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1 Covariance functions

Squared exponential CF

Let x(r) = x ∈ Xj denote an univariate continuous-valued covariate. The squared exponential (SE) CF is defined
as

kse(x(r),x(r)′|θse) = σ2
se exp

(
− (x− x′)2

2`2se

)
, θse = (σ2

se, `se)

where σ2
se is the magnitude parameter (also called scale) and `se ≥ 0 is the length-scale. The magnitude controls

the marginal variance of the GP and length-scale controls its smoothness [Rasmussen and Williams, 2006].

Categorical CF

Let x(r) = x ∈ Xj denote a categorical or discrete covariate. The categorical CF is defined as:

kca(x(r),x(r)′) =

{
1, if x = x′

0, otherwise
θca = ∅

Binary CF

Let x(r) = x ∈ Xj denote an arbitrary univariate covariate. The binary CF is defined as:

kbi(x
(r),x(r)′) =

{
1, if x = x′ = 1

0, otherwise
θbi = ∅

Interaction CF

Let x(r) = [x(a)T ,x(b)T ]T , where x(a) and x(b) are arbitrary sub-vectors of x. We define the interaction CF for
these subsets as the product of two CFs defined over x(a) and x(b) respectively:

kin(x(r),x(r)′|θ(r)) = k(a)(x(a),x(a)′|θ(a))k(b)(x(b),x(b)′|θ(b)),

where θ(r) = θ(a) ∪ θ(b). The interaction CF enables us to combine any combination of univariate SE, categor-
ical, and binary CFs in a product CF. However, in practice we restrict such combinations to include no more
than a single SE CF. As Cheng et al. [2019] stated, such a condition affords the SE GP flexibility with random
intercept/slope constructions similar to the linear mixed effect modelling framework, without sacrificing inter-
pretability. For example, in longitudinal studies an instance-specific auto-correlated temporal deviation from
the population-level temporal mean can be captured by an interaction term between a categorical CF over the
instance identifiers and a SE CF over the temporal covariate. Furthermore, Cheng et al. [2019] adapted an
approach to handle missing covariates based on an interaction CF containing a missing-ness mask.
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2 Efficient KL divergence computation

As the main text states, optimising the variational objective of L-VAE involves the computation of
L KL divergences DKL = DKL(N (µ̄l,Wl)||N (0,Σl)), where µ̄l = [µφ,l(y1), . . . , µφ,l(yN )]T , Wl =

diag(σ2
φ,l(y1), . . . , σ2

φ,l(yN )), and Σl =
∑R
r=1K

(l,r)
XX + σ2

zlIN . Henceforth, we drop the index l for notational
simplicity. Each of the KL divergences is available in closed form using the well-known expression for the KL
divergence between two multivariate normal distributions:

DKL =
1

2

(
tr(Σ−1W ) + µ̄TΣ−1µ̄−N + log |Σ| − log |W |

)
,

but its exact computation requires O(N3) flops, which makes it impractical when N exceeds a few thousands.
In this section, we provide a derivation of a novel strategy to approximately compute this KL divergence at a
reduced computational cost.

KL divergence and evidence lower bound We start by exploiting the diagonal structure of W and establish
the connection between the upper bound for DKL and the evidence lower bound for the marginal log likelihood
(MLL) of a Gaussian process:

DKL(N (µ̄,W )||N (0,Σ)) ,
∫
z

N (z|µ̄,W ) log

(
N (z|µ̄,W )

N (z|0,Σ)

)
dz

= −
∫
z

log (N (z|0,Σ))N (z|µ̄,W )dz − 1

2
log |(2πe)W |

≤ −
∫
z

L(z; Σ)N (z|µ̄,W )dz − 1

2
log |(2πe)W | (1)

for any function L(z; Σ) : L(z; Σ) ≤ log (N (z|0,Σ)) ∀z.

Hence, for any lower bound of GP MLL L(z; Σ), the corresponding expression would provide an upper bound for
KL divergence between the considered multivariate normal distributions. However, the lower bound of GP MLL
is a much more common and well-studied problem. Please note that in the expression (1) and further throughout
this section, we specifically use the lower bound and ELBO terms for the GP MLL lower bound L(z; Σ), and
not for the lower bound of the deep generative model as in the main text.

Variational learning of inducing variables in sparse Gaussian processes One of the most fundamental
works on ELBOs for GP MLL was done by Titsias [2009], and is based on the paradigm of low-rank inducing
point approximations of GPs. We briefly recap their key results here, and later build upon their derivation by
introducing modifications that would suit the specific structure of matrices Σ in our problem setting.

