Supplementary Document to “Statistical Guarantees for
Transformation Based Models with Applications to Implicit
Variational Inference”

L Shuang Zhou?* Anirban Bhattacharya' David Dunson? Debdeep Pati'

!Texas A&M University 2Arizona State University 2Duke University

Sean Plummer

S1 A brief introduction to nonparametric Bayes

S1.1 Posterior contraction in nonparametic setting

We first give a brief review of the contraction rate of a posterior distribution under a general nonparametric
regression setting. Given independently and identically distributed samples Y™ generated from the true density
fo, a regular nonparametric model considers Y; | f S f(+) for some unknown density f € F, where F denotes
a suitable class of the density functions that are absolutely continuous with respect to the Lebesgue measure.
Assigning a nonparametric prior II(-) over the set F and multiplying it with the likelihood denoted by P(Y (™ | f)

produces the posterior distribution IT,,(- | Y(™)) defined as

Jp PY™ | £)dII(f)
JP( Y<" | F)dII(f)

IL,(fe B|Y™) =

for any set B C F. As the posterior distribution is a random measure conditioning on the given data, we are
interested in studying frequentist properties of such posterior distribution such as the consistency and convergence
rate to the true data generating function fy. In particular, the convergence rate characterizes how fast a posterior
distribution concentrates on the true density fy as n increases, measured by the decreasing rate of the radius
of a neighborhood centered at the true fy that received posterior probability converging to 1. We define the
posterior distribution contracts at a rate €, to the true function fy with respect to certain metric d(-,-) almost
surely under the true probability measure denoted by Ey,, if

Efo{H( f7f0)>M€n|Y(n )}_>O as mn — 09,

for some sufficiently large integer M > 0. Ghosal et al. (2000) derived a general approach to obtain the optimal
rate (up to a logarithmic factor) by verifying sufficient conditions regarding the prior measure and the considered
density space F. We now restate Theorem 2.1 of Ghosal et al. (2000).

Theorem S1. If there exist sequences &,,¢, — 0 with nmin{éZ,¢2} — oo such that there exist constants
C1,C5,C3,C4 > 0 and a sequence of sieve F,, C F so that,

(Entropy condition) log N (&,, Fp,d) < C1né2, (S1.1)
(Sieve condition) II(F;) < Cs exp{—nE2 (Ca+4)}, (S1.2)
(Prior thickness condition) < /fo log 2 < & /fo log <f0> <€ ) > Cyexp{—Cyne2}. (S1.3)

then we have
E¢ {11, (d(f, fo) > Mey, | Y("))} —0, as. as n— oo,

for some sufficiently large constant M > 0.
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S1.2 Gaussian process and its reproducing kernel Hilbert space

We first review the definition of Gaussian process. A Gaussian process defined on a probability space (2,U, P)
is a collection of random variables {X(t),t € T} indexed by some arbitrary set T such that each finite
dimensional subset of random variables has a joint multivariate normal distribution with mean function
wu(t) = E(X(t)) and convaraince kernel function K(s,t) = Cov(X(s), X(t)). For some univaraite function
f R — R, we endow it with a Gaussian process prior denoted by f ~ GP(u(-), K(-,-)) with u(z) = E(f(z))
and K (z,2') = Cov(f(z), f(2')) for any =, 2’ € R. The mean function reflects the expected center of realizations
and the covariance kernel function controls the smoothness of the realizations and correlations of the realization
across covariates. Refer to Rasmussen (2003) for a detailed introduction to Gaussian processes.

We now briefly recall the definition of the reproducing kernel Hilbert space of a Gaussian process prior; a
detailed review can be found in van der Vaart & van Zanten (2008). A Borel measurable random element W
with values in a separable Banach space (B, ||-||) (e.g., C[0,1]) is called Gaussian if the random variable b*W
is normally distributed for any element b* € B*, the dual space of B. The reproducing kernel Hilbert space
(RKHS) H attached to a zero-mean Gaussian process W is defined as the completion of the linear space of
functions ¢t — EW (t)H relative to the inner product

<EW()H1, EW()H2>H = EHlHQ,

where H, Hy and Hy are finite linear combinations of the form >, a;W (s;) with a; € R and s; in the index set
of W.

Let W = (W, : t € R) be a Gaussian process with squared exponential covariance kernel. The spectral measure
m,, of W is absolutely continuous with respect to the Lebesgue measure A on R with the Radon-Nikodym
derivative given by

dm 1 2
w _ —x%/4
o )= g

Define a scaled Gaussian process W = (W, : t € [0,1]), viewed as a map in C[0,1]. Let H* denote the RKHS
of W, with the corresponding norm ||-||y.. The unit ball in the RKHS is denoted H{.

S2 Proofs of results in the main document

S2.1 Conventions

Equations in the main document are cited as (1), (2) etc., retaining their numbers, while new equations defined
in this document are numbered (S1), (S2) etc. In this section we collect the proof of Proposition 2.1, Theorems
3.1,3.2, 4.1 and 4.2.

S2.2 Proof of Proposition 2.1
In this section we prove the results in Proposition 2.1.

