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Appendix

A Primal-Dual Structure

Apart from the notations discussed in the main paper, we would further use the following notation for data matrix
X ∈ Rn×d such that X =

[
x>1 ; · · · ;x>n

]
. We consider the following general primal and its corresponding dual

problem which appear very frequently in machine learning domain.

min
θ∈Rd

[
OP (θ) := ψ(θ) +

1

n

n∑
i=1

φi(x
>
i θ)

]
(15)

max
α∈Rn

[
OD(α) := −ψ∗

(
− 1

n
X>α

)
− 1

n

n∑
i=1

φ∗i (αi)

]
. (16)

Here, we assume that φ : Rd → R and ψ : Rd → R are smooth convex function for all i. We have the following
first order optimality conditions for the equivalent problems given in Equations (15) and (16):

x>i θ ∈ ∂φ∗i (αi),

θ ∈ ∂ψ∗
(
− 1

n
X>α

)
,

and
αi ∈ ∂φi(x>i θ),

− 1

n
X>α ∈ ∂ψ(θ).

(17)

From the duality, θ(α) = ∂ψ∗
(
− 1
n

∑n
i=1 αixi

)
. We can recall Fenchel’s Inequality: For any convex function f ,

the inequality f(x) + f∗(θ) ≥ x>θ holds for all x ∈ dom(f) and θ ∈ dom(f∗). Equality holds if the following is
satisfied θ ∈ ∂f(x).

From Fenchel’s inequality, we have:

Proposition 2 Consider the general primal dual problem given in equations (15) and (16), dual sub-optimlaity
gap gap(α) = [OD(α?)− OD(α)] at some α provides the upper bound on the Bregman divergence of ψ between θ?
and θ(α) i.e. DΨ(θ?, θ(α)) 6 gap(α).

Proof The Bregman divergence with respect to mirror map ψ is

DΨ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉.

Now, we have:

gap(α) = −ψ∗
(
− 1

n
X>α?

)
+ ψ∗

(
− 1

n
X>α

)
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi). (18)

In the proof we would again use Fenchel’s inequality which we used in the proof of previous theorem. From the
optimality condition, we know that − 1

nX
>α ∈ ∂ψ(θ(α)). Hence,

Hence,

gap(α) = −ψ∗
(
− 1

n
X>α?

)
+ ψ∗

(
− 1

n
X>α

)
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= −
(
−
〈

1

n
X>α?, θ?

〉
− ψ(θ?)

)
+

(
−
〈

1

n
X>α, θ(α)

〉
− ψ(θ(α))

)
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= ψ(θ?)− ψ(θ(α)) +

〈
1

n
X>α?, θ?

〉
−
〈

1

n
X>α, θ(α)

〉
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= ψ(θ?)− ψ(θ(α)) +

〈
1

n
X>α?, θ?

〉
−
〈

1

n
X>α, θ(α)

〉
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)
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= ψ(θ?)− ψ(θ(α)) +

〈
1

n
X>α?, θ?

〉
+

〈
1

n
X>α, θ?

〉
−
〈

1

n
X>α, θ?

〉
−
〈

1

n
X>α, θ(α)

〉
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= ψ(θ?)− ψ(θ(α))−
〈

1

n
X>α, θ(α)− θ?

〉
+

〈
1

n
X>α? − 1

n
X>α, θ?

〉
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= ψ(θ?)− ψ(θ(α))− 〈∇ψ(θ(α)), θ? − θ(α)〉︸ ︷︷ ︸
:=DΨ(θ?,θ(α))

+

〈
1

n
X>α? − 1

n
X>α, θ?

〉

− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= DΨ(θ?, θ(α)) +

〈
1

n
α? − 1

n
α,Xθ?

