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Abstract

Transformation-based methods have been an
attractive approach in non-parametric infer-
ence for problems such as unconditional and
conditional density estimation due to their
unique hierarchical structure that models the
data as flexible transformation of a set of
common latent variables. More recently,
transformation-based models have been used
in variational inference (VI) to construct flex-
ible implicit families of variational distri-
butions. However, their use in both non-
parametric inference and variational infer-
ence lacks theoretical justification. We pro-
vide theoretical justification for the use of
non-linear latent variable models (NL-LVMs)
in non-parametric inference by showing that
the support of the transformation induced
prior in the space of densities is sufficiently
large in the L1 sense. We also show that,
when a Gaussian process (GP) prior is placed
on the transformation function, the poste-
rior concentrates at the optimal rate up to
a logarithmic factor. Adopting the flexibil-
ity demonstrated in the non-parametric set-
ting, we use the NL-LVM to construct an
implicit family of variational distributions,
deemed GP-IVI. We delineate sufficient con-
ditions under which GP-IVI achieves optimal
risk bounds and approximates the true pos-
terior in the sense of the Kullback–Leibler
divergence. To the best of our knowledge,
this is the first work on providing theoretical
guarantees for implicit variational inference.
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1 Introduction

Transformation-based models are a powerful class of
latent variable models, which rely on a hierarchical
generative structure for the data. In their simplest
form, these models have the following structure

yi = µ(xi) + εi, εi ∼ N(0, σ2),

xi
iid∼ g, (1)

for i = 1, . . . , n, where yi ∈ R is a real-valued observed
variable, µ is the ‘transformation’ function, xi is a la-
tent (unobserved) variable underlying yi, g is a known
density of the latent data (e.g., uniform or standard
normal), and we include a Gaussian measurement er-
ror with variance σ2. For simplicity in exposition, we
consider a very simple case to start but one can certain
include multivariate xi and yi and other elaborations.

Model (1) and its elaborations include many popular
methods in the literature. If we choose a Gaussian
process (GP) prior for the function µ, then we ob-
tain a type of GP Latent Variable Model (GP-LVM)
(Lawrence, 2004, 2005; Lawrence & Moore, 2007). We
can also obtain kernel mixtures as a special case; for
example, by choosing a discrete distribution for g. The
extremely popular Variational Auto-Encoder (VAE)
is based on choosing a deep neural network for µ,
and then obtaining a particular variational approxi-
mation relying on a separate encoder and decoder neu-
ral network (Kingma & Welling, 2013). Refer also to
the non-linear latent variable model (NL-LVM) frame-
work of (Kundu & Dunson, 2014) for a nonparametric
Bayesian perspective on models related to (1).

Providing theoretical justification for ‘transformation’
based models of the form in (1) rests on the answers
to the following two questions: 1) Can this framework
be used to approximate any density with an arbitrarily
high degree of accuracy? 2) Does the accuracy improve
with sample size as the optimal rate for density esti-
mation or conditional density estimation (given fixed
covariates) problems?

These types of questions have been answered elegantly
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for many nonparametric Bayes and frequentist den-
sity estimation methods, especially for the models con-
structed via model (1) with a discrete distribution g
of the latent variable. For example, Dirichlet process
mixture models (DPMMs) have been very widely ap-
plied (Escobar & West, 1995; Ferguson, 1973, 1974;
MacEachern, 1999; Müller et al., 1996) and studied
in terms of their optimality properties asymptotically
(Ghosal et al., 1999, 2000; Ghosal & van der Vaart,
2007; Kruijer et al., 2010).

When using a continuous distribution g, model (1)
leads to a specific class of continuous transformation-
based model such as the NL-LVM models. Here a GP
prior is a natural choice for the unknown transforma-
tion (Dasgupta et al., 2017; Kundu & Dunson, 2014;
Lenk, 1988, 1991; Tokdar, 2007; Tokdar et al., 2010).
These models can be written as Gaussian convolution
of a continuous mixing measure. Unfortunately the
algorithms developed for discrete mixing measures are
not readily adaptable to their continuous analogs. The
alternative approach uses Markov chain Monte Carlo
methods, which come with theoretical guarantees, but
suffer from computational instability owing to a lack
of conjugacy. This instability propagates through the
posterior distribution of the unknown transformation
requiring expert parameter tuning and vigilance for
guaranteed performance. To mitigate some of these
issues associated with a full-blown MCMC, approxi-
mate Bayesian methods including the variational in-
ference (VI) are proposed (Titsias & Lawrence, 2010).
The success of VI depends largely on two things: 1)
the flexibility of the variational family and 2) the al-
gorithm used to perform the optimization.