Proposition 2.1 For f, € C?[0,1] with B € (24,2j + 2] satisfying Assumptions F1 and F2, for fz defined as
from the iterative procedure (6) we have

I¢a * f5 = folloc = O(a”),

and
¢o * f3(z) = fo(x)(1+ D(x)O(a")), (52.1)

where

- s
D(x) = Zci‘lj(x” bt Gt
i=1
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for non-negative constants ¢;,i = 1,...,r + 1, and for any z € [0, 1].

Proof.  We now show equation (S2.1). Following the proof of Lemma 1 in Kruijer et al. (2010), for any
z,y € [0, 1],

g fuly) < log fo(o) + Y Uy )+ Lly s
=1 .

log fo(y) > log fo(z) + ZT: ljf) (y— ) — Lly — |’
=1
Define
B}Lo,r(xvy) = T ljj‘;b) (y - 1.)] + L|y - x|ﬁa
=1 !
Bl o) = 3 20y 0y ply P
=1

Then we have

u 1
erO’T <1+ B?oﬂ‘ + E(B}LO,T)Q +oet MlB}LO,TV-H’
1

ePior > 14 BL  + o

(B;OJ“)Q +oe = M‘B§”07T|r+l'

where

>y

j=1

+ly-al)}.

Note that fy is bounded on [0, 1], we consider the convolution on the whole real line by extending fy analytically
outside [0, 1]. For 8 € (1,2],7 =1 and = € (0,1),

exp sup
(T + 1)' { z,y€[0,1],x72y (

b0+ folx) < folz) / ePlor @) g, (y — 2)dy

< fo(I)/R%(y — o)1+ Lly — 2’ + M{}(z)(y — 2)* + 2LL(2)(y — x)|y — 2|’ + L?|y — x[*}]dy.
(S2.2)

Since 1 (x)’s are all continuous on [0, 1], there exist finite constants M; such that |I;| < M; and |y — x| < 1. The
integral in the last inequality in (S2.2) can be bounded by

/Rcbo(y*fv)[l+L|y*1?|ﬁ+M{M127ﬁ|11(1’)(y*x)|ﬁ+(L2+2M1)|y*l“|ﬁ}}dy

Therefore,
0o * fo(x) < fo(x){1 + (1|l ()" +ra)0”},

where r; = MMlziﬁB/J,/ﬁ, re = L(1+ ML+ 2MM)pj, and pjy = E{|y — x|},
In the other direction,

b0 * folz) > fo(x)/cég(y —2)[{1 - Lly — 2|® — M{3(z)(y — 2)? — 2Ll (2)(y — @)y — 2| + L2y — 2|**}]dy.

Thus we achieve expression of ¢, * fz in Proposition 2.1.
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For any 8 > 2 and the integer j such that 5 € (24,27 + 2]. We define ¢(*) % f as the i-folded convolution of ¢

with f for any integer ¢ > 1. First we calculate ¢, x fo(z), ¢((,2) x fo(z), ..., ((,j) * fo(z), and by Lemma S3.5
we get ¢, * fj(x). The calculation of ¢((,Z) * fo(x) is the same as that of ¢, * fo(x) except taking the convolution
with ¢ 5. The terms 02, 0%, ..., 0% caused by the factors containing |y — z|¥ for k < 8 in gzb((f) x fo can be

canceled out by Lemma S3.5. For terms containing |y — z|* for k > 3, we take out |y — z|® and bound the rest
by a certain power of |/;(x)| or some constant. Following an induction in Kruijer et al. (2010), we can guarantee
the approximation error of ¢, * f5 is at the order of O(c?). O

S2.3 Proof of Theorem 3.1

Theorem 3.1. If II,, has full sup-norm support on C[0,1] and II, has full support on [0,00), then the L;
support of the induced prior IT on F contains all densities fy which have a finite first moment and are non-zero
almost everywhere on their support.

Proof. Let fy be a density with quantile function pg that satisfies the conditions of Theorem 3.1. Observe that
ol = j;lzo lo(t)| dt = [ |z| fo(z)dz < oo since fy has a finite first moment, and thus g € L1[0,1]. Fix
€ > 0. We want to show that II{B.(fo)} > 0, where B.(fo) ={f : ||f — foll; < €}

Note that py ¢ C[0,1], so that P(||x — poll,, < €) can be zero for small enough e. The main idea is to find a
continuous function fig close to pg in Ly norm and exploit the fact that the prior on p places positive mass to
arbitrary sup-norm neighborhoods of fig. The details are provided below.

