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Abstract

We provide a theoretical analysis on how gra-
dient clipping affects the convergence of the
incremental gradient methods on minimizing
an objective function that is the sum of a
large number of component functions. We
show that clipping on gradients of compo-
nent functions leads to bias on the descent
direction, which is affected by the clipping
threshold, the norms of gradients of compo-
nent functions, together with the angles be-
tween gradients of component functions and
the full gradient. We then propose some
sufficient conditions under which the incre-
ment gradient methods with gradient clip-
ping can be shown to be convergent under
the more general relaxed smoothness assump-
tion. We also empirically observe that the
angles between gradients of component func-
tions and the full gradient generally decrease
as the batchsize increases, which may help to
explain why larger batchsizes generally lead
to faster convergence in training deep neural
networks with gradient clipping.

1 Introduction

We consider the optimization problem of the form

min
x∈Rn

f(x) =
1

m

m∑
i=1

fi(x), (1)

where fi : Rn → R are differentiable nonconvex func-
tions, which arises in many deep learning tasks in var-
ious fields, such as computer vision, natural language
processing and so on. The objective function f(x) ac-
cumulates some specific losses on all training samples,
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which are referred to as those component functions
fi(x). Practically, to fasten the speed of computation,
the enormous amount of training samples are split in-
to batches, and then each fi(x) accumulates loss over
samples in each batch.

The incremental gradient method is widely used for
solving (1), which can be formulated as

xk+1 = xk − αk∇fik(xk), k = 0, 1, 2, · · · , (2)

with x0 being the initial value, αk > 0 being the step-
size and index ik ∈ {1, · · · ,m}. One typical choice for
ik is to uniformly draw each ik from the set {1, · · · ,m}
with replacement, in which (2) becomes the well known
stochastic gradient descent method (SGD). Another
commonly used choice for ik is the cyclic order from
1 to m periodically, in which (2) is generally reformu-
lated as

xk,i = xk,i−1 − αk∇fi(xk,i−1), (3)

i = 1, · · · ,m, k = 0, 1, 2, · · · ,

with x0,0 being the initial value and xk,0 = xk−1,m.
For simplicity of notation, we refer to (3) as IGC lat-
er on. IGC is often used in training neural language
models, where each fi(x) accumulates cross-entropy
loss over words in a sub-sequence (batch) of the whole
corpus. The order of fi(x) follows from the order of
the words in the corpus, and hence cannot be shuffled
generally. Thus the cyclic order becomes a natural
choice.

To tackle with the gradient explosion problem, a wide-
ly used technique is gradient clipping (Mikolov et al.,
2011a,b; Pascanu et al., 2013; Goodfellow and Bengio,
2016; Merity et al., 2018) as an intuitive approach, es-
pecially in training recurrent neural networks for neu-
ral language models, which shrinks the gradient when-
ever its norm exceeding some certain threshold η. We
formally define the clipping function C : Rn → Rn with
threshold η > 0 as

C(g; η) = min

{
1,

η

‖g‖

}
· g. (4)
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Then SGD with gradient clipping becomes

xk+1 = xk − αkC(∇fik(xk); η), (5)

and IGC with gradient clipping becomes

xk,i = xk,i−1 − αkC(∇fi(xk,i−1); η). (6)

Recently, a theoretical explanation for the effective-
ness of gradient clipping is provided in Zhang et al.
(2020), under a newly proposed relaxed smoothness
assumption, which is strictly weaker than the well
known gradient Lipschitz smoothness condition used
in literature. The Lipschitz smoothness condition as-
sumes that the gradient smoothness is upper bound-
ed, which may, however, not be satisfied in many deep
learning tasks (Sun, 2019). The relaxed smoothness
condition allow the gradient smoothness to grow with
the norm of the gradient, under which Zhang et al.
(2020) shows that the ordinary/stochastic gradient de-
scent (GD/SGD) methods with gradient clipping con-
verge arbitrarily faster than GD/SGD without gradi-
ent clipping. However, the clipping strategy in the
theorem for SGD (Zhang et al., 2020, Theorem 7) is
quite different from the practical strategy (4). Chen
et al. (2020) theoretically study gradient clipping in
SGD/private SGD, which is based on some symmet-
ric gradient distribution assumption. The symmetric
distribution assumption is suggested by empirical eval-
uations on private SGD, which adds a Gaussian noisy
vector to the gradient on a random subsample at each
iteration. However, such symmetric distribution is not
observed in tasks with SGD/IGC methods, especially
when large batchsizes are used.