〉
− 1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= DΨ(θ?, θ(α)) +
1

n

n∑
i=1

(α?i − αi) · x>i θ? −
1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= DΨ(θ?, θ(α))− 1

n

n∑
i=1

(αi − α?i ) · ∇φ∗(α?i )−
1

n

n∑
i=1

φ∗i (α
?
i ) +

1

n

n∑
i=1

φ∗i (αi)

= DΨ(θ?, θ(α)) +
1

n

n∑
i=1

Dφ∗i
(αi, α

?
i ) ≥ DΨ(θ?, θ(α)). (19)

After we provide the general result in Proposition 2, we now provide the proof for proposition 1 below. The
result in statement is a useful result and can be useful in several ways. For example, the guarantees for
SDCA (Shalev-Shwartz & Zhang, 2013, 2014). We provide the details in the Appendix C.

Proof [Proof of Proposition 1] We can just use the result in Proposition 2 to prove Proposition 1. Let’s recall
once again the primal dual formulation of the problem which we have in Equation (3) and Equation (4).

min
θ∈Rd

Dψ(θ, θ(0)) such that ∀i ∈ {1, . . . , n}, x>i θ ∈ Yi (20)

= min
θ∈Rd

ψ(θ) +
1

n

n∑
i=1

max
αi∈Rk

{
α>i x

>
i θ − σYi

(αi)
}

= max
∀i, αi∈Rk

− 1

n

n∑
i=1

σYi
(αi)− ψ?

(
− 1

n

n∑
i=1

xiαi

)
(21)

= max
α∈Rn×k

G(α),

Let Ki represents that set for all θ such that x>i θ ∈ Yi and the indicator function ιKi
for a convex set Ki for all

∈ {1, . . . , n} is defined as ιKi(x
>
i θ) = 0 if x>i θ ∈ Yi and ιKi(x

>
i θ) = +∞, otherwise for all ∈ {1, . . . , n}. We can

write Equation (20) in the form of generalized equation given in Equation (15) considering φi(x>i θ) = ιKi(x
>
i θ).

It is easy to see that φ∗i (αi) = σYi
(αi). Hence, now the statement follows from Proposition 2.

A.1 Coordinate Descent Update: Proof of Lemma 1

We have:

α
(t)
i(t) = arg max

αi(t)

− 1

n
σYi(t)

(αi) +
1

n
∇ψ?

(
− 1

n

n∑
i=1

xiα
(t−1)
i

)>
xi(t)[αi(t) − α

(t−1)
i(t) ]−

Li(t)

2n2
‖αi − α(t−1)

i(t) ‖
2
2
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= arg max
αi(t)

− 1

n
σYi(t)

(αi) +
1

n
θ(α(t−1))>xi(t)[αi(t) − α

(t−1)
i(t) ]−

Li(t)

2n2
‖αi − α(t−1)

i(t) ‖
2
2

= arg min
αi(t)

σYi(t)
(αi) +

Li(t)

2n
‖αi − α(t−1)

i(t) − n

Li(t)
x>i(t)θ(α

(t−1))‖22. (22)

The minimization problem in Equation (22) can be written as follows:

min
αi(t)

[
σYi(t)

(αi) +
Li(t)

2n
‖αi − α(t−1)

i(t) − n

Li(t)
x>i(t)θ(α

(t−1))‖22
]

= min
αi(t)

[
σYi(t)

(αi)− sup
z

[
(αi − α(t−1)

i(t) − n

Li(t)
x>i(t)θ(α

(t−1)))>z +
n

2Li(t)
‖z‖2

]]
= sup
z∈Yi(t)

[
− n

2Li(t)
‖z‖2 + z>

(
n

Li(t)
x>i(t)θ(α

(t−1)) + α
(t−1)
i(t)

)] (23)

The above maximization problem has a solution at z? = ΠYi(t)

(
x>i(t)θ(α

(t−1)) +
Li(t)

n α
(t−1)
i(t)

)
. However, z? is also

the solution of the following optimization formulation:

z? = arg max
z

[
(αi − α(t−1)

i(t) − n

Li(t)
x>i(t)θ(α

(t−1)))>z +
n

2Li(t)
‖z‖2

]

Comparing both the value of z?, we get the following update in αi(t) in alternative form

αi(t) = α
(t−1)
i(t) +

n

Li(t)
x>i(t)θ(α

(t−1))− n

Li(t)
ΠYi

(Li(t)
n

α
(t−1)
i(t) + x>i(t)θ(α

(t−1))
)
,

where ΠYi is the orthogonal projection on Yi.