Since [|¢o * fo — foll; = 0 as 0 — 0, find oy such that ||¢, * fo — fol; < €/2 for ¢ < oy. Pick any ¢ < 0. Since
C10,1] is dense in L;[0, 1], for any 6 > 0, we can find a continuous function fip such that ||uo — fio]|; < 6. Now,
| fu,o — frio.olly < Ol — fiol|, /o for a global constant C. Thus, for § = € 0¢/4,

{fu,a 109 <o <oy, ||,u - /70”00 < 5} - {fu,o : ”fO - fu,a”l < 6},
since [[fo — fu.oll; < |lfo = fuoolly + 1 fuoe = frowolly + 1 f7o.0 = fuolly and fug,o = éo * fo. Thus, II{Be(fo)} >

IL,(|p — foll o, < 0)Ils(00 < 0 < 1) > 0, since IT, has full sup-norm support and II, has full support on
[0, 00). O

S2.4 Proof of Theorem 3.2

In this section we will give a detailed proof for the adaptive posterior contraction rate result for the NL-LVM
models.

Theorem 3.2. If f, satisfies Assumptions F1 and F2 and the priors II, and II, are as in Assump-
tions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to Hellinger metric h
is

€n = n_%%(log n)t, (S2.3)

where t = 8(2V ¢)/(26 + 1) + 1.

Proof. Following Ghosal et al. (2000), to obtain the posterior convergence rate we need to find sequences €,, €, —
0 with nmin{e2,e2} — oo such that there exist constants C;,Cs, C3,Cy > 0 and sets F,, C F so that,

log N (&,, Fp,d) < Ciné2, (S2.4)
II(FS) < Cyexp{—ne2(Cy +4)}, (S2.5)
2
H(fu,g : /fo log ffo g%%, /fo log (ffo ) Sé) > C4exp{—anEfL}. (S2.6)
n,o .o

Then we can conclude that for €, = max{€,, ¢, } and sufficiently large M > 0, the posterior probability

IL,(fue : d(fue, fo) > Mey|Y1,...,Y,) — 0 as. Py,
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where Py, denotes the true probability measure whose the Radon-Nikodym density is fo. To proceed, we consider
the Gaussian process p ~ W4 given A, with A satisfying Assumption P1.

We will first verify (S2.6) along the lines of Ghosal & van der Vaart (2007). Recall fg is defined as from (6), by
Lemma 53.7 we guarantee that fg is a well-defined density. Denote by pg = Fy ! the quantile function of 15,
then we have f,,, » = ¢o * f3. Note that

h2(f07 f/L,lT) j hQ(an fug,a) + hQ(f/Lg,ay f,u,a)~ (827)
Under Assumptions F1 and F2 and by Lemma S3.8, one obtains

W2 (fo, fup,o) < /fo log <ff0 ) 3 0(*). (S2.8)

Hp,o

From Lemma S3.1 and the following remark, we obtain

i — sl
h2<f/1¢-j,o') fu,a) ~ T (82.9)
From Lemma 8 of Ghosal & van der Vaart (2007), one has
fo ' 2 Jfo '
folog 7 < h*(fo, fu.o)| 1+ log , (S2.10)
u,o B0 oo

fori=1,2.
From (S2.7)-(S2.10), for any b > 1 and €2 = 028,

2
28 /folog(f ) igi’@}
o

Since pg € CP*10, 1], from Section 5.1 of van der Vaart & van Zanten (2009),

{0 € [ow 200, 11— sl S o8+ C {/folo

L 1 2Vq
M= sl < 26,) > Caexp{ = Co(1/8,)7 g () p(Casan)re/iss,

for §,, — 0 and constants Cy, Cs, Cg > 0. Letting §,, = JE“, we obtain

1 1 \2Ve
Huum—uﬂnms%n)zexp{ 07( )log( ) }
Jn

for some constant C7 > 0. Since o ~ IG(a,, b, ), we have

bao 20,
HU(U S [O’n,20'n]) = F(; ) / x_(aa'f'l)e—bg/ldw

bg” 2on —2b,/
> F(ao')/a' e dx

ao

> ﬁon exp{—b,/on}

> exp{ng/on},

for some constant Cs > 0. Hence

1 1 2Vq
{o € [0y, 20,], || — psll o 2 oty > exp{ — C7<0> log <5+1) }CXP{CS/Un}
n g

n

1 1\
n On



Statistical Guarantees for Transformation Based Models

Then (S2.6) will be satisfied with €, = n=%/(#+1 Jog" (n), where t; = 3(2V q)/(28 + 1) and some Cg > 0. Next
we construct a sequence of subsets F, such that (S2.4) and (S2.5) are satisfied with €, = n=#/(26+110g" n and
€, for some global constant ¢t > 0.

Now we construct the sieves for F. Letting H{ denote the unit ball of RKHS of the Gaussian process with
rescaled parameter a and By denote the unit ball of C[0,1] and given positive sequences M,,, r,, define

B, =Uacr, (M HY) + 6,B1,
as in van der Vaart & van Zanten (2009), with 8, = &,l,,/K1, K1 = 2(2/m)"/? and let
Fn ={fuo:p € Bp,l, <o <h,}.

First we need to calculate N(&,, Fy, ||-||;). Observe that for oo > o1 > 02/2,

1/2
3 _
||fy.1,0'1 _fp,Q,a'ng S (7() H:ul 0“2”00 4 (02 0'1).