In this paper, we propose theoretical analysis on S-
GD/IGC methods with gradient clipping, and provide:

• How and when clipping works. A key point
for convergence of the SGD/IGC with gradient
clipping is that (

∑m
i=1 C(∇fi; η),∇f) can be low-

er bounded by some constant rescaling of ‖∇f‖
or ‖∇f‖2. However, this might be violated with
inappropriate clipping, and additional constraints
should be applied to ensure this. We show that
this is influenced by the clipping threshold η, the
norms of ∇fi, and the angles between each ∇fi
and ∇f . We propose some sufficient conditions
theoretically, and also based on empirically ob-
servations. We also relate these conditions to as-
sumptions in literature (Zhang et al., 2020; Chen
et al., 2020).

• Theoretical analysis of SGD with clipping.
Based on these assumptions, we prove the con-
vergence of SGD with gradient clipping under the

more general relaxed smoothness condition pro-
posed in Zhang et al. (2020). Note that a theorem
has been proposed in Zhang et al. (2020) on the
convergence of SGD with clipping. However, the
clipping strategy there is quite different from the
practical strategy (4), and the proof there indeed
implies a rather strict assumption, although not
explicitly stated.

• Theoretical analysis of IGC with clipping.
We also prove the convergence of IGC with gra-
dient clipping. The proof for IGC exhibits more
challenges as (6) introduces an additional error
term on the difference between C(∇fi(xk,i−1))
and C(∇fi(xk,0)). We show that this error ter-
m can also be upper bounded even under the re-
laxed smoothness assumption and will not affect
convergence. To the best of our knowledge, this is
the first convergence result on IGC with gradient
clipping.

• Why larger batchsize leads to faster con-
vergence under gradient clipping. We also
empirically observe that the angles between each
∇fi and ∇f decrease as the batchsize increases.
This observation, together with the theoretical re-
sults, may help to explain why larger batchsize
generally leads to faster convergence when gradi-
ent clipping is applied at some extent.

The rest of the paper is organized as follows. Section 2
reviews some related work. Our main results are pre-
sented in Section 3: we first, in Section 3.1, study how
and when gradient clipping works and propose some
sufficient conditions which are intuitively reasonable
and also validated by empirical experiments, and then
based on these assumptions, convergence results of the
SGD and IGC methods with gradient clipping are, re-
spectively, established in Sections 3.2 and 3.3. Some
conclusion remarks are drawn in Section 4.

2 Related Work

Convergence analysis of gradient based methods has
always been an active research topic. There exist
many classical methods and corresponding conver-
gence results under different assumptions, e.g. see
Polyak (1987); Nesterov (2004); Boyd and Vanden-
berghe (2008); Bertsekas (2016); Necoara et al. (2018)
and references therein.

For the problem of minimizing the sum of compo-
nent functions, which arises in many machine learn-
ing problems, incremental gradient method has been
one of the natural choices. In each iteration step, in-
stead of computing the full gradients (summing gra-
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dients of all component functions), incremental gra-
dient method only selects a part of component func-
tions and uses their gradients as approximations to
the full gradients. There exist several strategies for
selecting the component functions. The classical s-
tochastic gradient method (SGD) randomly but uni-
formly select one component function in each itera-
tion, that is examples are picked randomly with re-
placement, and has been widely studied in machine
learning community (Bottou, 2010; Ruder, 2016; Bot-
tou et al., 2018). Many theoretical results on its con-
vergence behavior exist in literature (Bertsekas, 2010;
Bottou et al., 2018; Nguyen et al., 2018; Sun, 2019).
Another strategy is to take the cyclic order, which is
often used in training recurrent neural network based
language model, as the order of the component func-
tions follows from the order of words in corpus and
hence cannot be shuffled generally. Some convergence
results can be found in Bertsekas (1997); Bertsekas and
Tsitsiklis (2000); Gürbüzbalaban et al. (2015a); Bert-
sekas (2016). Still another choice in practice (Rud-
er, 2016) is the cyclic order with random reshuffling,
where the component functions are selected one by
one in each cycle, but the order after each cycle is ran-
domly reshuffled. This is the strategy that picks the
examples with replacement. It is empirically observed
in Bottou (2009) that the randomly reshuffling strate-
gy converges much faster than the classical SGD. This
phenomena is explained theoretically in HaoChen and
Sra (2019); Gürbüzbalaban et al. (2015b); Jain et al.
(2019); Safran and Shamir (2019).