We denote the set of inducing points locations in X as S = [sT1 , . . . , s
T
M ]T , and the value of the Gaussian process

at the inducing locations as u = [u1, . . . , uM ]T . We recall that Σ = KXX + σ2
zIN and therefore, z can be

represented as the sum of noise-free GP, f ∼ N (0,KXX) and i.i.d. Gaussian noise. The following identities
always stand:

p(z|f) = N (z|f , σ2
zIN )

p(f |u) = N (f |KXSK
−1
SSu, K̃),

K̃ = KXX −KXSK
−1
SSKSX

p(u) = N (u|0,KSS)

p(z) =

∫
u

∫
f

p(z|f)p(f |u)p(u)dfdu. (2)

Applying the Jensen inequality on the conditional log-probability p(z|u) leads to:

log p(z|u) = log

∫
f

p(z|f)p(f |u)df (3)

≥
∫
f

log (p(z|f)) p(f |u)df =

N∑
i=1

[
logN (zi|µi, σ2

z)− K̃ii

2σ2
z

]
, (4)



where µ = [µ1, . . . , µN ]T = KXSK
−1
SSu and K̃ii denotes the ith diagonal element of K̃. The inequation reduces

to identity iff u is a sufficient statistic of f , so that all elements of K̃ are zero. However, the inequation remains
tight and the approximation is justified as long as the K̃ii elements remain small, which is achieved by setting M
to be sufficiently high and optimising the inducing point locations S. After integrating out u, this approximation
leads to the collapsed representation of the variational evidence lower bound,

L1(z; Σ) , logN (z|0,KXSK
−1
SSKSX + σ2

zIN )− 1

2σ2
z

tr(K̃). (5)

Divergence upper bound for longitudinal Gaussian process The free-form bound is known to be tight
when M is sufficiently high and the covariance function is sufficiently smooth. However, longitudinal studies, by
definition, always contain a categorical covariate corresponding to instances, which makes the covariance function
non-continuous. By separating the additive component that corresponds to the interaction between instances
and time (or age) from the other additive components, the covariance matrix has the following general form

Σ = K
(A)
XX + Σ̂, where Σ̂ = diag(Σ̂1, . . . , Σ̂P ), Σ̂p = K

(R)
XpXp

+ σ2
zInp

, and K
(A)
XX =

∑R−1
r=1 K

(r)
XX contains all the

other R − 1 components. In order to keep the K̃ii tight, the bound from eq. (5) would mandate that M ≥ P ,
thus rendering the bound of Titsias [2009] either computationally inefficient once P is large (due to high M)
or insufficiently tight. Since the interaction covariance function is essential for accurate longitudinal modelling,
we devised a novel free-form divergence upper bound for such a class of GPs. Similar to eq. (2), we exploit the

opportunity to represent z as a sum of noise-free GP fA ∼ N (0,K
(A)
XX) and structured noise f̂ ∼ N (0, Σ̂), and

we assign the locations as well as values of inducing points for fA. We denote K̃(A) = K
(A)
XX −K

(A)
XSK

(A)
SS

−1
K

(A)
SX

and K̃
(A)
XpXp

= K
(A)
XpXp

−K(A)
XpS

K
(A)
SS

−1
K

(A)
SXp

, then:

log p(z|u) = log

∫
fA

p(z|fA)p(fA|u)dfA

= log

∫
fA

N (z|fA, Σ̂)N (fA|K
(A)
XSK

(A)
SS

−1
u, K̃(A))dfA

≥
∫
fA

log
(
N (z|fA, Σ̂)

)
N (fA|K

(A)
XSK

(A)
SS

−1
u, K̃(A))dfA

=

P∑
p=1

[
logN

(
zp|µp, Σ̂p

)
− 1

2
tr
(

Σ̂−1
p K̃

(A)
XpXp

)]
,

where zp is the sub-vector of z that corresponds to the pth individual, µp is the subvector of K
(A)
XSK

(A)
SS

−1
u, and

tr(·) denotes the matrix trace operator. After integrating out u, we obtain a novel variational evidence lower
bound,

L2(z; Σ) , logN
(
z|0,K(A)

XSK
(A)
SS

−1
K

(A)
SX + Σ̂

)
− 1

2

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

)
. (6)

We substitute this lower bound in eq. (1), which links the ELBO and upper bound for KLD:

DKL = DKL(N (µ̄,W ||N (0,Σ)) ≤ −
∫
z

L2(z; Σ)N (z|µ̄,W )dz − 1

2
log |(2πe)W |

= −
∫
z

logN
(
z|K(A)

XSK
(A)
SS

−1
K

(A)
SX + Σ̂

)
N (z|µ̄,W )dz − 1

2
log |(2πe)W |+ 1

2

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

)

= DKL

(
N (µ̄,W ||N (0,K

(A)
XSK

(A)
SS

−1
K

(A)
SX + Σ̂

)
+

1

2

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

)

=
1

2

(
tr(Σ̄−1W ) + µ̄T Σ̄−1µ̄−N + log |Σ̄| − log |W |+

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

))
, D2, (7)

where Σ̄ = K
(A)
XSK

(A)−1

SS K
(A)
SX + Σ̂.
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Theorem 1. For any set of inducing points S and S̄ where S̄ ⊆ S, such that rank(KSS) = rank(K
(A)

S̄S̄
), non-strict

inequality L1(z; Σ, S) ≤ L2(z; Σ, S̄) holds.

Proof. Based on the univariate additive GP f(x) =
∑R
r=1 f

(r)(x), we construct another GP g(v1, v2,x) =

1(v1)
∑R−1
r=1 f

(r)(x)+1(v2)f (R)(x), where 1(v) is the indicator function that equals 1 when v = 1 and 0 otherwise.