1 01

Taking k,, = min{€,/6,1} and o7 = 1,(1 + k,)™, m > 0, we obtain a partition of [l,, h,] as l,, = o} < o} <
<oy 1 <hp, <oy, with

h,, 1

One can show that 3(c?, — o™ _,)/om _ = 3k, < €,/2. Let {a,k=1,...,N(6,, Bn, |.)} be a d,-net of B,,.
Now consider the set

{(@R,om) k=1,...,N(6n, Bn, I o), 0 <m < my}. (S2.12)

n
m

Then for any f = f., € Fp, we can find (i}, o™ ) such that ||p — 4| < ,. In addition, if one has o €

(oh then

m—-10 m]

[ fuo = fuponll, < &

Hence the set in (S2.12) is an €,-net of F,, and its covering number is given by
N(gmBn’ Hlloo)
From the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for any M, r,, with r,, > 0, we obtain

_ M, \\ 2
log N (205, By, |||l o) < Kgrn<10g (;)) . (S2.13)

n

Again from the proof of Theorem 3.1 in van der Vaart & van Zanten (2009), for r, > 1 and for M2 >
16 K37, (log(1,,/6,))?, we have

K4T‘£67K5r" log? r,

P(W4 ¢ B,) < Kol + exp{—M2/8}, (S2.14)
for constants Ks, K4, K5 > 0.
Next we calculate P(o ¢ [l,, hy]). Observe that
P(o & [ln, ha]) =P(0™" < ') +P(o™" > 17)
= cha (byhy, bee [
< k;g ]i! * + F(‘;g) /l”1 e b2y
< emartog(hn) | 057 —boit2 (S2.15)

- I'(ao)
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Thus with h,, = O(exp{n/ 8+ (logn)**1}),1, = O(n~Y B+ (logn)=211),r, = O(n'/ 2+ (logn)?), M, =
O(n'/ 28+ (logn)t1+1), (S2.14) and (S2.15) implies

II(Fy;) = exp{—Kgnep},
for some constant K¢ > 0, which guarantees that (S2.5) is satisfied with &, = n=%/(26+1) (logn)"
Also with &, = n=#/2+1) (logn)1+1 it follows from (S2.11) and (S2.13) that
log N (€n, Fu, [|-Il,) < K7n'/ P71V (log n)*1+2,

for some constant K7 > 0. Hence max{e,,¢,} = n=#/f+D (logn)+1. O

S2.5 Proof of Theorem 4.1

In this section, we present the detailed proof of the high probability bound for KL divergence between the true
posterior and its a-VB approximation in the case of the GP-IVI.

Theorem 4.1. Under assumptions B1 through B5 it hold that m}(Q,) = mingeo, {Dlg|lp(- | Y ™)}
is bounded in probability with respect to the data generating distribution. Formally, given any € > 0, there

exists M., N. > 0 such that for n > N,, we have ng)(m;i(Qn) >M.)<e

The objective m(Q,) can be bounded above by Dlg|[p(Y™ | 6)] for any ¢ € Q,. Choosing ¢ as a
particular univariate Gaussian centered at the true parameter with variance satisfying our assumptions B1-B5

allows us to bound the KL divergence between the true posterior p(Y (™) | ) in high P(n)—probability.

Proof. Tt follows from the definition of m}(Q,,) that for any ¢ € Q,
m;,(Qn) < D(gllp(- | Y™)).

Choose i, to be the quantile function of the distribution N(6*,02). Define the variational distribution

0) = / 608 — pin () )

where o, satisfies assumption B2. By change of measure,

/%(9 — pin(u))du = /%(9 — )¢, (t — 0°)dt = N(0;60%,0° + 07).
Therefore g, (f) = N(0;0*,0% + 02) € Q,,. Denote by E,, the mean respect to ¢,. Expanding D(g,|[p(Y™ | 6)),

B, [log ~ - B0 | = Bullog ] + EAU6)] + o (Y ) ~ B, [£,(0.6°)],

where L, (0,6%) = >_i | £;(6,0%). Since the sum of Op(1) terms is Op(1), it suffices to show that each of the
terms in the above sum is O,(1). The first term E,[loggy,], the differential entropy of ¢y, is a constant and is
Op(1). A straight forward application of Markov’s inequality along with the fact that ng) [m(Y(™)] = 1 shows
that logm(Y (™) is O,(1).

Next, expand each of the functions D(6*||0), u2(0*]|0), and U(6) using a multivariate Taylor expansion around
0*. Applying assumptions B4 and B5 shows

E.[U(0)] < Ci(0” + 02),
En[u2(07]10)] < Ca(0® + 07), (S2.16)
E,[D(6*]10)] < Cu(0® + 03), (S2.17)
E,[D(0*]10)] > Ce(0® + 07,) (S2.18)



Statistical Guarantees for Transformation Based Models

Markov’s inequality shows that U(6) is O,(1). We will use Chebychev’s inequality to show E, [Z £;(6,0%)] is

Op(1). Given & > 0, choose § = [Caco/(eC)? ] & Using (S2.16)-(S2.18) and noting that — 9* {L (0,6%)} =
nD(6*]|9), we have