However, neither of these results consider gradient
clipping, until recently Zhang et al. (2020) provides
a theoretical explanation on why gradient clipping ac-
celerates convergence. The key contribution is a newly
proposed relaxed smoothness condition, which allows
the gradient smoothness to grow with the norm of the
gradient. This assumption relaxes the pervasive gradi-
ent Lipschitz smoothness condition in literature. Un-
der this relaxed smoothness condition, the ordinary
GD with gradient clipping is shown to be arbitrarily
faster than GD without clipping. A convergence result
on SGD with gradient clipping is also proposed there.
However, the clipping strategy used there is quite dif-
ferent from the practical clipping strategy (4), and the
setting in the theorem indeed assumes that the rela-
tive difference between the unbiased stochastic gradi-
ent and the exact gradient is rather small, although
it is not explicitly stated, which restricts the result
in a small domain (Please refer to the last paragraph
of Section 3.1 below for details). Chen et al. (2020)
shows that gradient clipping might lead to bias in the
gradient direction, which would prevent convergence
in the worst case. Based on the symmetric gradient
distribution empirically observed from tasks with pri-

vate SGD, Chen et al. (2020) provide theoretical expla-
nation why SGD/private SGD with gradient clipping
are effective. However, such symmetric gradient dis-
tribution from private SGD is not observed for tasks
with SGD/IGC, and the convergence result for SGD
with gradient clipping is under the standard gradient
Lipschitz smoothness condition, instead of the weaker
relaxed smoothness condition.

3 Theoretical Analysis

In this section, we study the convergence of the S-
GD/IGC methods (with constant stepsize α) with gra-
dient clipping. We first state some assumptions.

• (A1). Assume that f(x) is bounded below, that
is,

f(x) ≥ f∗, for any x ∈ Rn. (7)

• (A2). (Relaxed Smoothness (Zhang et al.,
2020)). There exists nonnegative scalars L0 and
L1, such that for any x ∈ Rn,

‖∇2f(x)‖ ≤ L0 + L1‖∇f(x)‖. (8)

When L1 = 0, (8) reduces to the pervasive gradient
Lipschitz smoothness condition in literature.

Recall that SGD with constant stepsize α and gradient
clipping threshold η iterates as

xk+1 = xk − αC(∇fik(xk); η), k = 0, 1, · · · , (9)

and IGC with constant stepsize α and gradient clip-
ping threshold η iterates as

xk,i = xk,i−1−αC(∇fi(xk,i−1); η),

k = 0, 1, · · · , i = 1, · · · ,m. (10)

Write xk = xk,0 = xk−1,m, then (10) gives

xk+1 = xk − α
m∑
i=1

C(∇fi(xk,i−1); η), k = 0, 1, · · · .

(11)

For simplicity of notation, we write (9) and (11) in the
form

xk+1 = xk − αgk, k = 0, 1, · · · , (12)

where gk = C(∇fik(xk); η) for SGD with gradient clip-
ping and gk =

∑m
i=1 C(∇fi(xk,i−1); η) for IGC with

gradient clipping. Using Taylor’s theorem, we have

f(xk+1) ≤f(xk)− α(gk,∇fk)

+
‖xk+1 − xk‖2

2

∫ 1

0

‖∇2f(γ(t))‖dt, (13)
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where ∇fk = ∇f(xk) and γ(t) = xk + t(xk+1 − xk).
For SGD with gradient clipping,

E[(gk,∇fk)] =
1

m

m∑
i=1

(C(∇fi(xk); η),∇fk), (14)

and for IGC with gradient clipping,

(gk,∇fk)

=

(
m∑
i=1

C(∇fi(xk,i−1); η),∇fk

)

=

(
m∑
i=1

C(∇fi(xk); η),∇fk

)
(15)

+

(
m∑
i=1

C(∇fi(xk,i−1); η)− C(∇fi(xk); η),∇fk

)
.

