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Abstract

We consider stochastic gradient methods un-
der the interpolation regime where a perfect fit
can be obtained (minimum loss at each obser-
vation). While previous work highlighted the
implicit regularization of such algorithms, we
consider an explicit regularization framework
as a minimum Bregman divergence convex
feasibility problem. Using convex duality, we
propose randomized Dykstra-style algorithms
based on randomized dual coordinate ascent.
For non-accelerated coordinate descent, we
obtain an algorithm which bears strong simi-
larities with (non-averaged) stochastic mirror
descent on specific functions, as it is equivalent
for quadratic objectives, and equivalent in the
early iterations for more general objectives. It
comes with the benefit of an explicit conver-
gence theorem to a minimum norm solution.
For accelerated coordinate descent, we obtain
a new algorithm that has better convergence
properties than existing stochastic gradient
methods in the interpolating regime. This
leads to accelerated versions of the percep-
tron for generic `p-norm regularizers, which
we illustrate in experiments.

1 Introduction

With the recent advancement in machine learning and
hardware research, the size and capacity of training
models for machine learning tasks have been consis-
tently increasing. For many models which are widely
used in practice, e.g., deep neural networks (Goodfel-
low et al., 2016) and non-parametric regression mod-
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els (Belkin et al., 2018; Liang & Rakhlin, 2018), the
training process achieves zero error, which means that
such models are expressive enough to interpolate the
training data completely. Hence, it is important to
understand the interpolation regime to improve the
training and prediction of such complex and over-
parameterized models used in machine learning.

It is a well known fact that regularization, either explicit
or implicit, plays a crucial role in achieving better gen-
eralization. While Tikhonov regularization is amongst
the most famous form of regularization (Golub et al.,
1999; Weese, 1993) for linear or non-linear problems,
several other methods can induce regularization in form
of computational regularization when training machine
learning models (Yao et al., 2007; Rudi et al., 2015;
Srivastava et al., 2014). Apart from explicitly induced
regularization in machine learning models, optimiza-
tion algorithms like (stochastic) gradient descent which
is widely used in practice while training large machine
learning models, also induce implicit regularization in
the obtained solution. In many cases, (stochastic) gra-
dient descent converges to minimum Euclidean norm
solutions. Recent series of papers (Soudry et al., 2018;
Gunasekar et al., 2018; Kubo et al., 2019; Arora et al.,
2019) present result about introducing implicit regular-
ization/bias by (stochastic) gradient descent in different
set of convex and non-convex problems.

In this paper, we address the following question: in-
stead of relying on implicit regularization properties
of stochastic algorithms, can we introduce an explicit
regularization/bias while training over-parameterized
models in the interpolation regime?

In optimization terms, the interpolation regime corre-
sponds to the minimization of an average of finitely
many functions of the form

F (θ) =
1

n

n∑
i=1

fi(θ),

with respect to θ ∈ Rd, where there is a global mini-
mizer of F , which happens to be a global minimizer of



Explicit Regularization of Stochastic Gradient Methods

all functions fi, for i ∈ {1, . . . , n} (instead of only min-
imizing their average). In the interpolation regime, we
are thus looking for a point θ ∈ Rd in the intersection
of all sets of minimizers

Ki = arg min
η∈Rd

fi(η),

for all i ∈ {1, . . . , n}.

We can thus explicitly regularize the problem by solving
the following optimization problem:

min
θ∈Rd

ψ(θ) such that ∀i ∈ {1, . . . , n}, θ ∈ Ki, (1)

where ψ is a regularization function (typically a squared
norm). In the reformulated problem given in Eq. (1),
explicit regularization can be induced in the solution
via the structure of the function ψ. Note also that the
above problem can be seen as problem of generalized
projection onto sets, which are convex if the original
functions fi’s are convex, which we assume throughout
this paper.

To address the problem defined in Eq. (1), we use the
tools from convex duality and accelerated randomized
coordinate ascent, which result in Dykstra-style projec-
tion algorithms (Boyle & Dykstra, 1986; Zhang et al.,
2008; Gaffke & Mathar, 1989). In this paper, we make
the following contributions:

(a) We provide a generic inequality going from dual
guarantees in function values to primal guarantees
in terms of Bregman divergences of iterates.

