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1 ADDITIONAL DISCUSSIONS

1.1 Examples of the “symmetric” property and “index-shift” operations mentioned in the
notation

The symmetric structure of a tensor is defined as the invariance if arbitrarily reshuffling a sub-collection of
the indices. For instance, assume that we have a degree-3 tensor G € R19X10x10 of which the indices can be
represented as G, i, 5, then the tensor G is symmetric among the first 2 indices implies that the value of G will
be not changed if we arbitrarily exchange its first 2 indices, i.e., G;, i,,i, = gi%,;wva]

The indez-shift operation of a tensor is defined as rotating the indices of a tensor in counterclockwise order. For
instance, assume a degree-(p + 1) tensor G € R"""" | of which the indices can be represented as Giyin,..ripripir
The k-step (0 < k < p) index-shift operation of G among the first p indices outputs a new degree-(p + 1) tensor
1S,(9) € ]R”(pﬂ), of which the indices are converted as G;,,, iy v....ips1,i1,....ir- Moreover, we can easily know
that the index-shift operation did not change the spectral norm of the tensor. This claim would be used in the
PROOFS sections.

1.2 Visualization of the bound given in Theorem 1

Theorem 1 in the main paper shows that the long memory property of the TP recurrent model requires a
sufficiently large degree parameter p. In Figure I} we visualize the curve the bound given in Theorem 1. As
shown in Figure [l to obtain the long memory property, the TP recurrent model requires a higher degree with
decreasing the variance 02 . As discussed in the main paper, the weights of a well-trained RNN are generally
far away from 1. In this case, the variance o2 would be quite small. It implies that a high model degree is
necessary to obtain the long memory. On the other side, we can see that the bound decreases when increasing
the dimension of the hidden state. It is because the spectral norm of the weight tensor becomes more easily
larger than 1 if fixing the distribution yet increasing the dimension. This fact partially reflects why an RNN
with higher dimensional hidden states can “remember” more information from data, yielding lower training loss.
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Figure 1: Hlustration to the bound given in Theorem 1 of the main paper, where we set § = le — 9.

2 PROOFS

Below, we give detailed proofs of the results that are missing in the main paper. Before the proofs, we first recall
the two assumptions used in the main paper:

Assumption 1. (1) The joint density function of £(t) is continuous and positive everywhere; (2) for some k > 2,
Elle®]|5 < oo.

Assumption 2 (sub-Gaussian and decoupling). The tensor M is obtained by the average over all the first

(p+1)

p indices shifted variants of a tensor A € R™ is independent, zero-mean

. . . . 2,2
and satisfied E (em”“ ~~~~~ 1p+1> <o t/2,

, of which each entries A;, i, ... .\,

2.1 Proof of Lemma [1]

Recall the tensor-power recurrent network process (TP-RNP):

s = M x1 87D x5 - x, 80D 4 e®

1
=M- (s(t_1)>®p +e®, vt ’ 0

Lemma 1 in the main paper shows TP-RNP has short memory if the spectral norm of the tensor M is bounded.

Lemma 1. Under Assumption the tensor-power recurrent network process (TP-RNP) has short memory
under Def. 1 if the spectral norm of the tensor M obeys ||[M||2 < 1.

Proof. Define the function M (x) := M x1 x X --- X, X, then the operator norm ||M]||,, obeys

[Mllop = sup [[M(x)[la < [[Mlla =~ sup . [|Mx1x1 X2 XX, (2)
lxll2<1 Ixill2<Li€(p]
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As ||M]|2 < 1, the function M (x) is a bounded operator. There therefore exists two constants 0 < a < 1 and b,
such that the inequality ||M(x)[|2 < a||x|2 + b for all x € R™. Known from Theorem 1 given in the main paper
that TP-RNP is geometrically ergodic, and therefore has short memory. O

2.2 Proof of Theorem 1l

Theorem 1 (Long memory requires a high model degree.). Under Assumptions |l and @ with high
probability, if TP-RNP has the long memory under Def. 1 given in the main paper, then the following

inequality obeys:
C C
p>p20<1+ 1+1—2>—1, (3)

where py = log(3/2), and C1, Cy denote two positive constants.