From (14) and (15), the key point to ensure conver-
gence is whether the following condition

m∑
i=1

(C(∇fi(xk); η),∇fk) ≥ C1‖∇fk‖ or C2‖∇fk‖2

(16)

holds for some positive constants C1, C2, which will be
discussed in the following subsection.

3.1 How and when clipping works

It should be noted that gradient clipping may not al-
ways work. Sometimes inappropriate clipping might
even lead to divergence.

Example 1. Consider the example when f1(x) =

f2(x) = −x2, f3(x) = 5x2, and f(x) = 1
3

∑3
i=1 fi(x) =

x2, which obviously has the optimum x∗ = 0. If
we start with x0 = 1 and set the clipping threshold
η = 2, then C(∇f1(1); 2) = C(∇f2(1); 2) = −2 while
C(∇f3(1); 2) = 2, and hence E[C(∇fi(1); 2)] = − 2

3 , re-
sulting in E[x1] = x0−αE[C(∇fi(1); 2)] = 1+ 2

3α, even
further away from the optimum x∗ than x0 since the
stepsize α > 0.

Without clipping, ∇f is dominated by ∇f3, the cor-
rect descending direction. However, with inappro-
priate clipping, C(∇fi) are all in similar magnitude,
and E(C(∇fi)) is then biased to the opposite direction
(that is, E(C(∇fi),∇f) < 0), leading to divergence.
We will show later that, the factors on the effective-
ness of clipping include the clipping threshold η, the
magnitude ‖∇fi‖, and also the angles θki between each
∇fi and ∇f .

Denote gki = ∇fi(xk), then

∇fk , ∇f(xk) =
1

m

m∑
i=1

gki. (17)

Each gki can be decomposed as

gki = βki∇fk + tki, (18)

where

βki =
(gki,∇fk)

‖∇fk‖2
=
‖gki‖
‖∇fk‖

cos θki, (19)

with θki being the angle between gki and ∇fk, and
tki ∈ ∇f⊥k = {z|(z,∇fk) = 0}. Note that (17) and
(18) imply that

m∑
i=1

βki = m,

m∑
i=1

tki = 0. (20)

Define

γki = min{1, η/‖gki‖}, (21)

then

C(gki; η) = γkigki = γkiβki∇fk + γkitki, (22)

and hence (
m∑
i=1

C(gki; η),∇fk

)

=

(
m∑
i=1

(γkiβki∇fk + γkitki),∇fk

)

=

m∑
i=1

γkiβki‖∇fk‖2, (23)

where the first equality uses (22) and the second e-
quality follows from the fact tki ∈ ∇f⊥k . Hence we are
to check whether

∑m
i=1 γkiβki can be lower bounded

by some positive scalar.

If the threshold η is sufficiently large such that η ≥
‖gki‖ for all i, then γki = 1 (implying no clipping at al-
l), and hence

∑m
i=1 γkiβki =

∑m
i=1 βki = m, a classical

result. However, when clipping does happen, deter-
mining the sign of

∑m
i=1 γkiβki is rather complicated.

We start with the very simple case when m = 2, which
leads to a rather promising result.

The case when m = 2. The restrictions (20) on βki
and tki (i = 1, 2) become

βk1 + βk2 = 2, tk1 = −tk2.

The first equality implies that at least one of βki is
positive. If both βki are nonnegative,

∑2
i=1 γkiβki > 0

holds naturally. If one of βki is negative, we can show
that

∑2
i=1 γkiβki ≥ 0 for any clipping threshold η.

Without loss of generality, assume that βk2 < 0, then
βk1 > −βk2 > 0, and hence

‖gk1‖2 =β2
k1‖∇fk‖2 + ‖tk1‖2

>β2
k2‖∇fk‖2 + ‖tk2‖2 = ‖gk2‖2.