(b) For non-accelerated coordinate ascent, we obtain
an algorithm which bears strong similarities with
(non-averaged) stochastic mirror descent on spe-
cific functions fi’s. Our algorithm comes with the
benefit of an explicit convergence theorem to a
minimum value of the regularizer.

(c) For accelerated coordinate ascent, we obtain a
new algorithm that has better convergence prop-
erties than existing stochastic gradient methods
in the interpolating regime. While we indeed use
the classical accelerated randomized coordinate de-
scent algorithm to get accelerated rates, we show
that we do not need any of the strong assump-
tion that previous attempts at acceleration were
needing (e.g.,Vaswani et al. (2018)) for SGD in
interpolation regime.

(d) This leads to accelerated versions of the perceptron
for generic `p-norm regularizers (this is already an
improvement for the `2-regularizer).

1.1 Related work

Stochastic gradient methods. First order stochas-
tic gradient based iterative approaches (Nemirovski
et al., 2009; Duchi et al., 2011; Kingma & Ba, 2014;
Defazio et al., 2014; Ward et al., 2019) are the most
efficient methods to perform optimization for machine
learning problems with large datasets. There has been
a large amount of work done in the area of stochas-
tic first order optimization methods (see, e.g., Polyak,
1990; Polyak & Juditsky, 1992; Nemirovski et al., 2009;
Bach & Moulines, 2011, and references therein) since
the original stochastic approximation approach was
proposed by Robbins & Monro (1951).

Primal SGD in the interpolation regime. To
address the optimization problem in the interpolation
regime, Vaswani et al. (2018) provide faster convergence
rates for first order stochastic methods in the Euclidean
geometry. They propose a strong growth condition, and
a more widely applicable weak growth condition, under
which stochastic gradient descent algorithm achieves
fast convergence rate while using constant learning rate
(a side contribution of our paper is to extend the latter
algorithm to stochastic mirror descent). Vaswani et al.
(2019) propose to use line-search to set the step-size
while training over-parameterized models which can fit
completely to data. Several other works propose to use
constant learning rate for stochastic gradient methods
(Ma et al., 2017; Bassily et al., 2018; Liu & Belkin, 2018;
Cevher & Vũ, 2019) while training extremely expressive
models which interpolate. However, all of the above
mentioned works are primal-based algorithms.

Dysktra’s projection algorithms. Dykstra-type
projection algorithms (Boyle & Dykstra, 1986; Gaffke
& Mathar, 1989) are simple modifications of the clas-
sical alternating projections methods (Von Neumman,
1951; Halperin, 1962) to project on the intersection
of convex sets. A key interpretation is the connection
between Dykstra’s algorithm and block coordinate as-
cent (Bauschke & Koch, 2015; Bauschke & Combettes,
2011; Tibshirani, 2017), which we use in this paper.
Chambolle et al. (2017) provide accelerated rates for
Dykstra projection algorithm when projecting on the
intersection of two sets.

Coordinate descent. Coordinate descent has a long
history in the optimization literature (Tseng & Bert-
sekas, 1987; Tseng, 1993, 2001). Rates for accelerated
randomized coordinate descent were first proved by
Nesterov (2012). Since then, various extensions of the
accelerated coordinate descent including proximal ac-
celerated coordinate descent and non-uniform sampling
have been proposed by Lin et al. (2015); Allen-Zhu
et al. (2016); Nesterov & Stich (2017); Hendrikx et al.
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(2019). Dual coordinate ascent can also be used to
solve regularized empirical risk minimization problem
(Shalev-Shwartz & Zhang, 2013, 2014). We recover
some of their results as a by-product in this paper.

Perceptron. The perceptron is one of the oldest ma-
chine learning algorithms (Block, 1962; Minsky & Pa-
pert, 2017). Since then, there has been a lot of work
on theoretical and empirical foundations of perceptron
algorithms (Freund & Schapire, 1999; Shalev-Shwartz
& Singer, 2005; Tsampouka & Shawe-Taylor, 2005), in
particular, with related extensions to ours, to `p-norm
perceptron through mirror maps (Grove et al., 2001;
Kivinen, 2003). However, none of the above mentioned
work forces structure to the optimal solution in an
explicit way.