A.2 Mirror Descent: [Proof of Theorem 1]

The convergence rate does depend on ψ(θ?) but this is not an explicit regularization. The proof goes as follows:

Mirror descent with the mirror map ψ selects i(t) at random and the iteration is

ψ′(θ(t)) = ψ′(θ(t−1))− γxi(t)(ΠYi
(x>i(t)θ

(t−1))− x>i(t)θ
(t−1)).

Following the proof of Flammarion & Bach (2017), we have for any θ ∈ Rd:

Dψ(θ, θ(t)) = Dψ(θ, θ(t))−Dψ(θ(t), θ(t−1)) + γf ′t(θ
(t−1))>(θ(t) − θ)

6 Dψ(θ, θ(t))− µ

2
‖θ(t) − θ(t−1)‖2 + γf ′t(θ

(t−1))>(θ(t−1) − θ)

+γ‖f ′t(θ(t−1))‖?‖θ(t−1) − θ(t)‖

6 Dψ(θ, θ(t))− γf ′t(θ(t−1))>(θ(t−1) − θ) +
γ2

2µ
‖f ′t(θ(t−1))‖2?.

For θ = θ? and using E
[
‖f ′t(θ(t−1))‖2?

]
6 supi ‖xi‖22→?

[
f(θ)− f(θ?)

]
, we get and taking expectations, we get:

(
1− γ ‖xi‖

2
2→?

2µ

)
E
[
f(θ(t−1))− f(θ?)

]
6

1

γ

(
E[Dψ(θ?, θ(t))]− E

[
Dψ(θ?, θ(t−1))

])
.

Thus, with γ = µ/ supi ‖xi‖22→?, we get

E
[
f(θ(t−1))− f(θ?)

]
6

2

γ

(
E[Dψ(θ?, θ(t))]− E

[
Dψ(θ?, θ(t−1))

])
.

This leads to
E
[
f(θ̄t)− f(θ?)

]
6

2

γt
Dψ(θ?, θ(0)).
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B `p-perceptron

In this section, we provide proofs for the claims made in Section 3.

We start with the proof of Lemma 3.

Proof For all i, x>i θ? ≥ 1. Hence,

x>i θt = x>i θt − x>i θ? + x>i θ
? = x>i θ

? − x>i (θ? − θt)
≥ 1− x>i (θ? − θt) ≥ 1− ‖xi‖q‖θt − θ?‖p
≥ 1−R‖θt − θ?‖p.

Assuming α0 = 0, from Equation (13), we have

E
[
‖θt − θ?‖p

]
≤ 2
√

2 maxi ‖xi‖q√
(p− 1)t

√
G(α?)−G(0)

maxi ‖xi‖q
+

1

2
‖α?‖2

Now for on average for no mis-classification for all i ∈ {1, · · · , n},

1 ≥ RE
[
‖θt − θ?‖p

]
⇒ t ≥ 2

√
2R2

√
p− 1

√
G(α?)−G(0)

R
+

1

2
‖α?‖2. (24)

Mistake Bound `p-primal perceptron. If we apply mirror descent with the mirror map ψ = 1
2‖ · ‖

2
p to the

minimization of 1
n

∑n
i=1(1− θ>xi)+, then the iteration is

ψ′(θt) = ψ′(θt−1)− γ11−θ>t−1xi(t)>0xi(t),

and we have
1

n

n∑
i=1

(1− θ̄>t xi)+ 6
‖θ?‖2p
2γt

+ γ
maxi ‖xi‖2q

2(p− 1)
.