Accordingly, we define augmented sets X̂ = [1N ,1N , X] and Ŝ = [1M ,1M , S], where 1N is a column vector of
ones that has length N , which effectively adds the two additional covariates, v1 and v2, into X and S. Then,
the marginal covariance of g(v1, v2,x) for (X̂, X̂) is KXX , for (X̂, Ŝ) is KXS , and for (Ŝ, Ŝ) is KSS . Thus,
L1(z; Σ, S) = L1(z; Σ, Ŝ).

Since the collapsed lower bound, eq. (5), is obtained as a closed-form solution to the optimisation problem
of the variational parameters of the distribution over the inducing points, expanding the set of the inducing
points can only expand the variational family and, therefore, never decreases the L1(z; Σ, Ŝ) bound [Titsias,
2009]. We consider an expanded set of inducing points S̃ = [ŜT , ŜTA , Ŝ

T
B , X̂

T
B ]T , where ŜA = [1M ,0M , S] (0M

is a column vector of zeros that has length M), ŜB = [0M ,1M , S], and X̂B = [0N ,1N , X]. For any s ∈ Ŝ,
g(1, 1, s) = g(1, 0, s) + g(0, 1, s), so that the values of g(v1, v2,x) over Ŝ are linearly dependent on the values
over ŜA and ŜB . Therefore, the variational family remains the same for the reduced set of inducing points
Š = [ŜTA , Ŝ

T
B , X̂

T
B ]T , and L1(z; Σ, Ŝ) ≤ L1(z; Σ, S̃) = L1(z; Σ, Š).

We will next write the L1 bound from equation (5) for Š:

L1(z; Σ, Š) = logN (z|0, ǨXŠǨ
−1
ŠŠ
ǨŠX + σ2

zIN )− 1

2σ2
z

tr(KXX − ǨXŠǨ
−1
ŠŠ
ǨŠX),

where (from the definition of Š)

ǨXŠ =
[
K

(A)
XS ,K

(R)
XS ,K

(R)
XX

]
and ǨŠŠ =

K
(A)
SS 0 0

0 K
(R)
SS K

(R)
SX

0 K
(R)
XS K

(R)
XX

 .
We recall the 2-by-2 block-matrix inverse formula for the second and third blocks of ǨŠŠ :

[
K

(R)
SS K

(R)
SX

K
(R)
XS K

(R)
XX

]−1

=

[
Q−1 −Q−1K

(R)
SXK

(R)
XX

−1

−K(R)
XX

−1
K

(R)
XSQ

−1 K
(R)
XX

−1
+K

(R)
XX

−1
K

(R)
XSQ

−1K
(R)
XX

−1

]

where Q = K
(R)
SS − K

(R)
SXK

(R)
XX

−1
K

(R)
XS . Then, we substitute this expression into the matrix-product term

ǨXŠǨ
−1
ŠŠ
ǨŠX , alongside utilising the zero-blocks in first row/column of ǨŠŠ . Such a manipulation yields a

very simple expression, as all the terms involving Q are cancelled out:

ǨXŠǨ
−1
ŠŠ
ǨŠX = K

(A)
XSK

(A)
SS

−1
K

(A)
SX +

[
K

(R)
XS ,K

(R)
XX

] [K(R)
SS K

(R)
SX

K
(R)
XS K

(R)
XX

]−1 [
K

(R)
XS ,K

(R)
XX

]T
= K

(A)
XSK

(A)
SS

−1
K

(A)
SX +K

(R)
XX .

The L1 bound for the inducing point set Š can then be written as:

L1(z; Σ, Š) = logN
(
z|0,K(A)

XSK
(A)
SS

−1
K

(A)
SX +K

(R)
XX + σ2

zIN

)
− 1

2σ2
z

tr(KXX −K(A)
XSK

(A)
SS

−1
K

(A)
SX −K

(R)
XX)

= logN
(
z|0,K(A)

XSK
(A)
SS

−1
K

(A)
SX + Σ̂

)
− 1

2σ2
z

tr(K
(A)
XX −K

(A)
XSK

(A)
SS

−1
K

(A)
SX ). (8)



Focusing on the last trace term we have,

tr
(

Σ̂−1K̃
(A)
XX

)
= tr

(
(K

(R)
XX + σ2

zIN )−1K̃
(A)
XX

)
= tr

(
(σ−2

z IN − σ−4
z (K

(R)
XX

−1
+ σ−2

z IN )−1)K̃
(A)
XX

)
= σ−2

z tr
(
K̃

(A)
XX

)
− σ−4

z tr
(

(K
(R)
XX

−1
+ σ−2

z IN )−1K̃
(A)
XX

)
= σ−2

z tr
(
K̃

(A)
XX

)
− σ−4

z tr
(
L̂L̂T K̃

(A)
XX

)
= σ−2

z tr
(
K̃

(A)
XX

)
− σ−4

z tr
(
L̂T K̃

(A)
XX L̂

)
≤ σ−2

z tr
(
K̃

(A)
XX

)
(9)