We consider the following three different cases on η:
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1. When η ≥ ‖gk1‖ > ‖gk2‖, γk1 = γk2 = 1, and

then
∑2
i=1 γkiβki = 2.

2. When ‖gk1‖ > η ≥ ‖gk2‖, it holds that γk1 =
η√

β2
k1‖∇fk‖2+‖tk1‖2

, γk2 = 1, and then

β2
k1η

2 ≥ β2
k1‖gk2‖2 = β2

k1(β2
k2‖∇fk‖2 + ‖tk2‖2)

≥ β2
k2(β2

k1‖∇fk‖2 + ‖tk1‖2),

resulting in γ2k1β
2
k1 ≥ γ2k2β

2
k2, and hence∑2

i=1 γkiβki ≥ 0.

3. When ‖gk1‖ > ‖gk2‖ > η, it holds that
γki = η√

β2
ki‖∇fk‖2+‖tki‖2

. Then β2
k1(β2

k2‖∇fk‖2 +

‖tk2‖2) ≥ β2
k2(β2

k1‖∇fk‖2+‖tk1‖2) gives γ2k1β
2
k1 ≥

γ2k2β
2
k2, and then

∑2
i=1 γkiβki ≥ 0.

In all, when m = 2,
∑m
i=1 γkiβki ≥ 0 always holds,

which is rather promising, although there is still a gap
compared with the desired property (16).

The above result for m = 2 can be applied on general
m > 2, in the sense that

(B1). if all gki(i = 1, · · · ,m) can be partitioned into
pairs (say, the j-th pair consists of gk,2j−1 and gk,2j)
such that with the decomposition similar as in (18), it
holds for all j that

βk,2j−1 + βk,2j > 0, tk,2j−1 + tk,2j = 0, (24)

then after clipping with any threshold η > 0, the re-
sulted

∑m
i=1 γkiβki will always be nonnegative. Note

that (B1) assumes some ‘symmetric’ property of gki in
the sense that gki can be grouped into pairs such that
the projections onto ∇f⊥k in each pair are symmetrical
allocated. It can be regarded as a discrete version of
the (mixture of) symmetric distribution assumption in
Chen et al. (2020). We will explain this in more de-
tails later. Indeed, from the deduction above, we can
see that the second condition in (24) can be relaxed
to ‖tk,2j−1‖ = ‖tk,2j‖, which is beyond the symmetric
distribution assumption in Chen et al. (2020). How-
ever, the restriction ‖tk,2j−1‖ = ‖tk,2j‖ cannot be fur-
ther relaxed generally, as the deduction above heav-
ily relies on the fact ‖tk1‖ = ‖tk2‖. For example, if
‖tk1‖ � ‖tk2‖ (resulting in ‖gk1‖ � ‖gk2‖) and η is
small (for example, similar as ‖gk2‖), then γk1 will be
rather small, while γk2 ≈ 1. In this case, although
βk1 + βk2 = 2 > 0, γk1βk1 + γk2βk2 would be negative
if βk2 < 0.

More general m > 2. The case for general m >
2 is much more complicated. Even when all tki,
projections onto ∇f⊥k , are zero, under which γki
becomes min{1, η/(|βki|‖∇fk‖)}, the perturbed sum

∑m
i=1 γkiβki might be negative although

∑m
i=1 βki =

m. Example 1 illustrates such a counterexample for
m = 3.

If η is small enough such that ‖gki‖ ≥ η for all i =
1, · · · ,m, then γki = η/‖gki‖, and hence

m∑
i=1

γkiβki =
η

‖∇fk‖

m∑
i=1

cos θki,

which will obviously be positive if

(B2).
∑m
i=1 cos θki > 0.

However (B2) can only assuring
∑m
i=1 γkiβki > 0 for

sufficiently small η. If not,
∑m
i=1 γkiβki might still be

negative even under (B2).