2 Optimization Algorithms for Finite
Data

We consider the finite data setting, that is, we will
give bounds on training objectives (or distances to the
minimum norm interpolator on the training set). We
thus consider the problem:

min
θ∈Rd

ψ(θ) such that ∀i ∈ {1, . . . , n}, x>i θ ∈ Yi, (2)

where:

• Regularizer / mirror map: ψ : Rd → R ∪ {+∞}
is a differentiable µ-strongly convex function with
respect to some norm ‖ · ‖ (which is not in general
the `2-norm). We will consider in this paper the
associated Bregman divergence (Bregman, 1967)
defined as

Dψ(θ, η) = ψ(θ)− ψ(η)− ψ′(η)>(θ − η).

• Data: xi ∈ Rd×k, Yi ⊂ Rk are closed convex sets,
for i ∈ {1, . . . , n}.

• Feasibility / interpolation regime: we make the
assumption that there exists θ ∈ Rd such that
ψ(θ) <∞ and ∀i ∈ {1, . . . , n}, x>i θ ∈ Yi.

This is a general formulation that includes any set Ki

like in the introduction (by having k = d, xi = I, and
Yi = Ki), with an important particular case k = 1
(classical linear prediction).

In this paper, we consider primarily the `p-norm set-up,
where ψ(θ) = 1

2‖θ‖
2
p for p ∈ (1, 2], which is (p − 1)-

strongly convex with respect to the `p-norm (Ball et al.,
1994; Duchi et al., 2010). The simplex with the entropy
mirror map, which is 1-strongly convex with respect to
the `1-norm, could also be considered.

2.1 From dual guarantees to primal
guarantees

We can use Fenchel duality to obtain a dual problem
for the problem given in Eq.(2). We will need the
support function σYi of the convex set Yi, defined as,
for αi ∈ Rk (Boyd & Vandenberghe, 2004),

σYi
(αi) = sup

yi∈Yi

y>i αi.

We have, by Fenchel duality:

min
θ∈Rd

ψ(θ) such that ∀i ∈ {1, . . . , n}, x>i θ ∈ Yi (3)

= min
θ∈Rd

ψ(θ) +
1

n

n∑
i=1

max
αi∈Rk

{
α>i x

>
i θ − σYi

(αi)
}

= max
∀i, αi∈Rk

− 1

n

n∑
i=1

σYi
(αi)− ψ?

(
− 1

n

n∑
i=1

xiαi

)
, (4)

with, at optimality,

θ? = θ(α?) = ∇ψ?
(
− 1

n

n∑
i=1

xiαi

)
.

We denote by G(α) the dual objective function
above. With our assumptions of feasibility and strong-
convexity of ψ, there is a unique minimizer θ? ∈ Rd.
The dual problem is bounded from above, and we as-
sume that there exists a maximizer α? ∈ Rn×k.

In this paper, we will consider dual algorithms to solve
the problem disccused earlier in this section, that nat-
urally leads to guarantees on the gap

gap(α) = G(α?)−G(α).

Our first result is to provide some primal guarantees
from θ(α).

Proposition 1 With our assumption, for any α ∈
Rn×k, we have:

Dψ(θ?, θ(α)) 6 gap(α).

In the above statement, we also assume that ψ is
differentiable everywhere, since Bregman divergences
are well defined for differentiable functions. However,
if we want to relax the above statement for a gen-
eral function ψ which might not be differentiable, we
would need to replace the term Dψ(θ?, θ(α)) in Eq. (1)
with ψ(θ?)− ψ(θ(α)))− 〈∂ψ(θ(α))), θ? − θ(α))〉 where
∂ψ(θ(α))) is a specific sub-gradient of ψ at point θ(α).
In the proof of Proposition 1, we simply use the duility
structure of the problem with Fenchel-Young inequality.
See the detailed proof in Appendix A.

