
A COMPARING COMPLEXITY CONSTANTS

A.1 About the classic instance for linear Top-m identification

In higher dimensions, and when m = K − 2, ω can be seen as the angle between the m+ 1-best arm vector and
the hyperplane formed by the m best arm feature vectors. In order to check if, for m ≥ 1, decreasing the value
of ω ∈ (0, π2 ) yields to harder instances (as it is for m = 1), we ran the bandit algorithms on the instance K = 4,
N = 3, m = 2 for ω ∈ {π3 ,

π
6 }. The resulting boxplots are shown in Figure 2. It can then be seen that indeed,

for all algorithms, the empirical average sample complexity increases as ω decreases, which is an argument in
favour of the use of this type of instance for the test of linear Top-m algorithms.

Figure 2: From top to bottom: classic instances (a) K = 4, ω = π
3 , m = 2 ; (b) K = 4, ω = π

6 , m = 2. Error
frequencies are rounded up to 5 decimal places.

A.2 Comparing complexity constants

Below is the table to which we refer to in Section 4.4.



Table 4: Comparison of complexity constants in m-LinGapE and UGapE (% on 1, 000 random instances).
D 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5
K 10 10 10 10 10 10 20 20 20 20 20 30 30 30 30
m 4 4 4 4 4 4 7 7 7 7 7 11 11 11 11
N 5 5 10 10 20 20 10 20 20 40 40 15 15 30 30
% 29.1% 30.8% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0%

We have tested if, empirically, LinGIFA was more performant than LinGapE on instances where
Hε(m-LinGapE(2), µ) ≤ Hε(UGapE, µ), since LinGIFA has a similar structure as UGapE. We generated a
random linear instance, following the procedure described in Section 4.4 in the paper, with K = 10, N = 5,
D = 0.5. For m = 3, the condition Hε(m-LinGapE(2), µ) ≤ Hε(UGapE, µ) is satisfied, whereas it is not
when m = 8. We considered Gaussian reward distributions. See Figure 3. From these results, we notice
that both algorithms are actually similar in sample complexity in both instances. Hence, even if the condition
Hε(m-LinGapE(2), µ) ≤ Hε(UGapE, µ) is seldom satisfied as seen in Table 4, in practice, m-LinGapE with the
optimized rule is still performant.

Table 5: Values of complexity constants in m-LinGapE and UGapE on the randomly generated instance.
m = 3 m = 8

Hε(m-LinGapE(2), µ) 4, 545.97 32, 124.01
Hε(UGapE, µ) 5, 047.76 27, 622.18
µm − µm+1 0.075 0.029
Hε(m-LinGapE(2), µ) ≤ Hε(UGapE, µ)? True False

B DRUG REPURPOSING INSTANCE

Remember that we call “phenotypes” gene activity profiles of patients and controls (healthy group) (that is,
vectors which represent the genewise activity in a finite set of genes). We focus on a finite set of genes called
M30, which has been shown to have a global gene activity that is anti-correlated to epileptic gene activity
profiles (Delahaye-Duriez et al., 2016). The bandit instance comprises of arms/drugs, which, once pulled, return
a single score/reward which quantifies their ability to “reverse” a epileptic phenotype –that is, an anti-epileptic
treated epileptic phenotype should be closer to a healthy phenotype. A gene regulatory network (GRN) is
a summary of gene transcriptomic interactions as a graph: nodes are genes or proteins, (directed) edges are
regulatory interactions. We see a GRN as a Boolean network (BN): nodes can have two states (0 or 1), and
each of them is assigned a so-called “regulatory function”, that is, a logical formulæ which updates their state
given the states of regulators (i.e., predecessors in the network) at each time step. In order to infer the effect
of a treatment, one can set as initial network state (“initial condition”) the patient phenotype masked by the
perturbations on the drug targets, and iteratively update the network state until reaching an attractor state
(phenotype prediction procedure).