A sufficient condition. A simple sufficient condi-
tion for

∑m
i=1 γkiβki > 0 is βki > 0 (or equivalently

cos θki > 0) for all i = 1, · · · ,m, as γki are always
positive. This seems to contradict with numerical re-
sults in Chen et al. (2020). For example, Figure 3
there illustrates that the consine similarities between
per-sample stochastic gradients and the true gradient
is approximate symmetric around 0, with some be-
ing positive and some being negative. However, the
setting there is different from ours. Instead of SGD,
differentially private stochastic gradient descent (DP-
SGD) is used there, where at each iteration, a gradient
based on a random sample is first computed, followed
by a perturbation with a noisy gradient drawn from
a multivariate Gaussian distribution. In training deep
neural networks, for example in computer vision and
natural language processing tasks, the objective func-
tion f(x) is the sum of component functions, each of
which represents some kind of loss on each individual
sample. The enormous samples are generally split in-
to batches, with each fi(x) being the sum of the same
loss function, now applying on the i-th batch of sam-
ples. This intuitively suggests that as the batchsize
increases, fi(x) should be more similar to f(x) (in the
extreme case when all training samples are fed into one
batch, fi(x) is exactly f(x)). We test ResNet18 (He
et al., 2016) on CIFAR-10 dataset (image classifica-
tion, Krizhevsky and Hinton (2009)) and AWD-LSTM
(Merity et al., 2018) on PTB dataset (neural language
model, Mikolov et al. (2010)), and find out that cos θki
is always positive unless the batchsize is unpractical-
ly small (Results on CIFAR-10 with batchsize=1 show
that around 90% of cos θki are positive.)

Now we assume that all cos θki ≥ 0. Combining βki =
(gki,∇fk)/‖∇fk‖2 and

∑m
i=1 βki = m leads to

m =

m∑
i=1

βki =

m∑
i=1

‖gki‖
‖∇fk‖

cos θki, (25)
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or equivalently,

m∑
i=1

‖gki‖ cos θki = m‖∇fk‖. (26)

Denote mg = mini ‖gki‖ and Mg = maxi ‖gki‖. Then
it follows from (26) that

m‖∇fk‖ ≤Mg

m∑
i=1

cos θki,

and hence

m∑
i=1

cos θki ≥ m‖∇fk‖/Mg. (27)

We can then provide lower bounds on
(
∑m
i=1 C(gki; η),∇fk) =

∑m
i=1 γkiβki‖∇fk‖2 as in

(23) as follows:

1. If η ≥Mg, then γki = 1 for all i = 1, · · · ,m, and(
m∑
i=1

C(gki; η),∇fk

)
=

m∑
i=1

βki‖∇fk‖2 = m‖∇fk‖2.

(28)

2. If η ≤ mg, then γki = η/‖gki‖ for all i = 1, · · · ,m,
and(

m∑
i=1

C(gki; η),∇fk

)
=

(
η

m∑
i=1

cos θki

)
‖∇fk‖.

(29)

3. If mg < η < Mg, then(
m∑
i=1

C(gki; η),∇fk

)

=

m∑
i=1

min{‖gki‖, η}‖∇fk‖ cos θki

≥
m∑
i=1

mg‖∇fk‖ cos θki ≥ m
mg

Mg
‖∇fk‖2, (30)

where the last inequality uses (27).

Hence if we assume that

• (A3). All cos θki ≥ 0, and there exists some con-
stant c1 > 0 such that

1

m

m∑
i=1

cos θki ≥ c1. (31)

• (A4). There exists some constant c2 > 0 such
that

mg

Mg
≥ c2, (32)

where mg = mini ‖gki‖ and Mg = maxi ‖gki‖,

then by combining (28)-(30) we have(
m∑
i=1

C(gki; η),∇fk

)
≥ m ·min {ηc1, c2‖∇fk‖} ‖∇fk‖.

(33)

To validate Assumptions (A3) and (A4), we again test
on CIFAR-10 and PTB datesets. The following Fig-
ures 1(a) and 1(b) illustrate 1

m

∑m
i=1 cos θki in (A3)

with respect to training epoch k, with different batch-
sizes. Figures 1(c) and 1(d) show mg/Mg in (A4) with
different batchsizes. Figures 1(a) and 1(c) are result-
s on CIFAR-10, while Figures 1(b) and 1(d) are on
PTB.