=
1

σ2
z

tr(K
(A)
XX −K

(A)
XSK

(A)
SS

−1
K

(A)
SX ),

where L̂ is the Cholesky decomposition of (K
(R)
XX

−1
+ σ−2

z IN )−1. As matrix K
(R)
XX

−1
+ σ−2

z IN is always positive
definite, its inverse and corresponding Cholesky decomposition always exist. Additionally, we used the matrix

trace cyclic rotation property and the fact that the trace of a positive semidefinite matrix is L̂T K̃
(A)
XX L̂, which is

always non-negative. Combining equations (8) and (9) we have

L1(z; Σ, Š) = logN
(
z|0,K(A)

XSK
(A)
SS

−1
K

(A)
SX + Σ̂

)
− 1

2σ2
z

tr(K
(A)
XX −K

(A)
XSK

(A)
SS

−1
K

(A)
SX )

≤ logN
(
z|0,K(A)

XSK
(A)
SS

−1
K

(A)
SX + Σ̂

)
− 1

2
tr
(

Σ̂−1K̃
(A)
XX

)
= L2(z; Σ, S).

Consequently, the non-strict inequalities chain gives the final result:

L1(z; Σ, S) = L1(z; Σ, Ŝ) ≤ L1(z; Σ, S̃) = L1(z; Σ, Š) ≤ L2(z; Σ, S)

Computational complexity The computational complexity of the bound described in eq. (7), isO(
∑P
p=1 n

3
p+

NM2) flops, which leads to an approximately similar computational complexity as the Titsias [2009] bound, when
np 'M � N , but is significantly tighter. Here, we elucidate in detail how to perform the computations in eq. (7)
to achieve such complexity. The first term of eq. (7) can be written as:

tr(Σ̄−1W ) = tr(Σ̂−1W )− tr

(
Σ̂−1K

(A)
XS

[
K

(A)
SS +K

(A)
SX Σ̂−1K

(A)
XS

]−1

K
(A)
SX Σ̂−1W

)
=

P∑
p=1

(
diag(Σ̂−1) · diag(Wp)

)
− tr

(
V −1

(
K

(A)
SX Σ̂−1W Σ̂−1K

(A)
XS

))
,

where V = K
(A)
SS + K

(A)
SX Σ̂−1K

(A)
XS . We have used the Woodbury matrix identity to obtain the first equality

and the cyclic rotation property of the matrix trace to obtain the second equality [Press et al., 2007]. Since

Σ̂ is a block-diagonal matrix, obtaining Σ̂−1 takes O(
∑P
p=1 n

3
p) flops and obtaining products K

(A)
SX Σ̂−1K

(A)
XS or

K
(A)
SX (Σ̂−1W Σ̂−1)K

(A)
XS takes O(

∑P
p=1 npM

2) = O(NM2) flops. Moreover, inverting V takes O(M3) flops.

We can use the Woodbury matrix identity to write the second term as,

µ̄T Σ̄−1µ̄ = µ̄T Σ̂−1µ̄− µ̄T Σ̂−1K
(A)
XSV

−1K
(A)
SX Σ̂−1µ̄.

Obtaining Σ̂−1µ̄ takes O(
∑P
p=1 n

2
p) flops and obtaining K

(A)
SX

(
Σ̂−1µ̄

)
takes O(NM2) flops.

For the forth term we use the generalised determinant lemma so that,

|Σ̄| = |Σ̂||K(A)
SS |

−1|V |.

These determinant computations take O(
∑P
p=1 n

3
p), O(M3), and O(M3), respectively.
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The fifth term is trivially O(N). We can again use the cyclic rotation property of the matrix trace to write the
last term as:

tr
(

Σ̂−1
p K̃

(A)
XpXp

)
= tr

(
Σ̂−1
p K

(A)
XpXp

)
− tr

(
Σ̂−1
p K

(A)
XpS

K
(A)
SS

−1
K

(A)
SXp

)
= tr

(
Σ̂−1
p K

(A)
XpXp

)
− tr

((
K

(A)
SXp

Σ̂−1
p K

(A)
XpS

)
K

(A)
SS

−1)
.

The first trace takes O(n2
p) to compute once the Σ̂−1 is available. It takes O(npM

2) to compute the product

in parenthesis in the second trace, and O(M2) for the trace itself once K
(A)
SS

−1
is available. Since we need to

compute these traces for p = 1, . . . , P , the overall complexity of the last term in eq. (7) is O(
∑P
p=1 n

2
p +NM2).

Combining the terms we get the final time complexity:

Complexity = O(

P∑
p=1

n3
p) +O(NM2) +O(M3) +O(

P∑
p=1

n2
p) +O(NM2)

+O(

P∑
p=1

n3
p) +O(M3) +O(M3) +O(N) +O(

P∑
p=1

n2
p +NM2)

= O(

P∑
p=1

n3
p +NM2). (10)

3 Stochastic Variational Inference for longitudinal Gaussian process

A fundamental drawback of the methods described in the previous section is that they require using the full
training dataset to compute the loss and perform a gradient step. This can be an issue for many problems with
large data, such as sequences of images, electronic health records, etc. A common machine learning technique to
tackle such problems is based on training the model using mini-batches. The mini-batch approach makes use of
unbiased stochastic estimates of the loss and its gradients, which are computed based on a subset of the data.
The subsets are chosen such that all training data points are used within an epoch. In this section, we first recall
earlier work on how to adjust the bound of eq. (5) to become compatible with stochastic variational inference
and mini-batching. Then, we modify this bound to account for the specifics of the GP covariance structure in
L-VAE.