Proof. We prove the theorem from its contrapositive side. First, we prove the conditions to bound the spectral
norm of the degree-(p + 1) tensor A € R"<p+l), which are used to generate the partially symmetric tensor M in
TP-RNP. Known from Theorem 1 in [Tomioka and Suzuki, 2014], a non-asymptotic bound of the spectral norm
A is given under Assumption 2:

IAll2 < /802 (n(p+ 1)log ((p + 1)/po) + log(2/9)), (4)

with probability at least 1 —¢. Because the index-shift operations do not change the spectral norm of the tensor,
we have ||[M||2 < /802 (n(p + 1) log ((p + 1)/po) + log(2/5)) by Assumption 2. Therefore, we can know by some
calculation that ||M||2 is upper bounded if the following inequality is held:

n(p+ 1) log((p+1)/po) + log(2/6) < 1/80>. (5)
Let p = (p+1)/po and use the inequality log(p) < p — 1, then we know the upper bound exists if
p* — P < 1/80°pon —log(2/8) /npo. (6)

Since p > 0, we can solve the above inequality by finding the positive root of the quadratic equation on the
left-hand side, i.e.,

Y

no n

p< 5 7 (7)
where C7 = 1/(21log(3/2)) and Cy = 4log(2/6 — 3/2). Known from Lemma 1 that the model has short-term
memory if the spectral norm of M is bounded, we take the above inequality to obtain our claim. O

2.3 Proof of Lemma [2

Recall the tensor-power (TP) recurrent model given in the main paper:

<) <)
h® — G x, <h<t—1>> Ko -ee %, <h<t—1>)

(t) p
=G Xt—1
h¢=1

The following lemma gives the Jacobian of the model:
Lemma 2 (Jacobian of the model). For any tensor G € R *™ of degree-(p+1), p > 0, the Jacobian matriz
ob ith respect to Eq. is equal to

ah(i—l)
J (hu—l); X(z‘))

on® P (@ ®p/{k} 0,\’ (9)
= onG-D > |9 (h@‘—l)) Xpt (Im>

k=1
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where 0; € RYX™ denotes the matriz filled by zeros, I,,, € R™*™ is an identity matriz, and the operator ( - )®p/{k}
denotes the sequential “tensor-vector” product along the indices in the ordered set [p|/{k}. If G is symmetric
among the first p indices, then Eq. @D can be simplified as

A A x(® \®@~Y 0,
Js(h(zfl);x(l)) =p g . <h(t_1)) Xp+1 (Im). (10)

Proof. At the beginning, we first give the Jacobian of Eq. without the force term x(¥). Specifically, assume
the function

h() = G, - W71 @, (11)
Then
Lemma 3 (Jacobian without the force term). The Jacobian matriz 8‘31}(‘,75(1)1) with respect to Eq. 1s equal
to
oh) L 1\ @/ (k)
g = 2 G (W) 12)

k=1

where the operator (-)®p/{k} denotes the sequential “tensor-vector” product along the modes in the ordered set

[pl/{k}-

Proof. Construct the functions f; as
filxa, o0 Xp) = Gt X1 X1 X o+ Xp Xy, (13)

where Gpp,,; denotes the sub-tensor of Gy, by fixing the last index equaling [. Therefore, the above equation can
be rewritten as

filx1,...,%xp)

-
- <® }Xk> (Ghn ]y xir 0 € [P, (14)

—kelp]/{i

Hit:

where @ke[p]/{i}xk denotes the sequential Kronecker product based on the inverse order, i.e., X, ® Xp_1 ® - -

and [-];) denotes unfolding a tensor along the i-th index [Cichocki et al., 2007]. Then the Jacobian of f; is given

as
(Jac*,l)(xh.,.,xp) = (H1 Hg e Hp) . (15)

Then we have

Jac(x — x%P)

= (Jacs1)(z,....z) - Jac(x = (X,..., X))
= Z H;
i€[p] (%00 s) : (16)
.
=> (® _ Xk> [ghh,l]g)
i) e/}
i€lp]

where the last equation holds using the basic calculation of tensor algebra. Overall the full Jacobian 68}&‘7& is

obtained by concatenating Eq. for all possible I.