Py {En[Ln(0,07)] < —Cu(1+ 8)n(0® + 02)} < PG {Ep[Ln(0,6%)] < —(1 + 6)nE,[D(67]|60)]}
< B { B [£,(0,0%) - B (L0, 0)] <~V B D0 0]
_ Varg? (Ba[61(0,6")]) _  Enlpa(6716")
= 020 (E.[D(07]10))° ~ 62n (B, [D(6*]]6)))°
02(0'2 + 0.72L) < C2 < CQ
= 02nCy(0% +02)? — 62nCi(02 4+ 02) — §°nCio2’

Applying assumption B2 we have cgl/2n’1/2 < o, < n~Y2. This gives

P { / L (60,0%)¢n(0)d0 < —2C, (1 + (cgco/(gc*;))l/?)} <P { / Ln(0,0%)¢(0)d0 < —Cyu(1 + )n(o® + ai)} <e.
Thus E,[L,(6,6%)] is Op(1). This completes the proof. O

S2.6 Proof of Theorem 4.2

In this section, we present the detailed proof of the Bayesian risk bound for a-variational inference in the case
of the GP-IVI model. We also present a proof of the corollary for the Hellinger risk bound. The main theorem
and the lemmas are restated here for convenience. Our risk bound is based of the following theorem,

Theorem S2.1 (Yang et al. (2020)). For any ¢ € (0,1), it holds with Pé?)-probability at least (1 — ¢) that for
any probability measure q € Q with g < py,

a¥(q) +log(1/¢)

| Dl i at0)a < S

The GP-IVI risk bound is stated as follows.

Theorem 4.2. Assume g, , satisfies (14) and ¢, ., < pp. It holds with ]P"(gtf)—probability at least 1 — 2/
[(D —1)%(1 + n~2)ne?] that,

1 1
= n(n) ) A < 2 * -1 —1
[ 5P 0.08,00)i0 < {22 s tox {2 B,(07.2) '} + Ol ).

The desired risk bound follows from bounding the right hand side of Theorem 3.2 of Yang et al. (2020)

@ __« p(Y™16%) 1
m@(‘lu,a) = m [/ Qu,a(e) log Wd@ + O[D(qﬂ’g|p9)]

in high ]P’(Tf)—probability in terms of the local Bayesian complexity logPy (B, (6*,¢)). By choosing a particular
member of the variational family we can bound both the likelihood ratio integral as well as the KL divergence
between the prior and the variational approximation. The relation between the variational distribution and the
local Bayesian complexity come from the KL divergence term.

Proof. We will construct a special choice of p as follows. Denote pg(6) = fo(0). Let B,(0*,¢) be as in (12).
Define the truncated densities

= Jo()Ip, () fo() B, (6%,)(t)
fO(t)_an(e*,g)fO(U)d Py(Bn(0%,¢))

fa()Ip, o) (t)

fﬁ(t) = an(e*’E) f@(u)du
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where fz is constructed by procedure (6) such that ||¢, * f5— follco = O(c”) along with its associated distribution
functions

%m:/ Fo(t)dt, @mz/ Falt)t.
(—00,tjNB, (0*,¢) (—00,t]NB, (0*,¢)

Define the quantile function of ﬁ'g as p(t) = ﬁﬁ_ L(t). This can be used to define the variational density

6,00 = [ 0aO= G = [ 020 DFa0t = 6, 4 J5(0),

[0,1]

with o > 0 a bandwidth that will be specified later in the proof. The main tool for the proof will be from
Proposition 2.1

a7, ,(0) = 6o x f5(0) < fo(0)(1+ D(6)O(c?)). (52.19)

Denote Mp = supp_ (g- .y D(0) and Kg(o) = 14+ MpO(c”). We will now bound the model-fit term. Denote the
random variable

HY™), F,0) = [ a7,.,(0)loglp(y ™) [0%)/p(y™) | 6)ab.

The mean and variance (with respect to the data generating distribution) of the model-fit term are bounded by
applying (S2.19),

B H(Y ™, Fouo)l = [ DIy ™) 6]y | 0))az, , 09

< /D[p(Y(") | 0)]lp(Y™ | )] fo(0)(L + D(0)O(c”))db

< Ky )/B(g*ﬁ)D[p(Y |0 lp(Y ™) | O 0

< Kg(o)ne?,
and
Varf (Y o) < [ V™ [6)]p(y ™ | 0)lag, ,(6)ds

< [V 1 6) s | 6761+ DOYO(o?))ds

<Ko [ VIO 0 0,

B, (6%, ¢)] d0

< Kg(o)ne?

It follows from Chebyshev’s inequality that with }P’(?)—probabﬂity at least 1 — 1/[(D — 1)?Kg(o)ne?]

(n) | g*
/ a5, ,(0)log {W} df < DKg(o)ne?.