In contrast to Titsias [2009], Hensman et al. [2013] proposed to avoid analytical marginalisation of inducing
values u in eq. (3). Instead, Hensman et al. [2013] proposed to explicitly keep track of its distribution, which is
assumed to be Gaussian u ∼ N (m, H). Then, the authors derived an alternative evidence lower bound:

log p(z) =

∫
u

∫
f

p(z|f)p(f |u)p(u)dfdu = log

∫
u

p(z|u)
p(u)

q(u)
q(u)du ≥

∫
u

log p(z|u)q(u)du−DKL(q(u)||p(u))

≥
∫
u

logN (z|KXSK
−1
SSu, σ

2
zIN )N (u|m, H)du− 1

2σ2
z

tr(K̃)−DKL(N (m, H)||N (0,KSS))

= logN (z|KXSK
−1
SSm, σ2

zIN )− 1

2σ2
z

tr(HK−1
SSKSXKXSK

−1
SS )− 1

2σ2
z

tr(K̃)−DKL(N (m, H)||N (0,KSS))

, L3. (11)



Substituting this bound in eq. (1) yields:

DKL(N (µ̄,W )||N (0,Σ)) ≤ −
∫
z

L3N (z|µ̄,W )dz − 1

2
log |(2πe)W |

= −
∫
z

logN (z|KXSK
−1
SSm, σ2

zIN )N (z|µ̄,W )dz +
1

2σ2
z

tr(K̃)

+
1

2σ2
z

tr(HK−1
SSKSXKXSK

−1
SS ) +DKL(N (m, H)||N (0,KSS))− 1

2
log |(2πe)W |

=
1

2
(KXSK

−1
SSm− µ̄)T (σ2

zIN )−1(KXSK
−1
SSm− µ̄) +

1

2
tr((σ2

zIN )−1W ) +
N

2
log σ2

z

+
N

2
log 2π +

1

2σ2
z

tr(K̃) +
1

2σ2
z

tr(HK−1
SSKSXKXSK

−1
SS )

+DKL(N (m, H)||N (0,KSS))− 1

2
log |(2πe)W |

=
1

2

(
σ−2
z

N∑
i=1

(KxiSK
−1
SSm− µ̄i)

2 + σ−2
z

N∑
i=1

σ2
φ(yi) +N log σ2

z + σ−2
z

N∑
i=1

K̃ii

+ σ−2
z

N∑
i=1
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, D3 (12)

Each term, except the last one, is additive over i = 1, . . . , N . Therefore, replacing the sum over all i = 1, . . . , N
with a batch-normalised partial sum over a subset of indices, I ⊂ {1, . . . , N} of size |I| = N̂ :

D̂3 =
1

2

N

N̂

∑
i∈I

(
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z (KxiSK
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SSm− µ̄i)

2 + σ−2
z σ2
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− log σ2

φ(yi)
)

+
N

2
log σ2
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N

2
+DKL(N (m, H)||N (0,KSS)), (13)

is an unbiased estimate of the KL divergence upper bound EI∼S{1,...,N}(D̂3) = D3 ≥ DKL(N (µ̄,W )||N (0,Σ)).
Here, S{1, . . . , N} is a uniform distribution over elements of arbitrary fixed partitions of set {1, . . . , N}. This
property enables us to use the mini-batching technique for the approximate computation of the KL divergence
term of L-VAE and its gradients.

Similar to our criticism of the ELBO L1, the L3 is not well suited to the typical properties of GP covariance
structures used for longitudinal modelling. Following the same notation as in the previous section, we introduce
a modification to eq. (11):

log p(z) =

∫
u

∫
f

p(z|f)p(f |u)p(u)dfdu = log

∫
u

p(z|u)
p(u)

q(u)
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∫
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, L4 (14)
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Substituting this novel ELBO in eq. (1) yields:

DKL(N (µ̄,W )||N (0,Σ)) ≤ −
∫
z

L4N (z|µ̄,W )dz − 1

2
log |(2πe)W |

= −
∫
z

logN (z|K(A)
XSK

(A)
SS

−1
m, Σ̂)N (z|µ̄,W )dz +

1

2

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

)
+

1

2
tr(HK

(A)
SS

−1
K

(A)
SX Σ̂−1K

(A)
XSK

(A)
SS

−1
) +DKL(N (m, H)||N (0,K

(A)
SS ))

− 1

2
log |(2πe)W |

=
1

2
(K

(A)
XSK

(A)
SS

−1
m− µ̄)T Σ̂−1(K

(A)
XSK

(A)
SS

−1
m− µ̄) +

1

2
tr(Σ̂−1W ) +

1

2
log |Σ̂|

+
N

2
log 2π +

1

2

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

)
+

1

2
tr(HK

(A)
SS

−1
K

(A)
SX Σ̂−1K

(A)
XSK

(A)
SS

−1
)

+DKL(N (m, H)||N (0,K
(A)
SS ))− 1

2
log |(2πe)W |

=
1

2

( P∑
p=1

(K
(A)
XpS

K
(A)
SS

−1
m− µ̂p)T Σ̂−1

p (K
(A)
XpS

K
(A)
SS

−1
m− µ̂p)