Development of flexible variational families using
the reparametrization trick (Figurnov et al., 2018;
Jankowiak & Obermeyer, 2018; Kingma et al., 2015;
Kingma & Welling, 2013) have emerged as a power-
ful idea over the last decade and continues to flour-
ish, often in parallel with latest developments in gen-
erative deep-learning methods. While the overarch-
ing goal of this trick is to find unbiased estimates
of the gradient of the objective function (evidence
lower bound in variational inference), one cannot but
notice its connection with non-linear latent variable
methods. A similar idea is explored as Implicit vari-
ational inference (Huszár, 2017; Shi et al., 2017) to
construct an implicit distribution, a distribution that
cannot be analytically specified but can be sampled
from. Such a construction brings in certain compu-
tational challenges stemming from density ratio esti-
mation. More recently, implicit VI was extended to
semi-implicit VI (Molchanov et al., 2019; Titsias &
Ruiz, 2019; Yin & Zhou, 2018) which avoids density
ratio estimation by using a semi-implicit variational

distribution qφ(θ) =
∫
q{θ | gφ(u)}q(u)du where the

density q{z | gφ(u)} corresponds to a transformation-
based model with transformation gφ – typically taken
to be a neural network with parameters φ. Although
VI approaches have shown significant improvements
in computational speed their theoretical properties are
largely a mystery.

Thus the aim of this work is to address one of the
fundamental questions in latent variable transforma-
tion methods, namely, under what conditions are these
methods “flexible” enough? The central idea is to rec-
ognize that such models can be written as Gaussian
convolution of a continuous mixing measure. Such a
construction serves as a flexible family for inference in
either the latent variable semi-parametric density es-
timation setting or density estimation using implicit
variational inference. The traditional approach to the
density estimation problem is through the use of dis-
crete mixtures, whose approximation properties have
been well-studied (Ghosal et al., 1999, 2000; Ghosal &
van der Vaart, 2007; Kruijer et al., 2010). However,
the well-known transformation based methods such as
GP-LVM and IVI, are based off of continuous mixtures
rather than discrete ones. Unfortunately, the existing
tools for studying properties of these models for dis-
crete mixtures do not readily extend to the continu-
ous mixture case which requires different techniques
to quantify the accuracy of approximation. Because
of this, there has been, to the best of our knowledge,
no results pertaining to properties of continuous mix-
ture models in either the non-parametric or variational
settings. There are no results that specify for which
class of functions F these continuous mixture models
are capable of estimating the true data distribution
f0 ∈ F arbitrarily well. Similarly, there are no results
pertaining to risk bounds or convergence properties of
any implicit variational inference framework. The clos-
est related works in either case are those that address
these questions for discrete mixture models. Lastly, we
have chosen to exclude detailed empirical illustration,
but provide a sketch of the algorithm in the supple-
mentary material, as there is a relatively large body of
existing work delineating algorithms and demonstrat-
ing the empirical performance of these continuous mix-
ture models in both the non-parametric setting using
GP-LVM (Ferris et al., 2007; Lawrence, 2004, 2005;
Lawrence & Moore, 2007) and the variational setting
using IVI (Huszár, 2017; Molchanov et al., 2019; Shi
et al., 2017; Titsias & Ruiz, 2019; Yin & Zhou, 2018).

A summary of our contributions. Our results are the
first to provide a concrete theoretical framework for
transformation-based models widely used in Bayesian
inference and machine learning. By establishing a con-
nection between NL-LVM with implicit family of dis-
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tributions, we provide statistical guarantees for im-
plicit variational inference. Motivated by our find-
ings, transformation-based models have the potential
to provide machine learning with a rich class of implicit
variational inference methods that come with strong
theoretical guarantees.

We close the section by defining some notations in
§1.1 used throughout the paper. In §2 we present an
overview of the NL-LVM model as well as several prop-
erties of the model. In section §3 we discuss our two
main results for non-parameteric inference using NL-
LVM. In §4 we introduce GP-IVI. We then show that
that the KL divergence between the variational pos-
terior and the true posterior is stochastically bounded
and argue why this is optimal from a statistical per-
spective. Inspired by Yang et al. (2020), we addition-
ally present parameter risk bounds of a version of im-
plicit variational inference, which we term as α-GP-
IVI which is obtained by raising the likelihood to a
fractional power α ∈ (0, 1).

1.1 Notation

We denote the Lesbesgue measure on Rp by λ. The
supremum norm and L1-norm are denoted by ‖·‖∞
and ‖·‖1, respectively. For two density functions
p, q ∈ F , let h denote the Hellinger distance defined
as h2(p, q) =

∫
(p1/2 − q1/2)2dλ. Denote the Kullbeck-

Leibler divergence between two probability densities
p and q with respect to the Lebesgue measure by
D(p||q) =

∫
p log(p/q)dλ. We define the additional

discrepancy measure V (p||q) =
∫
p log2(p/q)dλ, which

will be referred to as the V-divergence. For a set A we
use IA to denote its indicator function. We denote
the density of the normal distribution N(t; 0, σ2Id)
by φσ(t). We denote the convolution of f and g by
f ∗ g(y) =

∫
f(y − x)g(x)dx. Absolute continuity of q

with respect to p will be denoted q � p. We denote
the set of all probability densities f � λ by F . The
support of a density f is denoted by supp(f). For a set
X , let C(X ) and Cβ(X ), β > 0 denote the spaces of
continuous functions and β-Hölder space, respectively.
We write ”-” for inequality up to a constant multiple.
For any a > 0 denote bac the largest integer that is no
greater than a.