Building the Boolean network We use the Boolean network inference method described in (Yordanov et al.,
2016) using code at repository https://github.com/regulomics/expansion-network (Réda and Wilczyński,
2020). We get the unsigned undirected regulatory interactions from the protein-protein interaction network
(PPI) of M30, using the STRING database (Szklarczyk et al., 2016). Using expression (or, as we called it in the
paper, gene activity) data in the hippocampus from UKBEC data (Gene Expression Omnibus (GEO) accession
number GSE46706), a Pearson’s R correlation matrix is computed, which allows signing the interactions using
pairwise correlation signs. Then, considering that the effects of a gene perturbation can only be seen on connected
nodes, we only keep strongly connected components in which at least one gene perturbation in LINCS L1000
experiments occurs, using Tarjan’s algorithm (Tarjan, 1972).

Then, in order to direct the edges in the network using the inference method, we restrict the experiments
extracted from LINCS L1000 to those in SH-SY5Y human neuron cells (neuroblastoma from bone marrow),
with a positive interference scale score (Cheng and Li, 2016), which quantify the success of the perturbation
experiment. For each experiment (knockdown via shRNA, overexpression via cDNA) on a gene in M30 in this



cell line, we extract from Level 3 LINCS same-plate untreated, genetic control and perturbed profiles (each of
them being real-valued vectors of size ≈ 100, the number of genes in M30) such as the perturbed profile on this
plate has the largest value of distil ss which quantifies experimental replication. This procedure yields a total
of (1 untreated + 2 replicates of genetic control + 2 replicates of perturbed) ×3 experimental profiles. Each
experimental constraint for the GRN inference is defined as follows (G = 101 is the number of M30 genes in the
network):

� Initial condition: Untreated profile which has been binarized using the binarize via histogram proce-
dure (peak detection in histogram of gene expression values using persistent topology). Value: {0, 1,⊥}G.
The number of non-⊥ values is 66.

� Perturbation: Gene-associated value is equal to 1 if and only if the gene is perturbed in the experiment.

� Final/fixpoint condition: Vector which has been obtained by running Characteristic Direction (Clark
et al., 2014) (CD) on [treated||genetic control] (in the call to the function, treated profiles were annotated 2
whereas genetic control ones were annotated 1) profiles, which yields a vector in {0, 1,⊥}G, where 0’s (resp.
1’s) are significantly down- (resp. up-) regulated genes in treated profiles compared to control ones. Note
that [P1||P2] means that we compute the genewise activity change from group P2 to group P1 (hence, this
is not symmetrical). The number of non-⊥ values is around 22.

The inferred GRN should satisfy all experimental constraints by assigning logical functions to genes and selecting
gene interactions. This network is displayed in Figure 4.

Table 6: Experiments in SH-SY5Y human neuron-like cell line for GRN inference. Inference parameter: t = 20,
asynchronous dynamics.

Perturbed gene Experiment type Exposure time
CACNA1C KD 120 h

CDC42 KD 120 h
KCNA2 KD 120 h

Getting the arm/drug features The features we use are the drug signatures (K = 509 in the binary drug
signature dataset). Given a drug, we compute them as follows:

1. First, in the Level 3 LINCS L1000 database (Subramanian et al., 2017), we select the cell line with the highest
transcriptomic activity score, or TAS (quantifying the success of treatment in this specific cell line: we expect
to obtain more reproducible experiments in this cell line if this score is high). Then, considering experiment
in this cell line, treatment by the considered drug, we select the brew prefix (identifier for experimental plate)
which correspond to the treated expression profile with the largest value of distil ss (which quantifies the
reproducibility of the profile across replicates), and we get the corresponding same-plate control (vehicle)
profile. We also get one same-plate replicate of the considered treated experiment and another of the control
experiment (total number of profiles: 2 + 2).