This result relates primal rate of convergence and dual
rate of convergence, and holds true irrespective of the
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algorithm used to optimize the dual objective. Using it,
we can recover convergence guarantees for stochastic
dual coordinate ascent (SDCA) (Shalev-Shwartz &
Zhang, 2013) and accelerated SDCA (Shalev-Shwartz
& Zhang, 2014). Compared to their analysis, our result
directly provides rates of convergence from existing
results in coordinate descent, but in terms of primal
iterates. Details are provided in Appendix C.

Overall, we limit our discussion to convex functions
however there is no requirement of the linear model to
be used. Generalization of Proposition 1 (Proposition 2)
holds for general convex objective and can be extended
to non-linear models without extra effort.

2.2 Randomized coordinate descent

Given our relationship between primal iterate sub-
optimality and dual sub-optimality gap gap(α) for any
dual variable α and its corresponding primal variable
θ(α), we can leverage good existing algorithms on the
dual problem. One such well known method is random-
ized dual coordinate descent, where α and thus θ(α)
will be random.

The algorithm is initialized with α
(0)
i = 0 for all

i ∈ {1, . . . , n}, and at step t > 0, an index i(t) ∈
{1, . . . , n} is selected uniformly (for simplicity) at ran-
dom. The update for proximal randomized coordinate
ascent (Richtárik & Takáč, 2014) is obtained in the fol-
lowing lemma (whose proof is given in Appendix A.1).

Lemma 1 For any uniformly randomly selected coor-
dinate i(t) at time instance t, the update for randomized
proximal coordinate ascent is equal to

αi(t) = α
(t−1)
i(t) +

n

Li(t)
x>i(t)θ(α

(t−1))

− n

Li(t)
ΠYi

(Li(t)
n

α
(t−1)
i(t) + x>i(t)θ(α

(t−1))
)
,

where ΠYi
is the orthogonal projection on Yi, and Li

is equal to Li =
1

µ
‖xi‖22→? =

1

µ
sup
‖βi‖2=1

‖xiβi‖2?.

Here, we implicitly assume that the individual projec-
tions on convex set Yi for all i ∈ {1, · · · , n} are easy
to compute, leading to Algorithm 1. For uniformly
random selection of the datapoint xi(t) at time t, Li(t)
can simply be replaced by maxi Li in the algorithm.

Algorithm 1 Proximal Random Coordinate Ascent
Input: α0, θ0 ← θ(α0) and xi,Yi for i ∈ [n] .
Output: θT+1 and αT+1

for t← 1 to T do
Choose i(t) ∈ {1, 2, · · · , n} randomly.
β(prev) = α

(t−1)
i(t)

ζt = ΠYi

(
Li(t)

n α
(t−1)
i(t) + x>i(t)θt−1

)
.

α
(t)
i(t) = α

(t−1)
i(t) + n

Li(t)
x>i(t)θt−1 − n

Li(t)
ζt.

∆β = αi(t) − β(prev).
Update θt ← θ(αt) {Use ∆β , xi(t)}.

Proximal randomized coordinate descent is a well stud-
ied problem (Nesterov & Stich, 2017; Richtárik & Takáč,
2014), and has a known rate of convergence for smooth
objective functions. The set of optimal solutions of the
dual problem in Equation (4) is denoted by A? and α?
is an element of it. Define,

R(α) = max
y

max
α?∈A?

{‖y − α?‖ : G(y) ≥ G(α)} .

Since we assumed that ψ is µ-strongly convex, ψ? is
( 1
µ )-smooth, and we get

E
[
Dψ(θ?, θ(α(t)))

]
6 E

[
gap(α(t))

]
6

maxi Li
t

max{‖α?‖2,R(0)2}
n

, (5)

where Li is defined in Lemma 1. The convergence rate
given in Eq. (5) can further be improved with non-
uniform sampling based on the values Li, and then
maxi Li can be replaced by 1

n

∑n
i=1 Li (Richtárik &

Takáč, 2014).

2.3 Relationship to least-squares

We now discuss an important case of the above formu-
lation when Yi is a singleton set, i.e., Yi = {yi}. This
problem has been addressed recently by Calatroni et al.
(2019) and we recover it as a special case of our general
formulation.