(a) A3 (CIFAR-10) (b) A3 (PTB)

(c) A4 (CIFAR-10) (d) A4 (PTB)

Figure 1: Results of 1
m

∑m
i=1 cos θki in (A3) and

mg/Mg in (A4) with respect to training epoch k, with
different batchsizes: the first row for 1

m

∑m
i=1 cos θki

in (A3); the second row for mg/Mg in (A4); the first
column on CIFAR-10; the second column on PTB.

These results also show that as the batchsize increas-
es, cos θki tends to increase, implying that the angle
between ∇fi and ∇f tends to be smaller, which is in
line with intuition. Regarding mg/Mg, such trend is
more significant on CIFAR-10.

We will show the convergence of SGD/IGC with gradi-
ent clipping under Assumptions (A1)-(A4) in the fol-
lowing sections.

Comparison with assumptions in literature.
Theoretically verifying (16) is rather complicate,
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which relies on the threshold η, norms ‖gki‖ and angles
θki. We provide some sufficient conditions in the sec-
tion as above, which can be related to existing assump-
tions in literature, specifically in Zhang et al. (2020);
Chen et al. (2020).

The footstone in Chen et al. (2020) is the symmetric
distribution of ξ = gki−∇fk1, assuming p(ξ) = p(−ξ)
with p being the probability density function. In the
discrete case, this corresponds to that gki can be split
into pairs such that in each pair gk,2j−1 = ∇fk + ξ
and gk,2j = ∇fk − ξ, which satisfies (24) in (B1). Fur-
thermore, as mentioned before, the second restriction
in (24) can be relaxed to ‖tk,2j−1‖ = ‖tk,2j‖, that is,
tki is not necessarily to be symmetrically allocated.

The convergence result for SGD with gradient clip-
ping in Zhang et al. (2020) is based on the assumption
‖gki−∇fk‖ ≤ τ for some positive τ , which superficial-
ly only restricts the norms, not the angles. However,
the setting in Zhang et al. (2020) 2 is

α = min

{
1

20L0
,

1

128L1τ

}
, (34)

xk+1 = xk −min

{
1

16L1(‖gki‖+ τ)
, α

}
gki. (35)

The term min{ 1
16L1(‖gki‖+τ) , α} should serve as clip-

ping, although different from the standing clipping s-
trategy (4). Such clipping occurs only when

1

16L1(‖gki‖+ τ)
≤ α ≤ 1

128L1τ
,

where α ≤ 1
128L1τ

follows from (34), which implies that

τ ≤ 1
7‖gki‖. This means that if τ is large, the clipping

will never happen, and (35) is just the standard SGD
with constant stepsize α. In other words, (34) and (35)
actually implies the assumption

‖gki −∇fk‖
‖gki‖

≤ 1

7
, (36)

although not explicitly stated, which is more restric-
tive than (A3) and (A4).

3.2 Convergence of SGD with gradient
clipping

In this section, we are to show the convergence of SGD
with gradient clipping (9) under Assumptions (A1)-
(A4), as in the following theorem.

1For coincidence, we rewrite with our notations when-
ever necessary.

2Again we rewrite by using our notations, and we be-
lieve that there is a typo in the original paper.

Theorem 3.1. Assume that (A1)-(A4) hold. If

α ≤ c1
4ηL1

, (37)

then the iterates {xk} generated by (9) satisfy

1

T + 1

T∑
k=0

min {ηc1, c2‖∇f(xk)‖} ‖∇f(xk)‖

≤2(f(x0)− f∗)
(T + 1)α

+ 5αη2L0 +
αη3L1c1

c2
. (38)

As the number of iteration T tends to infinity, the
term on the right hand side of (38) converge to
5αη2L0 +αη3L1c1, which tends to zero as α approach-
es zero. This is similar as the convergence behavior of
the standard SGD method without gradient clipping
(for example see Sun (2019)).