2. We apply on this set of profiles Characteristic Direction (Clark et al., 2014) in order to get the relative
genewise expression change due to treatment from control sample group CD([treated||vehicle control]). This
yields a real-valued vector in [−1, 1]G which will be used in the baseline method L1000 CDS2, and a binary
vector in {0, 1,⊥}G in our scoring method, which is the so-called drug signature.

Epileptic patient/control phenotypes We fetched data from GEO accession number GSE77578, which was
then quantile-normalized across all patient (|Pp| = 18) and control (|Pc| = 17) samples. We run Characteristic
Direction (Clark et al., 2014) CD([Pc||Pp]) in order to get the “differential phenotype” from controls to patients,
which is the way we chose in order to aggregate control profiles and only considering differentially expressed
genes.

Drug “true” scores We get them from RepoDB (Brown and Patel, 2017) database, which is a curated
version from clinicaltrials.gov, and from literature. To each drug is associated an integer: 1 if the drug is
antiepileptic, 0 if it is unknown, −1 if it is a proconvulsant drug.



Masking procedure o We use this (asymmetric) function in order to generate the initial condition from
which an attractor state, if it exists, should be fetched: (x o y)[j] = y[j] if y[j] ∈ {0, 1} else x[j]. This aims at
mimicking the immediate effect of treatment on gene activity.

Running the simulator via the GRN Given collected patient and control phenotypes, and seeing arms
as potentially repurposed drugs, the procedure to generate a reward from a given arm a is as described in
Algorithm 2. We compare this method to a simpler signature reversion method, used in the web application
L1000 CDS2 (Duan et al., 2016), which is deterministic, and compares directly drug signatures and differential
phenotypes. The full procedure is described in Algorithm 3. We have tested our method on a subset of drugs
with respect to this baseline. The results can be seen in Figure 5.

Note that returning a score for a single drug with our method is usually a matter of a few minutes, but the
computation time can drastically increase when considering a higher number of nodes in the Boolean network,
so that is why, even if on this instance we could run all computations for each drug and for each initial patient
sample for drug repurposing (which is what we do in Figure 5 anyway in order to check that our method yields
correct results with respect to known therapeutic indications), we think this model is interesting to test our
bandit algorithms.

Moreover, the linear dependency between features and scores does not hold: indeed, in our subset of K = 10
arms, computing the least squares estimate of θ using the mean rewards m as true values, and denoting X the
concatenation of drug signatures, that is, θ = (X>X)−1Xm, gives a high value of ‖θ −m‖ ≈ 20.9. The linear
setting in bandits is simply the easiest contextual setting to analyze. Although this non-linearity, along with the
fact that the initial condition is randomized, might be the main reason why the empirical sample complexity in
our subset instance is a lot higher than 10× 18 for all algorithms, even if linear algorithms are noticeably more
performant than classical ones.

Algorithm 2 Reward generation via the “GRN simulator”.

requires G GRN, phenotypes of patient (diseased) and control (healthy) individuals w.r.t. a given disease
Pp ∈ [0, 15]G, Pc ∈ [0, 15]G, a arm/drug to be tested, with binary drug signature sba ∈ {0, 1,⊥}G.
# differential phenotype is computed: controls||patients
D ∈ {0, 1,⊥}G = CD([Pc||Pp])
# patient phenotype is uniformly sampled from the pool of patient phenotypes
p ∼ U(Pp)
pb ∈ {0, 1,⊥}G ← binarize via histogram(p)
pr ∈ {0, 1}G ← phenotype prediction(GRN=G, initial condition=(pb o sba) ∈ {0, 1,⊥}G)
# comparison function cosine score is run on the intersection of supports of D and pr

# this intersection is equal to 50 in practice, which is the size of the support of D
r ← cosine score|D|∩|pr|(D, p

r)
returns r

Algorithm 3 Reward via baseline method from L1000 CDS2 (Duan et al., 2016).