2 A specific transformation-based
model

In this section, we focus on an NL-LVM model (Kundu
& Dunson, 2014) in which the response variables are
modeled as unknown functions (referred to as the
transfer function) of uniformly distributed latent vari-
ables with an additive Gaussian error. We start from

the model formulation and then present a general ap-
proximation result of NL-LVM model to the true den-
sity under mild regularity conditions. A review of the
necessary background material for this section can be
found in the supplementary file section S1.

2.1 The NL-LVM model

Suppose we have IID observations Yi ∈ R for i =
1, . . . , n with density f0 ∈ F , the set of all densities on
R absolutely continuous with respect to the Lebesgue
measure λ. We consider a non-linear latent variable
model

Yi = µ(ηi) + εi, εi ∼ N(0, σ2), i = 1, . . . , n

µ ∼ Πµ, σ ∼ Πσ, ηi ∼ U(0, 1), (2)

where ηi’s are latent variables, µ ∈ C[0, 1] is a transfer
function relating the latent variables to the observed
variables and εi is an idiosyncratic error. Marginaliz-
ing out the latent variable, we obtain the density of y
conditional on the transfer function µ and scale σ

f(y;µ, σ)
def
= fµ,σ(y) =

∫ 1

0

φσ(y − µ(x))dx. (3)

Remark 2.1. While µ and η are not identifiable in
(2), our goal is to estimate f0 using fµ,σ which is an
identifiable quantity itself. The flexibility of the in-
duced model is guaranteed via the GP prior over the
transformation function µ without the need to identify
the corresponding latent variable η. The presence of
the latent variable η simply ensures flexibility of the
induced density and allows for straightforward compu-
tation via Gibbs sampler or variational techniques.

It is not immediately clear whether the class of den-
sities {fµ,σ} encompasses a large subset of the den-
sity space. The following intuition relates the above
class with continuous convolutions which plays a key
role in studying theoretical properties for models re-
lated to NL-LVMs. Within the support of a continuous
density f0, its cumulative distribution function F0 is
strictly monotone and hence has an inverse F−1

0 satis-
fying F0{F−1

0 (t)} = t for all t ∈ supp(f0). Now letting
µ0(x) = F−1

0 (x), one obtains fµ0,σ(y) = φσ ∗ f0, the
convolution of f0 with a normal density having mean
0 and standard deviation σ. This provides a way to
approximate f0 by the NL-LVM with optimal approx-
imation accuracy. We summarize the approximation
result in section 2.3.

Let λ̃ denote the Lebesgue measure on [0, 1] and denote
the Borel sigma-field of R by B. For any measurable
function µ : [0, 1] → R, let νµ denote the induced
measure on (R,B), then, for any Borel measurable set

B, νµ(B) = λ̃(µ−1(B)). By the change of variable
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theorem for induced measures,∫ 1

0

φσ(y − µ(x))dx =

∫
φσ(y − t)dνµ(t), (4)

so that fµ,σ in (3) can be expressed as a kernel mix-
ture form with mixing distribution νµ. It turns out
that this mechanism of creating random distributions
is very general. Depending on the choice of µ, one can
create a large variety of mixing distributions based on
this specification. For example, if µ is a strictly mono-
tone function, then νµ is absolutely continuous with
respect to the Lebesgue measure, while choosing µ to
be a step function, one obtains a discrete mixing dis-
tribution.

2.2 Assumptions on true data density f0

It is widely recognized that one needs certain smooth-
ness assumptions and tail conditions on the true den-
sity f0 to derive posterior convergence rates. We make
the following assumptions:

Assumption F1 We assume log f0 ∈ Cβ [0, 1]. Let
lj(x) = dj/dxj{log f0(x)} be the jth derivative for j =
1, . . . , r with r = bβc. For any β > 0, we assume that
there exists a constant L > 0 such that

|lr(x)− lr(y)| ≤ L|x− y|β−r, for all x 6= y. (5)

The smoothness assumption in the log scale will be
used to obtain an optimal approximation error of the
GP-transformation-based model to the true f0, pro-
viding a key piece in managing the KL-divergence be-
tween the true and the model for posterior inference.
Similar assumption on the local smoothness appeared
in Kruijer et al. (2010), while in our case a global
smoothness assumption is sufficient since f0 is assumed
to be compactly supported.

Assumption F2 We assume f0 is compactly sup-
ported on [0, 1], and that there exists some interval
[a, b] ⊂ [0, 1] such that f0 is non-decreasing on [0, a],
bounded away from 0 on [a, b] and non-increasing on
[b, 1].