Next we will bound the regularization in terms of the local Bayesian complexity. Using (52.19) we can bound
the KL divergence,

A 7 AN ~
Dlay, .lloo) = [ a5, . (6)log [qf”()} o < [ 1og [fow)(HO(D(Q) ))] Fo(0)(1 + O(D(8)*)) .

fo(0) fo(0)
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Expanding f(f) and making use of the convention I, (9= ,e)(0)1og(Ip, 6+, (0)) = 0 for 0 ¢ B,(0*,¢) we have

Jo(0)IB, (6% ¢
]P)G [Bn *7 5)]
Py

(
_ o 1+ O(D(Q)O—ﬁ)) Fo(0) y
B /Bn(o*,s)l & { Py[B,,(0*,¢)] ] [B,,(0,2)] (1+0(D(0)o"))do

(1+0(D(6)c?))ds

/10 fo(0)Ig, 6+ ) (1 + O(D(6)c?))
& fo(6)B[B,(6%,2)]

_ El0) ___Jol6)
= Kplo)log [Pe(Bn(Q*ﬁ))} /an*,@ BB, (0] "
) K5(0)
= Kg(o)log {M(Bf(t‘)*,s))} :

Combining the bounds from both parts, we have with probability at least 1 — 1/[(D — 1)K (o )ne?] that

\I!(qfﬂ’g) < DKB(O')TLEQ + oz_lKB(U) log Kg(o) + a_lKﬂ(a) log {]P’g[Bn(H*,s)]_l} .

Choosing ¢ = 1/[(D —1)?Kg(co)ne?]. It follows from the union bound for probabilities, we have with probability
at least 1 — 2/[(D — 1)?Kg(o)ne?] that

aDKg(o)ne® + Kg(o)log Kg(o) + Kg(o) log {Py[B(0%,£)] 7} + log((D — 1)>Ks(0)ne?)

1
Zpn) NG, <
[ 5 D0.6°)0(0)d8 < i

1120;52 + n 1_ ) log {Pg[B,(0*,)] '} + O(n1)> .

SKﬁ(U)(

Recall that Kg(o) = 1+ O(c?). Choosing o = n=2/8 gives

Da

/%Dgn)(e,e*)(j%a(e)dﬁ < Kg(o) (1 —¢ + n(ll— ) log {Po[Bn(e*,g)]—l} + O(n—1)>
Do

<1 0462 + ol 1_ ) log {Pg[B,(6*,e)] '} + O(n™") + O(n™?).

O

Corollary 4.1. Suppose the prior density py satisfies Assumption A1l and ¢ satisfies (14). It holds with
probability tending to one as n — oo that,

1/2
{ [t 10150 0*»@,0(9)%} <o),

demonstrating that the risk bound is parametric even when a flexible class of variational approximation is used.

Proof. For IID data nilD&n)(ﬁ,Q*) = Dy[pel|pe-]. Applying Theorem 4.2 with ¢ = n~! and Assumption A1l
yields,

[ 000,050 000 < 22— Lo [BalB(0" 2]} + O
Da -1 —1\ _ —2 -1
_m‘FO(n )=0(Mn"°)+0(n™").

Combining the above with the fact that max{1, (1 — ) ta}h?(p, q) < D4[p||q] competes the proof. O
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S3 Auxiliary results

In this section, we summarize results used in the proofs of main theorems in the main document. First to
guarantee that the model (2) leads to the optimal rate of convergence, we start from deriving sharp bounds for
the Hellinger distance between f,, o, and f,, 5, for pi,po € C[0,1] and 01,02 > 0. We summarize the result in
the following Lemma S3.1.

Lemma S3.1. For py,us € C[0,1] and 01,02 > 0,

20102 [l 121 *M2H2
B2 (fus o1y fumos) <1 — — e eloo f S3.1
(fm, 1 fltz, 2) — O,%Jro_% exp{ 4(0.%+0.%) ( )

Proof. Note that by Holder’s inequality,

1 2
Fuvor ) Fmora) > { | Vo meen - uz(r))dx} |

Hence,

B2 (s Fanio) < / { / sy 1 (@) + / sy — )

1
2 [ Vol m @V m(z))dsc} dy.
0

By changing the order of integration (applying Fubini’s theorem since the function within the integral is jointly
integrable) we get

1
hz(ful,ﬂlafuz,dfz) < /0 hQ(fu](;c),olvf,ug(;z),az)dx
1 2
| 20109 (11(z) — pa(z))
:/ [1— 02+U2exp{— 207+ 02) dx
0 1 2 1 2

20109 1 — pal|”
<1-— ex —
= o7+ 03 p{ 4(07 + 03)

O

Remark S$3.2. When oy = 02 = 0, h*(fur,00fuso) < 1 — exp{||,u1—u2Hio/802}, which implies that

2
hQ(fuhoafuz,tf) 3 ||M1 - M2||oo /02'

Remark S3.3. The standard inequality h*(fu, o1, fuz.00) < [ fur.or = fuz.onlly relating the Hellinger distance to
the total variation distance leads to the cruder bound

11 — p2ll o log — 01

h2 015 . <C )
('fl“’ 1 fuz, 2) - (0’1 /\0’2) 2(01 AU?)

which is linear in ||pn — pa2l|. This bound is less sharp than what is obtained in Lemma S3.1 and does not
suffice for obtaining the optimal rate of convergence.

