, . . . , |l4(x)|. We can find 0 < ρ2 < ρ1 such that φσ ∗ f1(x) < f0(x)(1 + ρ2), then can
get

f2(x) = f0(x)− (φσ ∗ f1(x)− f1(x)) > f0(x)(1− ρ1 − ρ2) > f0(x)(1− 2ρ1).

Continuing this procedure, we can get fj(x) > f0(x)(1− jρ1) with sufficiently small σ and 1− jρ1 ∈ (0, 1) and
it is close to 1. Then we show fj is non-negative.

Lemma S3.8. Let f0 satisfy Assumptions F1 and F2 and let j be the integer such that β ∈ (2j, 2j + 2]. Then
we show that the density fβ obtained by (6) satisfies∫

f0(x) log
f0(x)

φσ ∗ fβ(x)
= O(σ2β), (S3.4)

for sufficiently small σ and all x ∈ [0, 1].

Proof. Again consider the set Aσ = {x : f0(x) ≥ σH} with arbitrarily large H. We separate the Kullback–Leibler
divergence into∫

[0,1]

f0 log
f0

φσ ∗ fβ
=

∫
[0,1]∩Aσ

f0 log
f0

φσ ∗ fβ
+

∫
[0,1]∩Acσ

f0 log
f0

φσ ∗ fβ

≤
∫
Aσ

(f0 − φσ ∗ fβ)2

φσ ∗ fβ
+

∫
Acσ

(φσ ∗ fβ − f0) +

∫
Acσ

f0 log
f0

φσ ∗ fβ
. (S3.5)

Under Assumption F2 and by Remark 3 in Ghosal et al. (1999), for small enough σ there exists a constant C
such that φσ ∗ f0 ≥ Cf0 for all x ∈ [0, 1]. Especially, f0 satisfies φσ ∗ f0 ≥ f0/3 for x ∈ Acσ. Also in the proof of
Lemma S3.7 we can find ρ ∈ (0, 1) such that fβ > ρf0. Then, on set Aσ with sufficiently small σ, we have

φσ ∗ fj ≥ ρφσ ∗ f0 ≥ Kf0,

where K = min{ρ/3, ρC}. Applying (S2.1), the first integral on the r.h.s. of (S3.5) can be bounded by∫
Aσ

(f0 − φσ ∗ fj)2

φσ ∗ fj
≤
∫
Aσ

[f0(x)− f0(x)(1 +O(D(x)σβ))]2

Kf0(x)

-
∫
Aσ

f0(x)O(D2(x)σ2β) = O(σ2β).

To bound the second integral of r.h.s in (S3.5), according to Remark 3 in Ghosal et al. (1999) we get φσ ∗ fj ≥
ρf0/3, then we can find a constant C < 1 such that φσ ∗ fj ≥ Cf0. The second and third term in (S3.5) can be
bounded by O(σ2β) based on Lemma S3.6.
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Lemma S3.9. Let Ha1 denote the unit ball of RKHS of the Gaussian process with rescaled parameter a and B1

be the unit ball of C[0, 1]. For r > 1, there exists a constant K, such that for ε < 1/2,

logN(ε,∪a∈[0,r]Ha1 , ‖·‖∞) ≤ Kr
(

log
1

ε

)2

. (S3.6)

Proof. Since we can write any element of Ha1 as a function of Re(z) by Lemma 4.5 in van der Vaart & van
Zanten (2009), and an ε-net denoted by Fa over Ha1 is constructed through a finite set of piece-wise polynomial
functions, and according to Lemma 4.4 and Lemma 4.5 in Bhattacharya et al. (2014), Fa also forms an ε-net
over Hb1 as long as a is sufficiently close to b. Thus we can find one set Γ = {ai, i = 1, . . . , k} with k = brc + 1
and ak = r, such that for any b ∈ [0, r] there exists some ai satisfying |b − ai| ≤ 1, so that ∪i≤kFai forms an
ε-net over ∪a≤rHa1 . Since the covering number of ∪i≤kFai is bounded by summation of covering number of Fai ,
we obtain

logN
(
ε,∪a∈[0,r]Ha1 , ‖ · ‖∞

)
≤ log

( k∑
i=1

#(Fai)
)
≤ log(k ·#(Fr)) ≤ Kr

(
log

1

ε

)2

.