Assumption F2 guarantees that for every δ > 0, there
exists a constant C > 0 such that f0 ∗ φσ ≥ Cf0 for
every σ < δ. Also see Ghosal et al. (1999) for similar
assumption in density estimation.

2.3 Approximation property

As mentioned above, the flexibility of fµ,σ comes from
a large class of the induced density measure νµ. Now
we quantify the approximation of fµ,σ to the true f0

by utilizing its equivalent form as a convolution with a
Gaussian kernel. It is well known that the convolution
φσ ∗ f0 can approximate f0 arbitrary closely as the

bandwidth σ → 0. For Hölder-smooth functions, the
order of approximation can be characterized in terms
of the smoothness. If f0 ∈ Cβ [0, 1] with β ≤ 2, the
standard Taylor series expansion guarantees that ||φσ∗
f0 − f0||∞ = O(σβ). However, for β > 2, it requires
higher order kernels for the convolution to remain the
optimal error (Devroye, 1992; Wand & Jones, 1994).
Kruijer et al. (2010) proposed an iterative procedure
to construct a sequence of functions {fj}j≥0 by

fj+1 = f0 −4σfj , 4σfj = φσ ∗ fj − fj , j ≥ 0. (6)

We define fβ = fj with integer j such that
β ∈ (2j, 2j + 2]. Under such construction, for
f0 ∈ Cβ [0, 1] the convolution φσ ∗ fβ preserves the
optimal error O(σβ) (Lemma 1 in Kruijer et al.
(2010)). We state a similar result in the following.

Proposition 2.1. For f0 ∈ Cβ [0, 1] with β ∈ (2j, 2j+
2] satisfying Assumptions F1 and F2, for fβ defined
as from the iterative procedure (6) we have

‖φσ ∗ fβ − f0‖∞ = O(σβ),

and

φσ ∗ fβ(x) = f0(x)(1 +D(x)O(σβ)), (7)

where

D(x) =

r∑
i=1

ci|lj(x)|
β
i + cr+1,

for non-negative constants ci, i = 1, . . . , r + 1, and for
any x ∈ [0, 1].

The proof can be found in the supplementary file sec-
tion S2.2. The ability to represent the model in terms
proportional to true density plays an important role
in bounding the KL-divergence between fµ,σ and f0.

Remark 2.2. The approximation result can be ex-
tended to the isotropic β-Hölder space Cβ [0, 1]d under
similar regularity assumptions. The extended approxi-
mation result can be applied to more general cases.

3 Posterior inference for NL-LVM

Most of the existing literature on non-parametric
Bayesian approaches to the density estimation prob-
lem are centered around DP mixture priors (Fergu-
son, 1973, 1974), which are simply transformation-
based models with a discrete distribution for the latent
variables. On the other hand, the theoretical proper-
ties of continuous transformation-based models remain
largely unknown.

In this section, we provide theoretical results for pos-
terior inference of the transformation-based model for
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unconditioned density estimation in the context of NL-
LVM. Our results are two-fold: (1) We first show that
a large class of transfer function µ leads to L1 large
support of the space of densities induced by the NL-
LVM; (2) We obtain the optimal frequentist rate up
to a logarithmic factor under standard regularity con-
ditions on the true density using the transformation-
based approach with induced GP priors.

3.1 L1 large support

One can induce a prior Π on F via the mapping fµ,σ by
placing independent priors Πµ and Πσ on C[0, 1] and
[0,∞) respectively, as Π = (Πµ ⊗ Πσ) ◦ f−1

µ,σ. Kundu
& Dunson (2014) assumes a Gaussian process prior
with squared exponential covariance kernel on µ and
an inverse-gamma prior on σ2. Given the flexibility
of fµ,σ upon the choices of µ, placing a prior on µ
supported on the space of continuous functions C[0, 1]
without further restrictions is convenient and Theorem
3.1 assures us that this specification leads to large L1

support on the space of densities.

Suppose the prior Πµ on µ has full sup-norm support
on C[0, 1] so that Πµ(‖µ − µ∗‖∞ < ε) > 0 for any
ε > 0 and µ∗ ∈ C[0, 1], and the prior Πσ on σ has full
support on [0,∞). If f0 is compactly supported, so
that the quantile function µ0 ∈ C[0, 1], then it can be
shown that under mild conditions, the induced prior
Π assigns positive mass to arbitrarily small L1 neigh-
borhoods of any density f0. We summarize the above
discussion in the following theorem, with a proof pro-
vided in the section S2.3 of supplementary file.

Theorem 3.1. If Πµ has full sup-norm support on
C[0, 1] and Πσ has full support on [0,∞), then the L1

support of the induced prior Π on F contains all den-
sities f0 which have a finite first moment and are non-
zero almost everywhere on their support.

Remark 3.1. The conditions of Theorem 3.1 are sat-
isfied for a wide range of Gaussian process priors on
µ (for example, a GP with a squared exponential or
Matérn covariance kernel).