"We apply the symbol ® to denote both the Kronecker product and tensor product without ambiguity.
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Using the result in Lemma 2, we obtain Eq. @ by the chain rule. Construct a dummy vector as s(t~1 =
(x®-T, h(tfl)’T)T € R™ with the function

s = Q (s(t*1)>®p s (17)

where G € R denotes a tensor by padding the G with zeros along the last index. Using the dummy vectors,
we have the following equation by the chain rule of derivatives,

Ah®) oh(®) ds Hs(t—1)

GG ~ 85 350D Qhi-1 18)
The proposition is proved by substituting the result in Lemma [2| and
oh®) ost=1) 0,
5 = (L, 0;) and =D = (Im> (19)
into Eq. . O

2.4 Proof of Theorem 2

Theorem 2 (High degree models lead to unstable dynamics.). Given the tensor G with the partially

structure of the first p indices, of which G also has mon-zero sub-blocks with respect to U = (OlT Im)T, i.€e.
|G - U®P||y #£ 0, for any positive number K > 0 and p > 1, there always exist a pair of vectors h € R™ and
x € R!, such that ||Js(h;x)||, > M.

Proof. We first have a lower bound of the Jacobian J,. Specifically, let s := (XT hT)T € R™ and s # 0, then we
have

A A (GRS

-1 (o) ]
[Ivll2<0 2

(20)

The second equation holds according to the definition of the matrix spectral norm. Next, we let x = 0 and
h # 0, then the equations above can be rewritten as

175 (h; )|,

=p sup |[[(G-U®P) h®E=b x v
[IvIl2 <0 | N~

gi= 2 (21)

=p|h[*~! sup |G- (h/|h)2)*" 7Y x,v
HV 2<0 _7’_/
h:= 2
> plh[[P~ |G - h®P,

The inequality holds by v = h. Since G # 0, there must exist h # 0 such that HG : l_1®p” , > 0. Therefore, given

1/(p—1)
arbitrary M > 0, we can always find h # 0 and |/hl/s > (m) such that [|Js(h;x)||, > M. O
2

3 ADDITIONAL EXPERIMENTAL RESULTS

3.1 The single-cell experiment
3.1.1 Datasets

In this experiment, we exploit the same datasets in [Zhao et al., 2020] to demonstrate the effectiveness of the
model. The description of the datasets is shown below. The lengths for training, validation, and test sets are
given in Table |1} More detailed discussions about the statistic property of data are given in [Zhao et al., 2020].
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ARFIMA series (ARFIMA). The data are generated as a series of length 4001 using the model (1 —0.7B +
0.4B?)(1 — B)*'Y; = (1 — 0.2B)e; with obvious long memory effect.

Dow Jones Industrial Average (DJI). The raw dataset contains DJI daily closing prices from 2000 to 2019
obtained from Yahoo Finance. The data is converted to absolute log return for 5030 days in order to model the
long memory effect in volatility.

Metro interstate traffic volume (Traffic). The raw dataset contains hourly Interstate 94 Westbound traffic
volume for MN DoT ATR station 301, roughly obtained from MN Department of Transportation. The data is
converted to de-seasoned daily data with length 1860.

Tree ring (Tree). Dataset contains 4351 tree ring measures of a pine from India Garden, Nevada Gt Basin
obtained from R package tsdl.

Table 1: Data length of training, validation, and test sets for each dataset.

Dataset Training Validation Test

ARFIMA 2000 1200 800
DJI 2500 1500 1029
Traffic 1400 200 259
Tree 2500 1000 850

3.1.2 Additional experimental results

Average RMSE and standard deviation of the experimental results are given in the main paper. Below we provide
results in terms of mean absolute error (MAE, Table [2) and mean absolute percentage error (MAPE, Table (3),
respectively.