The best γ is equal to γ =
‖θ?‖p

maxi ‖xi‖q

√
p−1√
t
, which does depend on too many things, and leads to a proportion of

mistakes on the training set less than
‖θ?‖p maxi ‖xi‖q√

p− 1
√
t

.

B.1 Update for Random Coordinate Descent

We have:

min
θ∈Rd

1

2
‖θ‖2p such that Xθ > 1

= min
θ∈Rd

max
α∈Rn

1

2
‖θ‖2p + α>(1−Xθ)

= max
α∈Rn

−1

2
‖X>α‖2q + α>1,

where, at optimality, θ can be obtained from X>α as

θj = ‖X>α‖2−qq (X>α)q−1
j ,

where we define uq−1 = |u|q−1sign(u).
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The function 1
2‖X

>α‖2p is smooth, and the regular smoothness constant with respect to the i-th variable which is
less than

Li =
1

p− 1
‖xi‖2q.

A dual coordinate ascent step corresponds to choosing i(t) and replacing (αt−1)i(t) by

(αt)i = max
{

0, (αt−1)i(t) +
1

Li(t)

(
1− ‖X>αt−1‖2−qq

d∑
j=1

[(X>αt−1)j ]
q−1Xi(t)j

}
,

which can be interpreted as:

(αt)i = max
{

0, (αt−1)i(t) +
1

Li(t)

(
1− θ>t−1xi(t)

)}
.

B.2 `2-perceptron

The primal problem has the following dual form under the interpolation regime

max
α≥0,α∈Rn

α>1− 1

2
‖Xα‖2.

We denote Sv as the set of support vectors i.e. Sv is the set of indices where α?j 6= 0. Hence, we also have
x̃>j θ

? = 1 for j ∈ Sv. αSv
denotes the vector of non-zero entries in α. Correspondingly, XSv

denotes the feature
matrix for support vectors. From the first order suboptimality condition we have,

θ(α) =
1

n
Xα.

We also know that for support vectors, yi · x>i θ? = x̃>i θ
? = 1 for all i ∈ Sv. Also θ? = 1

nXSvα
?
Sv
. Hence,

1

n
X>Sv

XSv
α?Sv

= 1⇒ α?Sv
= n(X>Sv

XSv
)−11.

From Lemma 3, we should have t ≥ 2
√

2R2
√
p−1

√
G(α?)−G(0)

R + 1
2‖α?‖2, for no training mistakes.

We now use Corollary 2 to get mistake bound on the perceptron. To have no mistakes on average, the proportion
of mistakes should be less than 1/n. Hence,

R‖θ?‖√
t
≤ 1

n
⇒ t ≥ R2‖θ?‖2n2. (25)

We already have α?Sv
= n(X>Sv

XSv )−11.

θ? =
1

n
Xα? =

1

n
XSv

α?Sv
= XSv

(X>Sv
XSv

)−11.

Finally we have the following:

‖α?‖ = ‖α?Sv
‖ = n‖(X>Sv

XSv
)−11‖

‖θ?‖2 = ‖XSv
(X>Sv

XSv
)−11‖2 = 1>(X>Sv

XSv
)−11.

(26)

Hence, one can compare the number of minimum iteration required by both the approaches.

C (Accelerated) Stochastic Dual Coordinate Descent

Stochastic dual coordinate ascent (Shalev-Shwartz & Zhang, 2013) is a popular approach to optimize regularized
empirical risk minimize problem. For this section, let φ1, · · · , φn be a sequence of 1

γ -smooth convex losses and let
λ > 0 be a regularization parameter then consider following regularized empirical risk minimization problem:

min
θ∈R

[
SP (θ) :=

λ

2
‖θ‖2 +

1

n

n∑
i=1

φi(X
>
i θ)

]
. (27)
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Corresponding dual problem of the minimization problem given in equation (27) can be written similarly as:

max
α∈Rn

[
SD(α) := −λ

2
‖ 1

λn
X>α‖2 − 1

n

n∑
i=1

φ∗i (−αi)

]
(28)

There is one to one relation between the smoothness constant and strong convexity parameter of primal and
corresponding dual function. We prove the following result from Kakade et al. (2009).