We will make a link with least-squares in the interpo-
lation regime, which can be written as a finite sum
objective as follows,

min

[
1

2n

n∑
i=1

‖yi − x>i θ‖22 =
1

2n

n∑
i=1

d(x>i θ,Yi)
2

]
. (6)

It turns out that primal stochastic mirror descent with
constant step-size applied to Eq. (6) and our formula-
tion provided in Section 2.1 are equivalent, as we now
show.



Anant Raj, Francis Bach

Lemma 2 Consider the stochastic mirror descent up-
dates using the mirror map ψ for the least-squares
problem provided in Eq. (6). Then, the corresponding
stochastic mirror descent updates converges to mini-
mum ψ solution.

Proof Consider the primal-dual formulation given in
Eq. (3) and Eq. (4), with Yi = {yi}. The randomized
dual coordinate ascent has the following update rule:

α
(t)
i(t) = α

(t−1)
i(t) +

n

Li(t)
(x>i(t)θ(α

(t−1))− yi(t)). (7)

From the first order optimality condition, the update
in Eq. (7) translates into, with θ(t) = θ(α(t)),

ψ′(θ(t)) = ψ′(θ(t−1))− 1

Li(t)
xi(t)(x

>
i(t)θ(α

(t−1))−yi(t)),

which is exactly stochastic mirror descent on the least-
squares objective with mirror map ψ. Hence the result.

The rate of convergence can be obtained by the use of
Eq. (5).

General case (beyond singletons). For any set
Yi, if α

(t−1)
i(t) = 0, for example, if i(t) has never been

selected, then, by Moreau’s identity, we also get a
stochastic mirror descent step for 1

2n

∑n
i=1 d(x>i θ,Yi)

2.
However, this is not true anymore when an index is
selected twice.

2.4 Accelerated coordinate descent

In the previous sections, we discussed randomized coor-
dinate dual ascent to optimize the problem in Eq. (3).
We can also consider accelerated proximal randomized
coordinate ascent (Lin et al., 2015; Hendrikx et al.,
2019; Allen-Zhu et al., 2016). For our problem, it leads
to:

E
[
Dψ(θ?, θ(α(t)))

]
6 E

[
gap(α(t))

]
6

4 maxi Li
t2

{
G(α?)−G(0)

maxi Li
+

1

2
‖α?‖2

}
. (8)

We will use the bound in Eq. (8) to analyze the gen-
eral perceptron in the next section. We also provide
the proximal accelerated randomized coordinate ascent
algorithm (Lin et al., 2015; Hendrikx et al., 2019) with
uniformly random sampling of coordinates to optimize
the dual objective of `p-perceptron in Algorithm 2.
However, the algorithm can easily be updated for the
general case of Eqs. (3) and (4).

Note here that accelerated stochastic method for over-
parametrized models in Algorithm 2 achieves Nesterov’s
fast rate without making explicit assumptions on the
growth condition of the function and have the same
computational overhead as that of primal SGD.

2.5 Baseline: Primal Mirror Descent

We will compare our dual algorithms to existing primal
algorithms. They correspond to the minimization of

F (θ) =
1

2n

n∑
i=1

d(x>i θ,Yi)
2. (9)

Vaswani et al. (2018) showed convergence of stochastic
gradient descent for this problem. We extend their
results to all mirror maps. Mirror descent with the
mirror map ψ selects i(t) at random and the iteration
update is

ψ′(θ(t)) = ψ′(θ(t−1))

− γxi(t)(ΠYi(x
>
i(t)θ

(t−1))− x>i(t)θ
(t−1)). (10)

Note that we have already encountered it in Lemma 2,
for least-squares regression, where we provided a con-
vergence rate on the final iterate.

In Theorem 1 below, we prove an O (1/t) convergence
rate for stochastic mirror descent update with mirror
map ψ, for a constant step-size and the average iterate,
directly extending the result of Vaswani et al. (2018)
to all mirror maps.

Theorem 1 Consider the stochastic mirror descent
update in Eq. (10) for the optimization problem in
Eq. (9) with γ = µ/ supi ‖xi‖22→?, the expected opti-
mization error after t iterations the for averaged iterate
θ̄t behaves as,

0 6 E[F (θ̄(t))] 6
maxi Li

t
ψ(θ?).