Remark 3.2. When f0 has full support on R, the
quantile function µ0 is unbounded near 0 and 1, so that

‖µ0‖∞ = ∞. However,
∫ 1

0
|µ0(t)| dt =

∫
R |x| f0(x)dx,

which implies that µ0 can be identified as an element
of L1[0, 1] if f0 has finite first moment. Since C[0, 1]
is dense in L1[0, 1], the previous conclusion regarding
L1 support can be shown to hold in the non-compact
case too.

3.2 Posterior contraction results

Gaussian process priors have been widely used in
non-parametric Bayesian inference as well as machine

learning due to their modeling advantages and proper
theoretical grounding (van der Vaart & van Zanten,
2007, 2008, 2009). Considering a Gaussian process
as the transfer function over the latent variable, the
transformation-based model essentially aligns with a
Gaussian process latent variable model (GP-LVM)
(Ferris et al., 2007; Lawrence, 2004, 2005; Lawrence
& Moore, 2007). Theoretical work of GP-LVM such
as Kundu & Dunson (2014) showed a KL large sup-
port of the induced prior process, and also showed
the posterior consistency to the true density func-
tion. However a straightforward description of the
space of densities induced by the proposed model is
not clear. Additionally, the posterior contraction rate
of the proposed model, an important property char-
acterizing how fast the posterior distribution concen-
trates around the truth, is still unknown for finite data.

We now present the posterior contraction result for
transformation-based model with NL-LVM. To that
end, we first review its definition, more details are
deferred to the supplementary file section S1. Given
independent and identically distributed observations
Y (n) = (Y1, . . . , Yn) from a true density f0, a posterior
Πn associated with a prior Π on F is said to contract
at a rate εn, if for a distance metric dn on F ,

Ef0Πn{dn(f, f0) > Mεn | Y (n)} → 0 (8)

for a suitably large integer M > 0. Unlike the treat-
ment in discrete mixture models (Ghosal & van der
Vaart, 2007) where a compactly supported density is
approximated with a discrete mixture of normals, the
main idea is to first approximate the true density f0 by
a Gaussian convolution with fβ defined as in (6), then
allow the GP prior on the transfer function to appro-
priately concentrate around µβ , the inverse c.d.f. of
the defined fβ . We first state our choices for the prior
distributions Πµ and Πσ.

Assumption P1 We assume µ follows a centered
and rescaled Gaussian process denoted by GP(0, cA),
where A denotes the rescaled parameter, and assume
A has density g satisfying for a > 0,

C1a
p exp (−D1a logq a) ≤ g(a)

≤ C2a
p exp (−D2a logq a).

Assumption P2 We assume σ ∼ IG(aσ, bσ).

Note that contrary to the usual conjugate choice of
an inverse-gamma prior for σ2, we have assumed an
inverse-gamma prior for σ. This enables one to have
slightly more prior mass near zero compared to an
inverse-gamma prior for σ2, leading to the optimal
rate of posterior convergence. Refer also to Kruijer et
al. (2010) for a similar prior choice for the bandwidth
of the kernel in discrete location-scale mixture priors
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for densities.

Theorem 3.2. If f0 satisfies Assumptions F1 and F2
and the priors Πµ and Πσ are as in Assumptions P1
and P2 respectively, the best obtainable rate of poste-
rior convergence relative to Hellinger metric h is

εn = n−
β

2β+1 (log n)t, (9)

where t = β(2 ∨ q)/(2β + 1) + 1.

We provide a sketch of the proof below, the full proof
is deferred to the supplementary file section S2.4. It
suffices to check sufficient conditions (prior thickness,
sieve construction, entropy condition) for posterior
contraction result in Ghosal et al. (2000) (See Theo-
rem S1 in the supplementary file for details.) We first
verify the prior thickness condition. From Lemma 8 of
Ghosal & van der Vaart (2007), one has∫

f0 log

(
f0

fµ,σ

)i
≤ h2(f0, fµ,σ)

(
1 + log

∥∥∥∥ f0

fµ,σ

∥∥∥∥
∞

)i
,

for i = 1, 2. By Lemma S3.4, we have
log ‖f0/fµ,σ‖∞ ≤ ‖µ − µβ‖∞/σ2, and by Lemma
S3.1 and Lemma S3.8, we bound h2(f0, fµ,σ) - ‖µ −
µβ‖∞/σ2 +O(σ2β). Then we have{
σ ∈ [σn, 2σn],‖µ− µβ‖∞ - σβ+1

n

}
⊂

{D(f0||fµ,σ) - σ2β
n , V (f0||fµ,σ) - σ2β

n }.