Theorem 2 (Theorem 6, (Kakade et al., 2009)) Assume that f is a closed and convex function. Then f is
β-strongly convex w.r.t. a norm ‖ · ‖ if and only if f∗ is 1

β -smooth w.r.t. the dual norm ‖ · ‖∗.

From the above theorem it is clear that φ∗i are γ-strongly convex. Hence the term 1
n

∑n
i=1 φ

∗
i (−αi) is γ

n strongly
convex. Similary coordinate wise smoothness Li = ‖xi‖2

λn2 .
Now, just as a direct implication of the result provided in Proposition 2, we have the convergence result for
SDCA (Shalev-Shwartz & Zhang, 2013) and accelerated stochastic dual coordinate ascent (Shalev-Shwartz &
Zhang, 2014) which we provide in Corollary C.1 and Corollary C.2. For the next two results, we denote θk as
θ(αk).

Corollary C.1 (Stochastic Dual Coordinate Ascent) Consider the regularized empirical risk minimization
problem given in equation (27), then if we run SDCA (Shalev-Shwartz & Zhang, 2013) algorithm starting from
α0 ∈ Rn with a fix step size 1/maxi Li where Li = ‖xi‖2

λn2 , primal iterate after k iterations converges as following:

λ

2
‖θk+1 − θ?‖2 ≤ D(αk+1) ≤

(
1− γλ

maxi ‖xi‖2

)k
(SD(α0)− SD(α?)).

Proof From Allen-Zhu et al. (2016), it is clear that for µ-strongly convex and Li-coordinate wise smooth convex
function SD(α) where α ∈ Rn, randomized coordinate descent has the following convergence guarantee:

D(αk+1) ≤
(

1− µ

nmaxi Li

)k
(SD(α0)− SD(α?)).

Here, µ = γ
n . First part of the inequality directly comes from Proposition 2 by the observation that here

ψ(·) = λ
2 ‖ · ‖

2 and bregman divergence are always positive.

Corollary C.2 (Accelerated Stochastic Dual Coordinate Ascent) Consider the regularized empirical risk
minimization problem given in equation (27), then if we run Accelerated SDCA (Shalev-Shwartz & Zhang, 2014)
algorithm starting from α0 ∈ Rn, we have following convergence rate for the primal iterates:

λ

2
‖θk+1 − θ?‖2 ≤ D(αk+1) ≤ 2

(
1−

√
γλ√

maxi ‖xi‖2

)k
(SD(α0)− SD(α?)).

Proof From Allen-Zhu et al. (2016), it is clear that for µ-strongly convex and Li-coordinate wise smooth
convex function SD(α) where α ∈ Rn, accelerated randomized coordinate descent has the following convergence
guarantee:

D(αk+1) ≤ 2

(
1−

√
µ

n
√

maxi Li

)k
(SD(α0)− SD(α?)).

First part of the inequality directly comes from Proposition 2 by the observation that here ψ(·) = λ
2 ‖ · ‖

2 and
bregman divergence are always positive. Here µ = γ

n and Li = ‖xi‖2
λn2 .
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Discussion. Let us denote duality gap at dual variable α as ∆(α). From the definition of the duality gap
∆(α) = SP (θ(α))− SD(α). However, ∆(α) is an upper bound on the primal sub-optimality gap as well on dual
sub-optimality gap. The main difference in the analysis presented in our work with the works of Shalev-Shwartz
& Zhang (2013) and Shalev-Shwartz & Zhang (2014) is that the we provide the guarantee in term of the iterate.
However Shalev-Shwartz & Zhang (2013) and Shalev-Shwartz & Zhang (2014) provide convergence in terms of
duality gap ∆(α). Another main difference is that we use constant step size in each step and the output of our
algorithm doesn’t need averaging of the past iterates. Our analysis holds for the last iterate.