Both Zhang et al. (2020) and Chen et al. (2020) present
theoretical results on the convergence of SGD with gra-
dient clipping. However, the clipping strategy (35) in
Zhang et al. (2020) is different from the practical clip-
ping strategy (indeed, the term 1

16L1(‖gki‖+τ) explicitly

specifies some fixed clipping threshold η and stepsize
α), and the setting (34) and (35) imply the rather
strict assumption (36) to activate clipping. The clip-
ping strategy in Chen et al. (2020) takes the standard
clipping form, while the convergence result is based on
the symmetric distribution assumption, which is suit-
able for DP-SGD. For standard SGD, our empirical
results show that it does not hold generally. Instead,
Assumptions (A3) and (A4) are more reasonable. Fur-
thermore, the result in Chen et al. (2020) is under the
standard gradient Lipschitz smoothness assumption,
which is strictly stronger than the relaxed smoothness
assumption (A2) considered in Zhang et al. (2020) and
this paper.

Theorem 3.1 may also help to explain why larger
batchsize generally leads to faster convergence with
gradient clipping at some extent, as the term on
the left hand side of (38) includes c1 and c2, which
tend to become greater as batchsizes increase. Hence
‖∇f(xk)‖ should converge faster, if regarding the right
hand side term as a constant.

3.3 Convergence of IGC with gradient
clipping

In this section, we consider the IGC with gradient clip-
ping (10) or (11). Compared with (14), (15) includes
an additional term(

m∑
i=1

C(∇fi(xk,i−1); η)− C(∇fi(xk); η),∇fk

)
. (39)
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To bound this term, we further assume that

(A5). Each fi(x) also satisfies the relaxed smoothness
assumption (A2), that is,

‖∇2fi(x)‖ ≤ L0i + L1i‖∇fi(x)‖, i = 1, · · · ,m.
(40)

Then the following lemma gives an upper bound of the
absolute value of the term as in (39).

Lemma 3.1. Assume that (A1)-(A5) hold. If

α ≤ min

{
1

5mL0i
,

1

8mηL1i

}
, (41)

then it holds that∣∣∣∣∣
(

m∑
i=1

C(∇fi(xk,i−1); η)− C(∇fi(xk); η),∇fk

)∣∣∣∣∣
≤ αηm2G‖∇fk‖, (42)

where

G = 5 max
1≤i≤m

L0i + 16η max
1≤i≤m

L1i. (43)

We are now ready to state the theorem on the con-
vergence of the IGC method with gradient clipping as
follows.

Theorem 3.2. Assume that (A1)-(A5) hold. If

α ≤ min

{
c1

2m(2ηL1 +G)
,

1

5mL0i
,

1

8mηL1i

}
, (44)

then the iterates {xk} generated by (10) and (11) sat-
isfy

1

T + 1

T∑
k=0

min {ηc1, c2‖∇f(xk)‖} ‖∇f(xk)‖

≤2(f(x0)− f∗)
(T + 1)αm

+ 5αmη2L0 +
αmη2c1(2ηL1 +G)

2c2
.

(45)

From (45) and (38) we can see that, the IGC with gra-
dient clipping exhibits similar convergence behavior as
the SGD with gradient clipping: as T tends to infini-
ty, the term on the right hand side of (45) converge to
some O(α), which tends to zero as α approaches ze-
ro. To the best of our knowledge, Theorem 3.2 is the
first result on the convergence of IGC with gradien-
t clipping under the relaxed smoothness assumption,
which is strictly weaker than the widely used gradient
Lipschitz smoothness condition.

4 Concluding Remarks

In this paper, we manage to understand the gradient
clipping in the incremental gradient method with s-
tochastic selection (SGD) and cyclic order (IGC). As
there exist examples in which gradient clipping might
bias the descent direction and lead to divergence, ad-
ditional assumptions should be made to ensure con-
vergence. We show that it depends on the clipping
threshold, ‖∇fi‖ and the angles between each ∇fi and
∇f . We propose some assumptions and compare them
with those in literature. Finally, based on Assumption-
s (A3) and (A4) induced from intuition and empirical
observations, we prove the convergence of the SGD and
IGC methods with gradient clipping. Adaptive gradi-
ent methods (such as AdaGrad, Adam and so on) are
also popular in practice. The problem of how gradien-
t clipping works with these methods deserves further
study, which will be left as future work.
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