Under assumptions P1 and P2 the prior thickness is
guarantee by upper bounding Π

{
σ ∈ [σn, 2σn], ‖µ −

µβ‖∞ - σβ+1
n

}
. We construct the sieve

Fn = {fµ,σ : µ ∈ Bn, ln < σ < hn}.

where Bn denotes the sieve for a GP prior on µ as de-
fined in van der Vaart & van Zanten (2009). Further
we calculate the entropy of Fn; the logarithm of num-
ber of small balls in L1 norm with radius at least εn
covering Fn; by observing that for σ2 > σ1 > σ2/2,

‖fµ1,σ1 − fµ2,σ2‖1 ≤
(

2

π

)1/2 ‖µ1 − µ2‖∞
σ1

+
3(σ2 − σ1)

σ1
.

The entropy condition can be verified by applying
Lemma S3.9. Finally, the sieve compliment condition
is easily verified by combining the results on GP priors
in van der Vaart & van Zanten (2009) and tail prop-
erties of inverse-gamma distribution of σ.

4 Gaussian Process Implicit
Variational Inference

Motivated by the flexibility we have demonstrated for
transformation-based models in the non-parametric

setting, we construct a flexible implicit variational
family of distributions, deemed Gaussian process im-
plicit variational inference (GP-IVI). We provide suffi-
cient conditions under which GP-IVI achieves optimal
risk bounds and approximates the true posterior in
the sense of the Kullback–Leibler divergence. We be-
gin by defining common terminology used throughout
the section and defining GP-IVI.

4.1 Preliminaries

We consider IID observations Yi ∈ Rp, for i = 1, . . . , n.

Let P(n)
θ be the distribution of the observations with

parameter θ ∈ Θ ⊂ Rd that admits a density p
(n)
θ

relative to the Lebesgue measure. Let Pθ denote the
prior distribution of θ that admits a density pθ over Θ.
With a slight abuse of notation, we will use p(Y (n) | θ)
to denote P(n)

θ and its density function. We adopt a
frequentist framework and assume a true data generat-

ing distribution P(n)
θ∗ and a true parameter θ∗. Denote

the negative log prior U(θ) = − log pθ(θ) and the log-
likelihood ratio of Yi, for i = 1, . . . , n, by

`i(θ, θ
∗) = log[p(Yi | θ)/p(Yi | θ∗)]. (10)

We denote the first two moments of the log-likelihood
by

D(θ∗||θ) = −E(n)
θ∗ [`1(θ, θ∗)], µ2(θ∗||θ) = E(n)

θ∗ [`1(θ, θ∗)2].
(11)

Lastly denote the appropriate neighborhood around
the true parameter θ∗,

Bn(θ∗, ε) = {θ | D[p(Y (n) | θ∗)‖p(Y (n) | θ)] ≤ nε2,

V [p(Y (n) | θ∗)‖p(Y (n) | θ)] ≤ nε2}. (12)

4.2 Gaussian Process Implicit Variational
Inference

Using the NL-LVM model, we can define the varia-
tional family of θ conditioned on the latent variable η,
with parameters µ ∈ C[0, 1] and σ ∈ (0,∞),

qµ,σ(θi | ηi) = φσ(θi − µ(ηi))

ηi ∼ U(0, 1), i = 1, . . . , d.

Marginalizing over the latent η gives us the implict
variational distribution,

qµ,σ(θ) =

∫ 1

0

φσ(θ − µ(η))dη.

Together this defines the Gaussian process implict
variational inference (GP-IVI) family,

QGP =

{
qµ,σ(θ) =

∫ 1

0

φσ(θ − µ(η))dη | µ ∈ C[0, 1], σ > 0

}
.
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4.3 Approximation Quality of GP-IVI

In this section, we show that KL divergence between
the true posterior and its optimal GP-IVI approxima-
tion is Op(1). Using a simple example, we show that
without further assumptions this bound cannot be im-
proved. We begin the section with said example.

Consider the following one-dimensional Gaussian-
Gaussian Bayesian model for inference of an unknown
true mean θ∗ using the model

Y1, . . . , Yn ∼ N(θ, σ2), θ ∼ N(µ0, σ
2
0)

in which µ0, σ0, σ are all known. Let Y n, µn, σ
2
n denote

the sample mean, the posterior mean, and variance,
respectively. Straight forward calculations show

D
[
N(θ∗, n−1σ2)||N(µn, σ

2
n)
]
→ χ2

1, weakly.

Even in the simple case of a normal-normal model,
we see that the KL divergence between the true data
generating distribution and the true posterior does not
converge weakly to 0 but instead converges weakly to
a stochastically bounded random variable.

The Op(1) bound is achieved over a rather small sub-
family of GP-IVI. Define the restricted Gaussian fam-
ily

Γn = {N(µ, τ2Id) | ‖µ‖2 ≤M, 0 ≤ σn ≤ τ ≤ c1/20 σn},

and let µf denote the quantile function corresponding
to f ∈ Γn. We define the corresponding small band-
width convolution Gaussian (variational) family

Qn =

{
qµ,σ(θ) | qµ,σ(θ) =

∫ 1

0

φσ(θ − µf (η))dη, f ∈ Γn

}
.

The following assumptions are required to show the
Op(1) bound for the KL-divergence.