In order to apply Lemma 8 in Ghosal & van der Vaart (2007) to control the Kullback-Leibler divergence between
the true density fo and the model f, ,, we derive an upper bound for log || fo/fuc|l ., in Lemma S3.4.

Lemma S3.4. If fy satisfies Assumption F2,

o

2
<C+ llpe = polls (83.2)

log 2

50 [loo

for some constant C > 0.
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Proof. Note that

2ro
1 1 _ 5 - ,
27/ eXp{—wg(m))}dxeXp{_”/i/;O”oo}
2mo Jo o .
2
>C¢a/ﬁ*fo(y)e><p{—““0”oo}

2
> Cfo(y)eXp{ - W_“OI“’}

where the last inequality follows from Lemma 6 of Ghosal & van der Vaart (2007) since fy is compactly supported
by Assumption F2. This provides the desired inequality. O

[y p— /Olexp{—@‘“w}dx

Lemma S3.5. Let j > 0 be the integer such that 3 € (2],2j + 2], and the sequence of f; is constructed by the
procedure in (6). Then we have fz = S27_ (—1)! (zi%)¢o % fo, where 65 % fo = ¢o % -+ % dg % fo, the i-fold
convolution of ¢, with fy.

Proof. Consider f; constructed by (6). When j =1, fi = 2fo — ¢o * fo, so the form holds. By induction, suppose
this form holds for j > 1, then

fi+r=fo—= (9o = f; — [})
J
:f0+z(_ 1+1(Z1'i>¢(1+1 *f0+z <]+1>¢ % fo
i=0

Jj+1

=(+2fo+ > (1) (“1)&1 f+2 (j+1>¢ff)*fo
=1
J .

=G+ 2h+ 0 ((T51)+ (P11 ) e ok captoe g
=1
! Jj+2 . .

=G +2fo+ > (-1) ( )¢<Z x fo+ (170« f
=1

j+1 .

N (TR 40,

=S 0 e

It holds for j + 1, which completes the proof. O

Lemma S3.6. Let fy satisfy Assumptions F1 and F2. With A, = {z : fo(x) > o'}, we have
| Jole)da = 0(0*%), ¢>g * fi(x)de = O(a%), (53.3)
for all non-negative integer j, sufficiently small o and sufficiently large H.

Proof. Under Assumption F2 there exists (a,b) C [0,1] such that AS C [0,a) U (b,1] if we choose o sufficiently
small, so that fo(z) < o for z € AZ. Therefore, [,. fo(z) < off < O(0?7) if we choose H > 23. Using
Proposition 2.1,

» ¢o * fi(x)dr = » fo(x){1+ O(D(x)o’ﬁ)} < O(c).

With bounded D(z) and H > 24 it is easy to bound the second integral in (S3.3) by O(c2?). O
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Lemma S3.7. Suppose fy satisfies Assumptions F1 and F2. For > 2 and the integer j such that 8 €
(24,25 + 2], fs is a density function.

Proof. To show fg is a density function, it suffices to show f3 is non-negative, since a simple calculation shows
that [ fz =1 for j > 0. Following the proof of Lemma 2 in Kruijer et al. (2010), we treat log fo as a function in
C?[0,1] and obtain the same form of ¢, * fo as in (S2.1). For small enough o we can find p; € (0,1) very close
to 0 such that

o * fo(@) = fo(x)(1+ O(DP(2)0?)) < folz)(1 + p1),
where D) contains |I;(x)| and |l2(z)| to certain power, so D(?) is bounded. Then we have
fi(@) =2fo(x) — Ko fo(z) > 2fo(x) = fo(z)(1 + p1) = fo(z)(1 — p1).
Then we treat log fy as a function with § =4, j = 1. Similarly, we can get
G0 * f1(x) = fo(z)(1+O(DW(z)0")),

where D™ contains |I;(z)], ..., |ls(z)|. We can find 0 < ps < p; such that ¢, * f1(z) < fo(z)(1+ p2), then can
get

f2(2) = fol@) = (90 * f1(x) — f1(z)) > folx)(1 — p1 — p2) > folz)(1 —2p1).

Continuing this procedure, we can get f;(z) > fo(x)(1 — jp1) with sufficiently small o and 1 — jp; € (0,1) and
it is close to 1. Then we show f; is non-negative.
O

Lemma S3.8. Let fy satisfy Assumptions F1 and F2 and let j be the integer such that B € (24,25 + 2]. Then
we show that the density fg obtained by (6) satisfies

fo(x) 26
/fo )log ———— o fo(7) = 0(c*?), (S3.4)
for sufficiently small o and all z € [0, 1].