We provide the proof in Appendix A.2. The result is
also applicable to general expectations and any form of
convex objectives in the interpolation regime. We use
this extension as one of our baseline in our experiments.
In practice, as mentioned earlier, the update for mir-
ror descent in Eq. (10) is similar to randomized dual
coordinate ascent update in Lemma 1, in particular
in early iterations (and not surprisingly, they behave
similarly). Note here the difference in guarantees for
the final iterates (which we get through a dual analysis)
and the guarantees for the averaged iterate (which we
get through a primal analysis).

3 `p-perceptrons

So far, we have discussed very general formulations
for optimization problems in the interpolation regime.
In this section, we discuss a specific problem which
is widely used for linear binary classification, known
as the perceptron algorithm, which is guaranteed to
converge for linearly separable data. Here, we view
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Algorithm 2 Accelerated Proximal Coordinate Ascent
(Dual Perceptron) (Lin et al., 2015; Hendrikx et al., 2019)
Input: α0, θ0 ← θ(α0), xi for i ∈ [n] and µ = 0.
Initialize: z0 ← α0, θz0 ← θ0, v0 ← α0 and γ0 ← 1

n .
Output: θT+1 and αT+1

for t← 0 to T do
Choose it ∈ {1, 2, · · · , n} randomly.
rt = 1− θ>ztxit
αt+1 = ut+1 = αt + rt

nγtLit
.

α
(t+1)
i(t) = max(α

(t+1)
i(t) , 0).

Update θt+1 ← θ(αt+1). (Algorithm 3)
γt+1 = 1

2

(√
γ4
t + 4γ2

t − γ2
t

)
.

vt+1 = zt + nγt(αt+1 − αt).
zt+1 = (1− γt+1)vt+1 + γt+1αt+1.
Update θzt+1 ← θ(zt+1). (Algorithm 4)

Algorithm 3 Update θt+1

Input: xit ,αt+1 , X>αt, αt and it .
Output: θt+1 and X>αt+1

X>αt+1 = X>αt + (α
(t+1)
i(t) − α(t)

i(t))xit .

Compute θt+1 from X>αt+1.

Algorithm 4 Update θzt+1

Input: xit , αt+1, X>αt, X>αt+1, X>zt, αt, γt,
γt+1 .

Output: θzt+1
and X>zt+1

X>vt+1 = X>zt + nγtX
>(αt+1 − αt).

X>zt+1 = (1− γt+1)X>vt+1 + γt+1X
>αt+1.

Compute θzt+1 from X>zt+1.

the generalized `p-norm perceptron algorithm from the
lens of our primal-dual formulation.

We consider (xi, yi) ∈ Rd × {−1, 1} for i ∈ {1, · · · , n},
and the problem of minimizing ψ(θ) such that
∀i, yix>i θ > 1, which can be written as x̃>i θ > 1,
where x̃i = yixi for all i ∈ {1, . . . , n}. For this sec-
tion, we will be limiting ourselves to ψ(θ) = 1

2‖θ‖
2
p for

p ∈ (1, 2]. We know that ψ(θ) = 1
2‖θ‖

2
p for p ∈ (1, 2]

is (p− 1)-strongly convex with respect to the `p-norm.
In this section, we denote X ∈ Rn×d the data ma-
trix X = (x̃>1 ; x̃>2 ; · · · ; x̃>n ). Our generic optimization
problem from Eq. (2) turns into:

min
θ∈Rd

1

2
‖θ‖2p such that Xθ > 1, (11)

The dual problem is here

max
α∈Rn

+

−1

2

∥∥∥∥−1

n

n∑
i=1

xiαi

∥∥∥∥2

q

+
1

n

n∑
i=1

αi, (12)

where ‖ · ‖q is dual norm of ‖ · ‖p, with 1/p+ 1/q = 1.
At optimality, θ can be obtained from X>α as

θj =
1

n
‖X>α‖2−qq (X>α)q−1

j ,

where we define uq−1 = |u|q−1sign(u).