Here we write #(A) to denote the cardinality of any arbitrary set A. To prove the second inequality above,
note that the piece-wise polynomials are constructed on the partition over [0, 1], denoted by ∪i≤mBi, where
Bi’s are disjoint interval with length R that can be considered as a non-increasing function of a, so the total
number of polynomials is non-decreasing in a. Also we find that when building the mesh grid of the coefficients
of polynomials in each Bi, both the approximation error and tail estimate are invariant to interval length R,
therefore we have #(Fa) ≤ #(Fb) if a ≤ b, for a, b ∈ [0, r].

Remark S3.10. With larger a we need a finer partition on [0, 1] while the grid of coefficients of piece-wise
polynomial remains the same except the range and the meshwidth will change together along with a. Since we
can see the element h of RKHS ball as a function of it and with Cauchy formula we can bound the derivatives
of h by C/Rn, where |h|2 ≤ C2.

S4 GP-IVI Algorithm

In this section we outline an algorithm to train GP-IVI based on the Karhunen–Loéve representation of a
Gaussian process; details on the Karhunen–Loéve representation of a stochastic process can be found in either
Jin (2014) or Le Mâıtre & Knio (2010).

S4.1 Karhunen–Loéve representation of a Gaussian process

For a mean zero Guassian process X(t), 0 ≤ t ≤ 1, with covariance function

K(s, t) = E[X(t)X(s)], for 0 ≤ s, t ≤ 1.

The Karhunen–Loéve expansion is given by

X(t) =

∞∑
k=1

√
λkek(t)ξk,

where {(λk, ek)} are the eigenvalue eigenfunction pairs to the Fredholm integral equation

λkek(t) =

∫ 1

0

K(s, t)ek(s)ds, for 0 ≤ t ≤ 1,

and ξk are IIDN(0, 1) random variables. For computational purposes, we need work with the finite approximation

XN (t) =

N∑
k=1

√
λkξkek(t).
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S4.2 Algorithm

Recall the GP-IVI family consists of distributions of the form,

QGP =

{
qµ,σ(θ) =

∫ 1

0

φσ(θ − µ(η))dη | µ ∈ C[0, 1], σ > 0

}
.

Substituting in the truncated Karhunen–Loéve expansion in place of µ(η) we can equivalently define qµ,σ(θ) =
Eη[N(θ;µ(η), σ2)] using the reparameterization trick

θ =

N∑
k=1

√
λkξkek(η) + σε (S4.1)

qµ,σ(θ) = Eη

exp

− 1

2σ2

(
θ −

N∑
k=1

√
λkξkek(η)

)2

 , (S4.2)

where ξk
iid∼ N(0, 1) for 1 ≤ k ≤ N , ε ∼ N(0, 1), and η ∼ U(0, 1). This allows us to define the joint ELBO in

(σ, ξ1, . . . , ξN ),

ELBO(σ, ξ1, . . . , ξN ) = Eqµ,σ(θ)[log p(θ, Y (n))− log qµ,σ(θ)] (S4.3)

and its gradient

∇σ,ξ1,...,ξNELBO(σ, ξ1, . . . , ξN ).

At this point we can compute the ELBO and its gradient using Monte Carlo techniques and maximize the ELBO
using a gradient-based optimization technique.
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Le Mâıtre, O., & Knio, O. (2010). Spectral methods for uncertainty quantification: with applications to compu-
tational fluid dynamics. Springer Science & Business Media.

Rasmussen, C. (2003). Gaussian processes in machine learning. In Summer school on machine learning (pp.
63–71).

van der Vaart, A., & van Zanten, J. (2008). Reproducing kernel Hilbert spaces of Gaussian priors. IMS
Collections, 3 , 200–222.

van der Vaart, A., & van Zanten, J. (2009). Adaptive Bayesian estimation using a gaussian random field with
inverse gamma bandwidth. The Annals of Statistics, 37 (5B), 2655–2675.

Yang, Y., Pati, D., & Bhattacharya, A. (2020). α-Variational inference with statistical guarantees. The Annals
of Statistics, 48 (2), 886–905.