Proof. Again consider the set A, = {x : fo(z) > o™} with arbitrarily large H. We separate the Kullback-Leibler
divergence into

Jo fo fo
I
fO o8 b * [ /[0,1]mA folog bo * fp /[0 1JnAe folog b0 * f5

(o — 6 * )2 o fo
< /A Ry / (o * fi — fo) / folog 520 (83.5)

Under Assumption F2 and by Remark 3 in Ghosal et al. (1999), for small enough o there exists a constant C
such that ¢, * fo > Cfo for all x € [0, 1]. Especially, fy satisfies ¢, * fo > fo/3 for © € AS. Also in the proof of
Lemma S3.7 we can find p € (0,1) such that fz > pfo. Then, on set A, with sufficiently small o, we have

o * fj 2 poo * fo > K fo,
where K = min{p/3, pC}. Applying (S2.1), the first integral on the r.h.s. of (53.5) can be bounded by
/ (fo— 0% £5)* _ / [fo(z) = fo(z)(1 + O(D(z)o”))]?
A, @o * [ B Kfo(x)
3 [ p@owee) = o).
To bound the second integral of r.h.s in (S3.5), according to Remark 3 in Ghosal et al. (1999) we get ¢, * f; >

pfo/3, then we can find a constant C' < 1 such that ¢, * f; > C'fo. The second and third term in (S3.5) can be
bounded by O(c??) based on Lemma S3.6. O
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Lemma S3.9. Let H{ denote the unit ball of RKHS of the Gaussian process with rescaled parameter a and By
be the unit ball of C[0,1]. For r > 1, there exists a constant K, such that for e <1/2,

2
1
08 N (e Uaeio . Hl.0) < K (Tog L) (33.6)

Proof. Since we can write any element of H{ as a function of Re(z) by Lemma 4.5 in van der Vaart & van
Zanten (2009), and an e-net denoted by F° over H{ is constructed through a finite set of piece-wise polynomial
functions, and according to Lemma 4.4 and Lemma 4.5 in Bhattacharya et al. (2014), F* also forms an e-net
over HY as long as a is sufficiently close to b. Thus we can find one set I' = {a;,i = 1,...,k} with k = [r] +1
and ap = r, such that for any b € [0, r] there exists some a; satisfying |b — a;| < 1, so that U;<;F% forms an
e-net over U,<,H{. Since the covering number of U;<;F* is bounded by summation of covering number of F%,
we obtain

k 2

. . 1

log N (€, Upefo,HY, || - o) < log <Z#(]—"“)) <log(k - #(F")) < KT(log 6) .
=1

Here we write #(A) to denote the cardinality of any arbitrary set A. To prove the second inequality above,
note that the piece-wise polynomials are constructed on the partition over [0, 1], denoted by U<, B;, where
B;’s are disjoint interval with length R that can be considered as a non-increasing function of a, so the total
number of polynomials is non-decreasing in a. Also we find that when building the mesh grid of the coefficients
of polynomials in each B;, both the approximation error and tail estimate are invariant to interval length R,
therefore we have #(F¢) < #(F?) if a < b, for a,b € [0,7]. O

Remark S3.10. With larger a we need a finer partition on [0,1] while the grid of coefficients of piece-wise
polynomial remains the same except the range and the meshwidth will change together along with a. Since we

can see the element h of RKHS ball as a function of it and with Cauchy formula we can bound the derivatives
of h by C/R™, where |h|* < C2.

S4 GP-IVI Algorithm

In this section we outline an algorithm to train GP-IVI based on the Karhunen—Loéve representation of a
Gaussian process; details on the Karhunen—Loéve representation of a stochastic process can be found in either
Jin (2014) or Le Maitre & Knio (2010).

S4.1 Karhunen—Loéve representation of a Gaussian process
For a mean zero Guassian process X (t), 0 < ¢ < 1, with covariance function
K(s,t) =E[X(t)X(s)], for 0 < s,t < 1.

The Karhunen—Loéve expansion is given by

oo

X(t) =" vV wer(t),

k=1

where {(\g,er)} are the eigenvalue eigenfunction pairs to the Fredholm integral equation
1
Aper(t) = / K(s,t)ex(s)ds, for 0 <t <1,
0

and & are IID N (0, 1) random variables. For computational purposes, we need work with the finite approximation

N
Xn(t) =D VArbren(t).
k=1
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S4.2 Algorithm

Recall the GP-IVI family consists of distributions of the form,

Qap:{q,m(@):/o ¢o(9—u(n))dn|u60[0,1]70>0}~

Substituting in the truncated Karhunen-Loéve expansion in place of p(n) we can equivalently define ¢, ,(6) =
E, [N (0; 1(n), 0?)] using the reparameterization trick

N
0=> Arérer(n) + oc (54.1)
=1
1 al ’
CI/A,U(G) =E, |exp T 952 <9 - Z @&%(n)) ) (54.2)
=1

where &, % N(0,1) for 1 <k < N, e~ N(0,1), and n ~ U(0,1). This allows us to define the joint ELBO in
(O'vgla"'agN)a

ELBO(Ua 517 s 7§N) = ]Eq“’(,(b') [lng(97 Y(n)) - log Qu,o (9)] (843)

and its gradient

VU»&M---@NELBO(U’ 515 v agN)'

At this point we can compute the ELBO and its gradient using Monte Carlo techniques and maximize the ELBO
using a gradient-based optimization technique.
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