Assumption B1 The true parameter θ∗ satis-
fies ‖θ∗‖2 ≤M .

Assumption B2 The variance bound σn satis-

fies 0 ≤ σn ≤ n−1/2 ≤ c1/20 σn, for all n ≥ 1.

Assumption B3 The quantities D(θ∗||θ) and
µ2(θ∗||θ) are finite for all θ ∈ Rd.

Assumption B4 The matrices of the second

derivatives, D(2)(θ∗||θ), µ(2)
2 (θ∗||θ), U (2)(θ) exist on

Rd and satisfy for any θ, θ′ ∈ Rd,

smax

(
D(2)(θ∗||θ)−D(2)(θ∗||θ′)

)
≤ C‖θ − θ′‖α1

2 ,

smax

(
µ

(2)
2 (θ∗||θ)− µ(2)

2 (θ∗||θ′)
)
≤ C‖θ − θ′‖α2

2 ,

smax

(
U (2)(θ)− U (2)(θ′)

)
≤ C‖θ − θ′‖α3

2 ,

for some α1, α2, α3 > 0. Here smax denotes the
maximum eigenvalue of the matrix.

Assumption B5 D(θ∗||θ) ≥ C‖θ − θ∗‖2.

Assumption B1 is needed so that a normal distribution
centered at the true parameter is contained in Γn. As-
sumptions B2-B4 are technical assumptions needed in
order to achieve convergence of certain bounds used in
the proof. Assumption B5 is a standard identifiability
condition.

Theorem 4.1. Under assumptions B1 through B5
it holds that m∗n(Qn) = minq∈Qn {D[q||p(· | Y n)]} is
bounded in probability with respect to the data gener-

ating distribution P(n)
θ∗ . Formally, given any ε > 0,

there exists Mε, Nε > 0 such that for n ≥ Nε, we have

P(n)
θ∗ (m∗n(Qn) > Mε) ≤ ε.

Again, we provide a sketch of the proof below and
provide a full proof in section S2.5 of the supple-
mentary file. Under assumptions B1-B2, qn(θ) =
N(θ; θ∗, σ2 + σ2

n) belongs to Qn. By definition,
m∗n(Qn) ≤ D[qn||p(· | Y (n))]. We show D[qn||p(· |
Y (n))] is Op(1) by showing that it is a sum of
Op(1) terms. Letting En denote the expectation
with respect to qn, D[qn||p(· | Y (n))] can be bro-
ken into four parts En[log qn], logm(Y (n)), En[U(θ)],
and En [

∑n
i=1 `i(θ, θ

∗)]. The first term En[log qn] is

a constant, hence Op(1). Noting E(n)
θ∗ [m(Y (n))] =

1, an application of Markov’s inequality shows that
logm(Y (n)) is Op(1). Taking a (multivariate) Tay-
lor expansion of the functions U(θ), D(θ∗||θ), and
µ2(θ∗||θ) about θ∗ and applying assumption B4 and
B5 gives us the bounds

C`(σ
2 + σ2

n) ≤ En[D(θ∗||θ)] ≤ Cu(σ2 + σ2
n),

En[µ2(θ∗||θ)] ≤ C2(σ2 + σ2
n), (13)

En[U(θ)] ≤ C1(σ2 + σ2
n).

Markov’s inequality shows that U(θ) is Op(1). It re-
mains to show En [

∑n
i=1 `i(θ, θ

∗)] is Op(1). Given

ε > 0, choose δ =
[
C2c0/(εC`)

2
]1/2

. Applying Cheby-
chev’s and Jensen’s inequalities together with (13) we
have,

P(n)
θ∗

{
En

[
n∑
i=1

`i(θ, θ
∗)

]
≤ −Cu(1 + δ)n(σ2 + σ2

n)

}

≤ En[µ2(θ∗||θ)]
δ2n (En[D(θ∗||θ)])2 ≤

C2

C`δ2nσ2
n

.

Finally by assumption B2 we have c0n ≤ σ−2
n . Thus

P(n)
θ∗

{
En

[
n∑
i=1

`i(θ, θ
∗)

]
≤ −2Cu

(
1 +

[
C2c0/(εC`)

2]1/2)}
≤ ε,
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which shows En [
∑n
i=1 `i(θ, θ

∗)] is Op(1). Combining
the four bounds completes the proof.

4.4 α-Variational Bayes Risk Bound for
GP-IVI

In developing risk bounds for parameter estimation, we
use a slight variation of the standard variational ob-
jective function for technical simplicity. α-variational
Bayes (α-VB) (Yang et al., 2020) is a variational in-
ference framework that aims to minimize the KL di-
vergence between the variational density and the α-
fractional posterior (Bhattacharya et al., 2019), de-
fined as

Pα(θ ∈ B | Y (n)) =

∫
B

[p(Y (n) | θ)]αpθ(θ)dθ∫
Θ

[p(Y (n) | θ)]αpθ(θ)dθ
.