The function α 7→ 1
2‖X

>α‖2q is smooth, and the regular
smoothness constant with respect to the i-th variable
which is less than Li = 1

p−1‖xi‖
2
q. We can apply here

the results from Proposition 1 to get the convergence in
primal iterates for the the general `p-norm perceptron
formulation in Eq. (11), while optimizing the dual
function via accelerated coordinate ascent in Eq. (12).

Corollary 1 For the generalized `p-norm perceptron
described in our primal-dual framework in Equa-
tions (11) and (12), we have

E
[
‖θ(α)− θ?‖p

]
≤

√
2E[gap(α)]

p− 1
.

Proof The result comes from the application of Propo-
sition 1 in the generalized `p-norm perceptron from
setting Eq. (11), with D 1

2‖·‖2p
(θ?, θ) ≥ p−1

2 ‖θ− θ
?‖2p.

If we use accelerated randomized coordinate descent to
optimize dual objective given in Eq. (12), then after t
number of iterations, we get:

E
[
‖θt − θ?‖p

]
≤ 2
√

2 maxi ‖xi‖q√
(p− 1)t

√
G(α?)−G(0)

maxi ‖xi‖q
+

1

2
‖α?‖2, (13)

where θt = θ(αt).

Mistake bound. Since, we have the bound on the
distance between primal iterate to its optimum, we
can simply derive the mistake bound for our algorithm
which we prove in Appendix B.

Lemma 3 For the generalized `p-norm perceptron de-
scribed in our primal-dual framework in Equations (11)
and (12), we make no mistakes on training data on
average after

t >
2
√

2R2

√
p− 1

√
G(α?)−G(0)

R
+

1

2
‖α?‖2

steps where R = maxi ‖xi‖q and ‖ · ‖q is the dual norm
of ‖ · ‖p.
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The accelerated coordinate descent algorithm to solve
the `p-perceptron is given in Algorithm 2. More de-
tails about the relationship between primal and dual
variables, as well as dual ascent update for random
coordinate descent for general `p-norm perceptron, e.g.,
the dual problem in Eq. (12), is given in Appendix B.
Mistake bounds for the classical `p-perceptron are also
recalled in Appendix B.

Baseline: primal mirror descent. We consider
the finite sum minimization with stochastic mirror
descent update and mirror map ψ = 1

2‖·‖
2
p as discussed

in Section 2.5, that is, the finite sum minimization in
Eq. (9) with fi(θ) = 1

2 (1− θ>xi)2
+.

Corollary 2 Consider the finite sum minimization of
f(θ) = 1

2n

∑n
i=1(1− θ>xi)2

+ via stochastic mirror de-
scent with mirror map ψ(·) = 1

2‖ · ‖
2
p, then on average,

the proportion of mistakes on the training set is less

than
√
‖θ?‖2pR2

(p−1)t where R = maxi ‖xi‖q.

Proof The proof comes directly from Theorem 1 and
from the fact that the proportion of mistakes on the
training set is less than the square root of the excess
risk.

Similar bounds on the proportion of mistakes can also
be obtained while optimizing f(θ) = 1

n

∑n
i=1(1−x>i θ)+

via stochastic mirror descent with mirror map 1
2‖ · ‖

2
p.

However, while tuning the step size, it requires the
knowledge of ‖θ?‖p, hence we do not include it in our
base line.

We can compare the minimum number of iterations
required to achieve no further mistakes while train-
ing in Lemma 3 and Corollary 2 to get the conditions
on optimal primal and dual optimal variables under
which our method (which has a better dependence in
the number of iterations t) performs better than the
baseline. We discuss these in the Appendix B. In our
empirical evaluationin Section 4, dual accelerate coor-
dinate ascent significantly outperforms primal mirror
descent.

Special Case of `1-perceptron. Our goal in this
specific case is to solve the following sparse problem,

θ0 = arg min
θ∈Rd

1

2
‖θ‖21 such that Xθ > 1. (14)

‖ · ‖1 is not strongly convex, hence we can not fit this
problem to our formulation. However, following Duchi
et al. (2010); Ball et al. (1994), we solve the problem
in (11) with p = 1 + 1

log d where d is the dimension.