+

P∑
p=1

np∑
i=1

(Σ̂−1
p )

ii
σ2
φ(yIpi) +

P∑
p=1

log |Σ̂p|+
1

2

P∑
p=1

tr
(

Σ̂−1
p K̃

(A)
XpXp

)

+

P∑
p=1

tr
((
K

(A)
SS

−1
HK

(A)
SS

−1)(
K

(A)
SXp

Σ̂−1
p K

(A)
XpS

))
−

N∑
i=1

log σ2
φ(yi)−N

)
+DKL(N (m, H)||N (0,K

(A)
SS ))
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where Ipi is the index of the ith sample for the pth patient and µ̂p = [µ̄Ip1 , . . . , µ̄Ipnp
]T is a sub-vector of

µ̄ that corresponds to the pth patient. Each term, except for the last one, is additive over p = 1, . . . , P .
Therefore, replacing the sum over all p = 1, . . . , P with a batch-normalised partial sum over a subset of indices
P ⊂ {1, . . . , P} of size |P| = P̂ :
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is an unbiased estimate of the KL divergence upper bound EP∼S{1,...,P}(D̂4) = D4 ≥ DKL(N (µ̄,W )||N (0,Σ)).
This property enables us to use the mini-batching technique for a more precise approximate computation of the
KL divergence term of L-VAE and its gradients, by approximately splitting equal number of patients to each
batch.

The learning of variational parameters m and H can be done either by explicitly parameterising and updating
them within the overall optimisation scheme, or by using the natural gradients approach similar to Hensman
et al. [2013]. Similar to the claims of the original paper, using the natural gradients can mitigate the challenge of
finding a robust unconstrained parameterisation for the variational parameters. The gradients of KL divergence



unbiased estimate D̂4 w.r.t. the variational parameters have the following form:
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∂D̂4
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p∈P

K
(A)
SS

−1
K

(A)
SXp

Σ̂−1
p K

(A)
XpS

K
(A)
SS

−1
+

1

2
K

(A)
SS

−1
(18)

Making use of the chain rule, we can write the following:

∂D4

∂η
=

∂D4

∂[m,H]

∂[m,H]
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] [ I 0
−2m I

]

Then, using the update rule and following notation similar to Hensman et al. [2013], we get:
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and

θ1(t+1) = θ1(t) − l
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(20)

4 Predictive distribution

The problem of obtaining the predictive distribution for the high-dimensional, out-of-sample data y∗ given covari-
ates x∗ with L-VAE can be split into two parts: obtaining the predictive distribution of the latent representation
z∗ and propagating the obtained distribution through the probabilistic decoder p(y∗|z∗). Given the training
samples Y , covariate information X, the learnt parameters of the generative model ω = {ψ, θ}, and the inference
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model φ, the predictive distribution follows:

pω(y∗|x∗, Y,X) =

∫
z∗

pω(y∗|z∗,x∗, Y,X)pω(z∗|x∗, Y,X)dz∗

=

∫
z∗,Z

pψ(y∗|z∗)︸ ︷︷ ︸
decode GP prediction

pθ(z∗|x∗, Z,X)︸ ︷︷ ︸
GP predictive posterior

pω(Z|Y,X)︸ ︷︷ ︸
posterior of Z

dz∗dZ

≈
∫
z∗,Z

pψ(y∗|z∗)︸ ︷︷ ︸
decode GP prediction

pθ(z∗|x∗, Z,X)︸ ︷︷ ︸
GP predictive posterior

qφ(Z|Y,X)︸ ︷︷ ︸
encode training samples

dz∗dZ. (21)

The true posterior pω(Z|Y,X) is intractable and, similar to the model inference or learning problem, it is replaced
with the variational approximation defined by the inference model qφ(Z|Y,X). Given such a substitution, the
(approximate) predictive GP distribution for the latent representation is available in closed form,

p̂ω(z∗|x∗, Y,X) =

∫
Z

pθ(z∗|x∗, Z,X)qφ(Z|Y,X)dZ = N(z∗|µ∗,Σ∗).

Since, in the current work, we only consider multi-output GPs with diagonal cross-covariance functions and the
output of probabilistic encoder pψ(yn|zn) is restricted to be a multivariate normal distribution with diagonal
covariance matrix, the predictive distribution in the latent space also factorises across the latent dimensions
N(z∗|µ∗,Σ∗) =

∏L
l=1N(z∗l|µ∗l, σ2

∗l) with:

µ∗l = K
(l)
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(l)
Xx∗
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where k
(l)
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(l)
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∑R
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(r)
l ) and K

(l)
x∗X

= K
(l)T
Xx∗

=
∑R
r=1K

(l,r)
x∗X

(θ
(r)
l ) (see eq. (4) in the main

text), and Σl =
∑R
r=1K

(l,r)
XX (θ

(r)
l ) + σ2

zlI, Wl = diag(σ2
φ,l(y1), . . . , σ2

φ,l(yN )) and µ̄l = [µφ,l(y1), . . . , µφ,l(yN )]T

(as in eq. (8) in the main text). Incorporating this property with eq. (21) leads to,

pω(y∗|x∗, Y,X) ≈
∫
z∗

D∏
d=1

N
(
y∗d|gψ,d(z∗), σ2

yd

) L∏
l=1

N (z∗l|µ∗l, σ2
∗l)dz∗.

