
Latent Gaussian process with composite likelihoods
and numerical quadrature:
Supplementary Materials

1 Derivation of the evidence lower bound (ELBO)

To obtain the ELBO, we can first write the log-likelihood as,

log p(Y ) = log

∫
p(X)p(U)p(F |X,U)p(Y |F )dXdF dU .

Multiplying and dividing by q(X,F ,U), we can re-write the log-likelihood as,

log p(Y ) = log

∫
q(X,F ,U)

q(X,F ,U)
p(X)p(U)p(F |X,U)p(Y |F )dXdF dU . (1)

The variational approximation to the posterior distribution, q(X,F ,U), can be factorised as follows:

q(X,F ,U) = q(X)q(U)p(F |X,U). (2)

Substituting into Eq. (1), we get:

log p(Y ) = log

∫
q(X)q(U)p(F |X,U)

p(X)p(U)p(F |X,U)p(Y |F )

q(X)q(U)p(F |X,U)
dXdF dU . (3)

Jensen’s inequality relates the value of a concave (or convex) function of an integral to the integral of the concave
(or convex) function (Jensen et al., 1906). Assume ϕ is a concave function and X is a random variable. By the
Jensen’s inequality for a concave function, we can write:

ϕ(E[X]) ≥ E[ϕ(X)]. (4)

In our model, we have ϕ = log. Substituting this in Eq. (4) and for a random variable X, we have:

log(E[X]) ≥ E[log(X)]. (5)

We can now apply the Jensen’s inequality from Eq. (5) to Eq. (3):

log p(Y ) ≥
∫
q(X)p(U)p(F |X,U) log

p(X)p(U)p(F |X,U)p(Y |F )

q(X)p(U)p(F |X,U)
dXdF dU . (6)

The Kullback-Leibler divergence (Kullback and Leibler, 1951) between q(X) and p(X) as well as between q(U)
and p(U) can be written as

KL(q(X)||p(X)) =

∫
q(X) log

q(X)

p(X)
dX,

KL(q(U)||p(U)) =

∫
q(U) log

q(U)

p(U)
dX.

Substituting the KL divergences in Eq. (6) and unwrapping the remaining terms along the dimension d (i.e. the
dimension of the data space) from their vectorised form, we get:

log p(Y ) ≥−KL(q(X)||p(X))−KL(q(U)||p(U))

+

D∑
d=1

∫
q(X)q(ud)p(fd|X,ud) · log p(yd|fd)dXdfddud = L. (7)
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2 Likelihood model with categorical distribution

For the categorical distribution, we make of a formulation similar to Gal et al. (2015) which is a generalisation
of the binomial distribution. In this case, the GPs produce the weights for each of the categories. We then
make use of the softmax function to get probabilities for the categories in the range of [0, 1]. Assume all
categorical variables to have the same cardinality, K. Hence, Pd = K. For the dth variable of the nth entry,
we can write f̄n,d = {fn,d,1, fn,d,2, ..., fn,d,K}. Following a similar notation to Gal et al. (2015), we can write
yn,d ∼ softmax(f̄n,d), where

softmax(yn,d =k; f̄n,d) = categorical

(
exp(fn,d,k)∑K

k′=1 exp(fn,d,k′)

)
,

and categorical corresponds to the categorical distribution (or generalised Bernoulli distribution).

3 Origin-centred latent representations

From Eq. (12) in the main paper, we can write the lower bound L with our suggested modification as follows:

L ≈ −η
KLX︷ ︸︸ ︷

KL(q(X)||p(X))−
KLU︷ ︸︸ ︷

KL(q(U)||p(U)) +
1

Nx

Nx∑
i=1

D∑
d=1

Eq(fd|Xi)[log p(yd|fd)], (8)

where η is the new hyper-parameter. If η = 1, we get the same equation as Eq. (12) in the main paper. Using
η > 1 results in embeddings that are more centred about the origin but with qualitatively consistent results (i.e.
qualitatively consistent with the hyper-parameter η = 1).

To obtain a centred embedding, the hyper-parameter η must be tuned. We have also observed that as the value
of η begins to increase to larger values, the clustering structure begins to disappear as the KL term associated
with X (i.e. KLX in Eq. (8)) begins to dominate and the optimisation tries to move the latent points closer to
zero while making them appear to be a sample from the standard normal distribution.

Hence, we can infer that incorporating a weight on KLX (i.e. η > 1) results in latent embeddings that are
generally centred around the origin with results that are qualitatively consistent with Eq. (12) in the main paper
(i.e. η = 1).