3.2 The seq2seq experiment
3.2.1 Datasets and Pre-Processing

Genz. Genz functions can be used as the basic expression of higher-order functions, and can also be used for the
simplified simulation of time series data sets without noise. We generated 1,000 sequences of length 100 based
on Genz functions. The initial point of each sequence is randomly generated by random seeds.

TrafficLA. The Los Angeles County highway network traffic dataset provided by the California department of
transportation contains speed readings collected by speed sensors. The sensor reports data every five minutes.
Similar to Yu’s work, we use the average speed collected by other sensors at the same time to fill in the missing
values. Data collected from one district from this dataset is used in our experiment and we down-sample the
sequences to every 20 minutes. In the experiment, the traffic dataset contains 1936 sequences with 72 timestamps,
with the data collected by one sensor in a day taken as a sequence.

Solar. The solar dataset provided by NREL contains data points for synthetic solar photovoltaic (PV) power
plants in the United States. It includes PV power generation records from PV power plants in the United States
representing the year 2006. This dataset is intended for energy professionals to do the estimation of power
production from hypothetical solar plants. We use the records of 137 plants in Alabama State during a week in
the experiment. The data recording interval of each power station is down-sampled to 10 minutes, so those 137
sequences are with 1008 timestamps to be applied in PV power generation prediction within a week.

3.2.2 Hyper-Parameter Search

The search range of hyper-parameters is listed in Table 4. Compared with the traditional LSTM model, the
order range needs to be additionally set to prevent parameter explosion in our method.
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Table 2: Performance comparison in terms of MAE, where the average and standard deviation (in brackets) are
reported, and the best results are highlighted in bold.

ARFIMA DJI(x100) Trafic  Tree

RNN 0.9319 0.1977 233.442 0.2240
(0.1550)  (0.0242)  (12.391)  (0.0064)
RNN2 0.9310 0.1861 233.419 0.2229
(0.1430)  (0.0164)  (12.378) (0.0057)
RWA 1.3330 0.2052 233.137 0.2379
(0.0030)  (0.0164)  (7.425)  (0.0001)
0.8710 0.1835 232.794 0.2202
MRNN " 0.0000)  (0.0165)  (12.149)  (0.0037)
LSTM 0.9070 0.1841 234.055 0.2215
(0.0940)  (0.0182)  (11.149)  (0.0051)
0.9240 0.1895 233.142 0.2235
MESTM 09300y (0.0203)  (11.551)  (0.0060)
Ours 0.8588 0.2043 233.65 0.2185

(0.0192)  (0.0360)  (4.5121)  (0.0015)

Table 3: Performance comparison in terms of MAPE, where the average and standard deviation (in brackets)
are reported, and the best results are highlighted in bold.

ARFIMA DJI Traffic Tree
2.5760 1.4371 1.3943 0.2747

RNN (0.4030)  (0.2566) (0.1998) (0.0079)
RNN2 2.5570 1.4407 1.4092 0.2739
(0.4420)  (0.2106) (0.1789)  (0.0071)
RWA 2.2370 1.2733 1.3745 0.2939
(0.1950)  (0.1702) (0.1457)  (0.0005)
2.7010 1.5031 1.4253 0.2706
MRNN " 02680)  (0.2045) (0.1586) (0.0044)
2.5660 1.5725 1.3632 0.2727
LSTM ™ (03750)  (0.2283)  (0.1807)  (0.0060)
2.5500 1.3123 1.3353 0.2748
MLSTM 4370y (0.1281) (0.1926) (0.0075)
Ours 2.8398 1.6034 1.4895 0.2683

(0.0667)  (0.5811) (0.1960) (0.0015)

Table 4: Hyper-parameter search range in the experiment.
learning rate  {10-2,10~3,10~%,107°,10~ %}

decay rate {1,0.9,0.8,0.7,0.6}
hidden size {8,16,32, 64,128}
hidden layer {1,2,3,4}
initial order {0.0,1.0,2.0,3.0}

order range {[0,0.5],[0.5,1],[0,1],[1, 2]}
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