This leads to the following α-VB objective

q̂(θ) = argmin
q∈Q

D(q||pα(· | Y (n))) = argmin
q

αΨ(q), (14)

where

Ψ(q) =

∫
Θ

q(θ) log

[
p(Y (n) | θ∗)
p(Y (n) | θ)

]
dθ − α−1D[q||pθ].

The variational expected log-likelihood ratio will be
hence referred to as the model-fit term and the re-
maining KL term will be hence referred to as the reg-
ularization term.

The importance of the α-VB framework comes from its
ability to upper bound the variational Bayesian risk,

the integral of r(θ, θ∗) = n−1Dα[p
(n)
θ ||p

(n)
θ∗ ] with re-

spect to q̂(θ), by the variational objective Ψ(q). Mini-
mizing the variational objective in turn minimizes the
variational risk.

Before proceeding we motivate the form of our opti-
mal risk bound. Consider preforming VI over the unre-
stricted class of densities over Θ. Minimizing the α-VB
risk bound is achieved by balancing the two terms in
terms in Ψ(q). By choosing

q(θ) =
pθ(θ)IBn(θ∗,ε)(θ)

Pθ [Bn(θ∗, ε)]
,

where Bn(θ∗, ε) is defined in (12), the model-
fit term can be shown to be of order Op(nε

2)
and the regularization term can be shown to be
α−1 log[Pθ{Bn(θ∗, ε)}−1], a multiple of the local
Bayesian complexity. This is the optimal risk
bound for variational inference considering the class
of all distributions as the variational family (Yang
et al., 2020). We summarize this in the theorem below.

Theorem 4.2. Assume q̂µ,σ satisfies (14) and q̂µ,σ �
pθ. It holds with P(n)

θ∗ -probability at least 1 − 2/[(D −
1)2n(1 + n−2)ε2] that,∫

1

n
D(n)
α (θ, θ∗)q̂µ,σ(θ)dθ

≤ Dα

1− αε
2 +

1

n(1− α)
log
{
Pθ [Bn(θ∗, ε)]

−1
}

+O(n−1).

We provide a sketch of the proof below. The full proof
can be found in section S2.6 of the supplementary file.
Following our above motivation, we aim to show that
there is a member of the GP-IVI family QGP such that
the model-fit term is of order Op(nε

2) and the regu-
larization term is proportional to the local Bayesian
complexity. We leverage the approximation properties
from §3 to construct an approximation that achieve
this balance. We construct this variational distribu-
tion as follows.

Let the prior distribution of θ is given by the density
pθ(θ) = f0(θ) ∈ Cβ [0, 1], β ∈ (2j, 2j + 2]. Let fβ = fj
be the density constructed as in (6) satisfying ‖φσ ∗
fβ − f0‖∞ = O(σβ). Define the density function

f̃β(t) =
fβ(t)IBn(θ∗,ε)∫
Bn(θ∗,ε) fβ(t)dt

(15)

and its corresponding variational density

qf̃β ,σ(θ) =

∫ ∞
−∞

φσ(θ − t)f̃β(t)dt. (16)

The model-fit term is bounded in high probability
using a straight forward application of Chebychev’s
inequality. Using (7), we bound the regularization
term proportional to the local Bayesian complexity.
Combining these and using Theorem 3.2 of Yang et
al. (2020) finishes the proof.

Assumption A1 Prior density pθ satisfies
log[Pθ{Bn(θ∗, ε)}−1] ≤ −nε2.

Remark 4.1. Let {pθ, θ ∈ Θ} be a parametric family
of densities. Assume for θ, θ1, θ2, there exists α > 0
such that D(θ∗‖θ) - ‖θ∗−θ‖2α, µ2(θ∗‖θ) - ‖θ∗−θ‖2α,
and ‖θ1 − θ2‖α - h(θ1, θ2) - ‖θ1 − θ2‖α. Then if
the prior measure possesses a density that is uniformly
bounded away from zero and infinity on Θ, then As-
sumption A1 is satisfied. Assumptions of this form
are common in the literature; refer to pg 517 (Ghosal
et al., 2000).

Corollary 4.1. Suppose the prior density pθ satis-
fies Assumption A1 and q̂ satisfies (14). It holds with
probability tending to one as n→∞ that,{∫

h2[p(· | θ)||p(· | θ∗)]q̂µ,σ(θ)dθ

}1/2

≤ O(n−1),
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demonstrating that the risk bound is parametric even
when a flexible class of variational approximation is
used.

5 Conclusion

To summarize, we have provided theoretical properties
of transformation-based models in non-parametric and
variational inferences in the context of NL-LVM. Fur-
ther work is needed to generalize some of our results
to higher dimensional models as several of the techni-
cal lemmas in the appendix hold only for dimension
d = 1. A natural follow-up to this work would be to
study the asymptotic distribution of the parameters of
interest or a finite dimensional functional of densities
arising from the estimates. These results would be in-
line with Bernstein-von Mises type theorems for the
GP-LVM and GP-IVI.
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