4 Ablation study

We demonstrate that numerical quadrature has a comparable predictive performance to the standard sampling
based inference, while having a significantly lower run time. We followed an approach similar to the ‘Benchmark
and performance comparisons’ described in Section 3 of the main manuscript. We performed a 2-fold cross-
validation with the predictive log-likelihood as the evaluation score to compare between the two techniques.
This was done by sub-sampling 50% of the original data for training and then computing the predictive log-
likelihoods on the remaining data. This process was repeated 30 times and the same folds were used for both
analyses. In all the runs we used Q = 2. We can see from Fig. 11 that quadrature takes half the amount of time
for each run. Fig. 12 visualises the trace plot of the ELBOs.

5 Dimensionality reduction techniques

Most dimensionality reduction techniques focus on preserving the distances between nearby objects than objects
that are further apart (i.e. local distance preservation). However, it is also important to ensure that objects
that are further apart in data space are also kept apart in the reduced space (i.e. dissimilarity preservation).
Unfortunately, in most cases it is not possible to achieve both. In this work, we focus on feature projection
which is the transformation of data from a high-dimensional space to lower dimensional manifold. There are
many popular algorithms for dimensionality reduction such as PCA (Jolliffe, 2011), kernel PCA (Schölkopf et al.,



1997)], locally linear embedding (Roweis and Saul, 2000), Isomap (Tenenbaum et al., 2000), GPLVM (Lawrence,
2003), etc. These algorithms are suitable in the homogeneous data setting and do not necessarily extend well to
a heterogeneous data setting. We build upon the GPLVM to support a heterogeneous data setting.

PCA tries to identify an orthogonal linear projection of the data along the direction of maximum variance.
Classical PCA has some shortcomings. It is not probabilistic as it has no likelihood model for the observed data.
Moreover, computation of the covariance matrix and its associated eigendecomposition can be computationally
intensive for large datasets with high dimensionality (Prasad and Bruce, 2008). Another issue with classical
PCA is that it cannot handle missing data properly and is not robust to outliers (Kambhatla and Leen, 1997).
Hence, it is not suitable in a generative model setting.

Probabilistic principal component analysis (PPCA), proposed by (Tipping and Bishop, 1999), is a generalisation
of the classical PCA that tries to overcome its shortcomings. It incorporates a probabilistic model and obtains
a linear projection by maximising the likelihood. Assume a D-dimensional dataset Y of N points, i.e., Y =
{yn}Nn=1 such that yn ∈ RD and is centred. We can denote each latent variable corresponding to each data point
as xn ∈ RQ such that Q ≤ D. Also, let W ∈ RD×Q denote the principal axes or weights. We can write the
likelihood for an individual data point as

p(yn|W , σ2) =

∫
p(yn|xn,W , σ2)p(xn)dxn

p(xn) = N(xn|0, I)

p(yn|xn,W , σ2) = N(yn|Wxn, σ
2ID)

where σ2 is the noise variance and we assume an isotropic Gaussian noise model. To solve for W we assume
that yn is i.i.d. and maximise the likelihood for all data points

p(Y |W , σ2) =

N∏
n=1

p(yn|Wxn, σ
2ID).

Marginalising out the latent variables, the distribution for each point can be written as

yn ∼ N(0,WW T + σ2ID).

The parameters are optimised to obtain the maximum likelihood. We can say that the classical PCA is a limiting
case of PPCA when the covariance becomes infinitesimally small, i.e., σ2 → 0.

Lawrence (2003) proposed the Gaussian process latent variable model (GPLVM) as a generalisation of PPCA. It
is an unsupervised learning algorithm that extends PPCA by making use of a less restrictive covariance function
that allows for non-linear mappings. Building upon the derivation of PPCA and following Lawrence (2003), we
can obtain the GPLVM formulation.

A prior distribution is defined for W as p(W ) =
∏D

i=1N(wi|0, α−1I). From the PPCA derivation, instead of
integrating out the latent variables X, the principal axes W is marginalised to give the marginal likelihood for
Y ,

p(Y |X, σ) =
1

(2π)
DN
2 |K|D2

exp (−1

2
tr(K−1Y Y T )),

where tr corresponds to the trace of a matrix and K = αXXT + σ2I. Hence, the marginal likelihood that is
being optimised can be interpreted as the product of D independent Gaussian processes where K is given by
the linear covariance function. Therefore to obtain the GPLVM formulation, a non-linear covariance function is
introduced which corresponds to a non-linear mapping from latent space to data space. A common choice for
the process prior is the radial basis function (RBF) kernel. The marginal likelihood is jointly marginalised with
respect to the latent variables, X and other parameters. In this study, we make use of the automatic relevance
determination radial basis function (ARD RBF) kernel that allows for separate length scales in each dimension
of the latent space.
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Hence, the optimisation problem can be written as,

{X̂, θ̂} = arg max
X,θ

p(Y |X,θ)

where θ corresponds to the kernel parameters and X̂ as well as θ̂ corresponds to the optimal values of the latent
variables and kernel parameters, respectively.