4 Experiments

In this section, we provide empirical evaluation for the
methods discussed in this paper with the `p-perceptron.
We generate data from a Gaussian distribution in di-
mension d = 2000, which we describe below. We con-
sider two settings of p for our experiments, p = 2 which
is usual perceptron, and p = 1 + 1

log d , which is the
sparse perceptron setting.

Data generation. We generate n = 1000 inputs
xi ∈ Rd, i = 1, . . . , n with d = 2000 dimensional from
a Gaussian distribution centered at 0 and covariance
matrix Σ which is a diagonal matrix. Similarly, we gen-
erate a random d = 2000 prediction vector θ sampled
again from the normal distribution.

For `2-perceptron, the i-th eigenvalue for Σ is 1/i3/2

and for sparse perceptron i-th eigenvalue for Σ, is 1/i.
We compute the prediction vector yi for xi as follows,
yi = sign(x>i θ + b) where we fix b = 0.005. We also
remove those pair of (xi, yi) from the data for which we
have x>i θ + b ≤ 0.1. We generate 1000 train examples
and 1000 test examples for both settings. For the
sparse perceptron case, we make the prediction vector
θ sparse by randomly choosing 50 entries to be non
zero. We then compute the prediction vector similar
to the `p-perceptron case, yi = sign(x>i θ+ b) where we
fix b = 0.005 and remove those pair of (xi, yi) from the
data for which we have, x>i θ + b ≤ 0.1.

Baseline. For the `2-perceptron, we compare accel-
erated coordinate descent and randomized coordinate
descent with the perceptron and primal SGD (Vaswani
et al., 2018). For the sparse perceptron, we compare
the accelerated coordinate descent and randomized
coordinate descent with extension of primal SGD to
stochastic mirror descent case (discussed in section 2.5
with fi = 1

2 (1−x>i θ)2
+) with mirror map ψ(·) = 1

2‖ · ‖
2
p

where p = 1 + 1
log d . Note that we compare to non-

averaged SGD (for which we provide a new proof),
which works significantly better than averaged SGD.

Comparisons for the `2-perceptron and sparse percep-
tron are given in Figures 1 and 2 respectively.

We can make the following observations:

(a) From both the training plots (Figure 1a and Fig-
ure 2a), it is clear that we gain significantly in
training performance over primal SGD and the
perceptron if we optimize the dual with acceler-
ated randomized coordinate ascent method, which
supports our theoretical claims made in Section 3.

(b) For testing errors, we also see gains for our ac-
celerated perceptron, which is not supported by
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(a) Number of mistakes on the training test (in log scale). (b) Number of mistakes on the test (in log scale).

Figure 1: Experimental results for `2-perceptron

(a) Number of mistakes on the training (in log scale). (b) Number of mistakes on the test (in log scale).

Figure 2: Experimental results for sparse perceptron.

theoretical arguments. This gives motivation to
further study this algorithm for general expecta-
tions.

(c) Note that in the semi-log plots, we observe an
affine behavior of the training errors, highlighting
exponential convergence. This can be explained by
a strongly convex dual problem (since the matrix
XX> is invertible), and could be quantified using
usual convergence rates for coordinate ascent for
strongly-convex objectives.

5 Conclusion

In this paper, we proposed algorithms that are explic-
itly regularizing solutions of an interpolation problem.
This is done through a dual approach, and, with accel-
eration, it improves over existing algorithms. Several
natural questions are worth exploring: (1) Can we ex-
plicitly characterize linear convergence in the dual (like
observed in experiments), with or without regulariza-
tion? (2) How are our algorithms performing beyond

the interpolation regime, where the dual become un-
bounded but some primal information can typically
be recovered in Dykstra-style algorithms (Bauschke
& Koch, 2015)? (3) Can we extend our approach to
saddle-point formulations such as proposed by Kundu
et al. (2018)? Can we prove any improvement in the
general population regime, where we aim at bounds on
testing data?

In a recent series of papers (Ergen & Pilanci, 2020;
Pilanci & Ergen, 2020), it was shown that strong duality
holds for different neural network architecture and
there might be a possibility to extend our approach
for those architectures which are beyond the convexity
assumptions. It is a promising future research direction
and needs to be investigated further.
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