5 Scalable predictive distribution

Computing the predictive distribution, as described above, requires performing cubic operations over the N ×N
matrices, which makes it practically infeasible for problems with large training data. In this section, we exploit
the same inducing points paradigm that was used for D2 in eq. (7) to alleviate the cubic complexity. For simplicity
of notation, we omit the latent dimension index l in the rest of the section. We use the same notation as in

eq. (6) and set U = K
(A)
SS + K

(A)
SX Σ̂−1K

(A)
XS . Let X∗ = [x1∗, . . . ,xN ′∗] denote a collection of N ′ test data points

from P ′ many subjects. Then,

µ̄∗ = KX∗XΣ−1µ̄ =
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K
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)(
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XSK
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(A)
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=
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X∗S

K
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(A)
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(R)
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)(
Σ̂−1µ̄− Σ̂−1K

(A)
XSU

−1K
(A)
SX Σ̂−1µ̄

)
(22)

In practice, the efficient computations are executed in the following order:

1. Compute Σ̂−1µ̄; exploiting the block-diagonal property of Σ̂−1.

2. Compute K
(A)
XSU

−1K
(A)
SX (Σ̂−1µ̄) using the low-rank properties of all matrices involved.

3. Compute µ̃ = Σ̂−1µ̄− Σ̂−1K
(A)
XSU

−1K
(A)
SX Σ̂−1µ̄.

4. Compute K
(A)
X∗S

K
(A)−1

SS K
(A)
SX µ̃ using the low-rank properties of all matrices involved.



5. Compute K
(R)
X∗X

µ̃. This relies on the fact that the K
(R)
X∗X

matrix will be very sparse, which can be exploited
either via sparse matrix operations or simply by cycling over the sets of rows that correspond to each subject

and performing the multiplication only for the non-zero part of K
(R)
X∗X

(if none, this product will be zero for
the given subject).

6. Finally, sum up µ̄∗ = K
(A)
X∗S

K
(A)−1

SS K
(A)
SX µ̃+K

(R)
X∗X

µ̃

In practice, the predictive distribution will be subject to the inducing point locations S and is guaranteed to be
exact if and only if u is a sufficient statistic of fA.

The predictive mean can also be expressed in terms of the variational parameters:

K
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X∗S

K
(A)
SS

−1
m+K

(R)
X∗X

Σ̂−1(µ̄−K(A)
XSK

(A)
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m)

Also, the predictive covariance can be expressed as follows:(
K
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X∗S
−K(R)

X∗X
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HK

(A)
SS

−1 (
K

(A)
X∗S
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zIN ′ +K
(R)
X∗X∗

−K(R)
X∗X

Σ̂−1K
(R)
XX∗

6 Downstream classification task in the healthcare data experiment

Given the test set, our objective is to predict the patient mortality. Since our proposed model is generative
in nature, to allow such an objective, we shall include the mortality covariate in the additive GP prior. The
downstream classification task is done by computing the probability that mortality = 0 and mortality = 1.
Given the learnt L-VAE model with fixed parameters φ, ψ, θ, we can obtain the probability for the binary
mortality event for each patient (X∗, Y∗) in the test set as,

P (mortality = 0) =
exp(L(φ, ψ, θ;Y∗, X∗,mortality = 0))∑1
i=0 exp(L(φ, ψ, θ;Y∗, X∗,mortality = i))

,

P (mortality = 1) = 1− P (mortality = 0).

Furthermore, we also introduce a time to mortality covariate (or mortalityTime) that is based on the survival
time. This covariate is relevant for individuals whose mortality = 1 and is treated as missing for the individuals
that survive. However, in the testing phase, the exact mortality time is not known as our objective is to perform
classification based on mortality. To overcome this problem, we estimate the distribution of the mortalityTime
covariate based on the values of the covariate in the training set and, in the test, we compute the expectation of
the ELBO described in eq. (5) of the main manuscript w.r.t. to that distribution.

Figure 1: Histogram of survival times in training and test set
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We approximate the expectation with a finite weighted average. Concretely, we first allocate the mortalityTime
covariate values in the training set into B bins based on a logarithmic scale. Let αi be the bin count and ti
be the average value of the mortalityTime in the ith bin. The proportion of mortalityTime values in bin i is
wi = αi/(

∑B
i=1 αi). The weighted ELBO is then computed as:

L(φ, ψ, θ;Y,X,mortality = 1) =

B∑
i=1

wi · L(φ, ψ, θ;Y,X,mortality = 1, ti),

where the ELBO terms are now explicitly conditioned by the mortalityTime, ti. We use B = 6 in our analysis.
The histograms of the survival times in the training and test data are shown in Fig. 1.

We follow the data preprocessing steps described in Luo et al. [2018], and standardise the measurements of the
35 different attributes.