6 Runtime performance

The mean wall clock times (on an Intel Xeon E5 processor) for each repetition of 1000 epochs in Fig. 4 of the
main manuscript using the simulated data was as follows:

• Approach 1: 1.3 hours

• Approach 2 (our method): 1.35 hours

• Approach 3: 1.5 hours

Also, Suppl. Fig. 11 shows a comparison of the wall-clock time for 1000 epochs between numerical quadrature
and sampling based inference in our model with the simulated data. Our results indicate that the numerical
integration makes the inference about two-fold faster, and overall our model is approximately as fast as the
Gaussian GPLVM. We had sub-sampled the MNIST to maintain a short computation time.

7 Neural network architecture

The mean and covariance of the variational distribution over q(X) are parameterised by neural networks. In our
experiment with clinical patient data, we utilised simple feedforward multilayered perceptrons (MLPs) as the
recognition models. Concretely, we made use of two separate MLPs for the mean and covariance respectively.
The hyperparameters for the networks are reported in Table 1.

Hyperparameter Value

Mean

Dimensionality of input 46
Number of hidden layers 1

Width of hidden layer 30
Activation function of the hidden layer TanH

Dimensionality of output Q
Activation function of output layer Linear

Weight initialisation Xavier initialisation (Glorot and Bengio, 2010)

Covariance

Dimensionality of input 46
Number of hidden layers 1

Width of hidden layer 30
Activation function of the hidden layer TanH

Dimensionality of output Q
Activation function of output layer Sigmoid

Weight initialisation Xavier initialisation (Glorot and Bengio, 2010)

Table 1: Hyperparameters used in the recognition models for the clinical patient dataset.



8 Supplementary figures

OUR  METHOD DISEASE SUBGROUPSCLINICAL DATA

Patient records comprising of binomial, Gaussian, beta, etc., distributed data and missing values.

Latent space with novel clustering among patients (can be of higher dimension).

0, 1, 1, 0, 0,     -0.5, 1.9, 0.23,       0.1, 0.2 1, 1, 1, 0, 0,      1.2, 2.3,1.2,           0.8, 0.87 0, 0, 0, 0, 0,      1.3, -0.1,Null,        0.2, 0.3....1, 0, 0, 1, 1,      1.5, 2.4, 1.5,          0.9, 0.22

Probabilistic unsuper-vised learning technique that tries to learn a low dimension-al latent representa-tion of each patient record such that the distances between patients are preserved.
Figure 1: An overview of our unsupervised generative model for disease stratification.

Figure 2: Assessment of optimal latent dimensionality using the predictive log-likelihood on the held-out test
data for different latent space dimensions, Q in the clinical patient dataset experiment. The best predictive
log-likelihood among three runs is shown.
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Figure 3: Trajectories of the evidence lower bounds (ELBO) from the best optimisation run for each latent
dimension in Fig. 2.

Figure 4: Visualisation of the number of patients assigned to each cluster. The optimal number of clusters and
cluster membership was obtained using the described method. This figure is similar to Fig. 3(a) in the main
manuscript, but includes the clusters deemed as outliers.



Figure 5: A box plot comparing three approaches of estimating the Gaussian distributed data similar to Fig. 4(b)
in the main manuscript. Approach 2 is our method. The predictive log-likelihood is computed on 30 sub-samples
using 2-fold cross-validation (the partitions are the same across the analyses).

Figure 6: Evaluation of cluster characteristics using t-statistics in the clinical patient dataset.
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Figure 7: Evaluation of binomial cluster characteristics using log-odds ratio in the clinical patient dataset.

Figure 8: Comparison between our composite likelihood method and only Gaussian likelihood method for the
simulated dataset.



Figure 9: Violin plot comparing three approaches of estimating the Gaussian distributed covariates for the
simulated dataset. Approach 2 is our method.

Figure 10: A pair-wise comparison of the difference in the predictive log-likelihood between our approach and
the other approaches for the simulated dataset. The paired differences are computed on the same, matched
sub-samples.
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Figure 11: Comparison of the log predictive likelihood achieved by using either quadrature or sampling based
inference for the simulated dataset. The wall-clock run times for 1000 epochs are shown on right.
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Figure 12: Trajectories of the evidence lower bounds (ELBO) for quadrature and sampling based inference with
Q = 2 for the simulated dataset.



Figure 13: Reconstructions obtained in the simulated dataset experiment.
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