7 Optimisation and practical considerations

We make use of a suitable stochastic optimisation technique to minimise the ELBO in eq. (4) of the main
manuscript. The parameters that we need to optimise include the neural network weights (φ and ψ) and kernel
parameters (θ) of the multi-output additive GPs. In particular, the optimisation is done using the Adam optimiser
[Kingma and Ba, 2015], which is an adaptive learning rate method that maintains an exponentially decaying
average of past gradients as well as squared gradients. In case of mini-batch training, the Adam steps are
conducted interchangeably with natural gradient-based updates of the variational parameters. For the inference
implementation, we make use of PyTorch [Paszke et al., 2019] which allows the computation of derivatives using
automatic differentiation.

In all the experiments, we first pre-train the neural networks with a standard normal distribution as the prior on
the latent space (standard VAE [Kingma and Welling, 2014]) for 1000 epochs. This is followed by training the L-
VAE model using the pre-trained encoder and decoder networks as initial values for φ and ψ, respectively. While
training the L-VAE model, we monitor the loss on the validation (independent) dataset as a performance metric.
Similar to the strategy of early stopping, we save the weights of the model that has the best performance on our
defined metric. These model weights are chosen to perform predictions and other downstream tasks. However,
to handle the possibility of a local minimum, we do not specify a stopping criterion and continue the training
procedure till a predefined number of epochs has been performed. In the Rotated MNIST and Health MNIST
experiments, L-VAE is trained for a maximum of 2000 epochs. Moreover, in the Healthcare data experiment,
L-VAE is trained for a maximum of 1000 epochs.

8 Supplementary tables

Table 1 describes the neural network architecture used for the Rotated MNIST experiment. The hyperparameter
choices are similar to Casale et al. [2018]. The architecture used for the Health MNIST experiment is described
in table 2. We have tried to replicate the hyperparameter choices from Fortuin et al. [2020] for this experiment.
For the Physionet Challenge 2012 dataset, we did not make use of a convolutional neural network (CNN) as was
done for the Rotated MNIST as well as Health MNIST experiments because CNNs are more appropriate for
image based (visual) data where the regional correlation (receptive field) of the measured values is important
[Goodfellow et al., 2016]. Table 3 describes the architecture for the multi layered perceptron (MLP) that we
used for the Physionet Challenge 2012 dataset. It is similar to the architecture used in Fortuin et al. [2020].



Hyperparameter Value

Inference
network

Dimensionality of input 28× 28
Number of convolution layers 3
Number of filters per convolution layer 72
Kernel size 3× 3
Stride 2
Number of feedforward layers 1
Width of feedforward layers 128
Dimensionality of latent space L
Activation function of layers ELU

Generative
network

Dimensionality of input L
Number of transposed convolution layers 3
Number of filters per transposed convolution layer 72
Kernel size 3× 3
Stride 1
Number of feedforward layers 1
Width of feedforward layers 128
Activation function of layers ELU

Table 1: Neural network architectures used in the Rotated MNIST dataset.

Hyperparameter Value

Inference
network

Dimensionality of input 36× 36
Number of convolution layers 2
Number of filters per convolution layer 144
Kernel size 3× 3
Stride 2
Pooling Max pooling
Pooling kernel size 2× 2
Pooling stride 2
Number of feedforward layers 2
Width of feedforward layers 300, 30
Dimensionality of latent space L
Activation function of layers RELU

Generative
network

Dimensionality of input L
Number of transposed convolution layers 2
Number of filters per transposed convolution layer 256
Kernel size 4× 4
Stride 2
Number of feedforward layers 2
Width of feedforward layers 30, 300
Activation function of layers RELU

Table 2: Neural network architectures used in the Health MNIST dataset.
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Hyperparameter Value

Inference
network

Dimensionality of input 35
Number of feedforward layers 2
Number of elements in each feedforward layer 128, 64
Dimensionality of latent space L
Activation function of layers RELU

Generative
network

Dimensionality of input L
Number of feedforward layers 2
Number of elements in each feedforward layer 64, 128
Activation function of layers RELU

Table 3: Neural network architectures used in the Physionet Challenge 2012 dataset.



9 Supplementary images
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Figure 2: Plate diagram of the model. The shaded circle refers to an observed variable, the partially shaded circle
refers to a partially observed variable (due to missing values), and the un-shaded circle refers to an un-observed
variable. (a) Represents the inference (or encoder) model and (b) Represents the generative (or decoder) model.
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Figure 3: Comparison of the resulting latent space using VAE, PCA, and L-VAE on the Health MNIST dataset.
The L-VAE model is fit using f ca(id)+f se(age)+f ca×se(id×age)+f ca×se(sex×age)+f ca×se(diseasePresence×
diseaseAge) as the multi-output additive GP prior. The number of latent dimensions is set to 2. The points are
coloured according to the diseaseAge as shown in the colour bar.
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Figure 4: GP model fittings of L-VAE in the latent space with dimension 2 on the Health MNIST dataset.

Figure 5: AUROC scores for the patient mortality prediction task on the test set of the Physionet Challenge
2012 dataset. This is an extension to Fig. 4 in the main manuscript. In this figure, we can observe L-VAE’s
performance with different latent dimensions as well as all the patient-specific general auxiliary covariates. Higher
AUROC score is better.
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