requires Phenotypes of patient (diseased) and control (healthy) individuals w.r.t. a given disease Pp ∈ [0, 15]G,
Pc ∈ [0, 15]G, a arm/drug to be tested, with non-binary, full signature sa ∈ [−1, 1]G.
# differential phenotype is computed: patients||controls
C ∈ {0, 1,⊥}G = CD([Pp||Pc])
r ← 1− cosine score(C, sa)
returns r



Figure 5: We consider a subset of drugs of size 10 (5 with positive association score, 5 with negative score), which
is the one tested in the paper. For validation, we plot a boxplot of the rewards obtained for each initial patient
sample, for each drug. Mean is colored as green if the drug is antiepileptic (AE), resp. red if it is proconvulsant
(PC), with the corresponding drug name (in red if its true score is negative, in green if it is positive). The
baseline score is plot in in blue. For both methods, the highest the score is, the better (the “more” anti-epileptic
the drug is predicted). We computed and reported above the plot the Hit Score at rank r (HR@r), that is, the
mean accuracy on the class AE on the Top-r scores, for r ∈ {1, 2, 5, 10} for each of the methods (Scoring or
Baseline).



Figure 3: From top to bottom: m = 3, m = 8. Error frequencies are rounded up to 5 decimal places.



Figure 4: Inferred GRN for the drug repurposing instance on epilepsy. Genes present in this network belong to
the M30 set. Green edges labelled “+” (resp. red edges labelled “-”) are activatory (resp. inhibitory) interactions
from one regulatory gene on a target gene, that is, that increase (resp. decrease) target gene activity. Deep
orange nodes are perturbed nodes in the SHSY5Y cell line in LINCS L1000.



Figure 6: Drug repurposing instance K = 10, 500 simulations, m = 5, δ = 0.05, ε = 0, σ = 0.5, λ = σ/20.
Close-up from Figure 1 from the paper.



C UPPER BOUNDS FOR GIFA ALGORITHMS

Lemma 7. In algorithm m-LinGapE, for any selection rule, on event E ,
⋂
t>0

⋂
i,j∈[K]

(
∆i,j ∈ [−Bj,i(t), Bi,j(t)]

)
,

for all t > 0, Bct,bt(t) ≤ min(−(∆bt ∨∆ct) + 2Wt(bt, ct), 0) +Wt(bt, ct). (Lemma 4 in the paper)

Proof. Let us use two properties:

1. As bt ∈ J(t) and ct /∈ J(t), it holds in particular that µ̂bt(t) ≥ µ̂ct(t), hence Bct,bt(t) = ∆̂ct,bt(t)+Wt(bt, ct) ≤
Wt(bt, ct).

2. From the definitions of bt and ct, it holds that Bct,bt(t) = maxj∈J(t) maxi/∈J(t)Bi,j(t).

Property 1 already establishes that Bct,bt(t) ≤ Wt(bt, ct), it therefore remains to show that Bct,bt(t) ≤ −(∆bt ∨
∆ct) + 3Wt(bt, ct). We do it by distinguishing four cases:

(i) bt ∈ S?m and ct /∈ S?m: In that case ∆bt = µbt − µm+1 and ∆ct = µm − µct . As event E holds, one has
Bct,bt(t) = −Bbt,ct(t) + 2Wt(bt, ct) ≤ ∆ct,bt + 2Wt(bt, ct). As ct /∈ S?m, µct ≤ µm+1, and ∆ct,bt ≤ µm+1 − µbt =
−∆bt . But as bt ∈ S?m, it also holds that µbt ≥ µm, and ∆ct,bt ≤ µct − µm = −∆ct . Hence Bct,bt(t) ≤
−(∆bt ∨∆ct) + 2Wt(bt, ct) ≤ −(∆bt ∨∆ct) + 3Wt(bt, ct).

(ii) bt 6∈ S?m and ct ∈ S?m: Using Property 1:

Bct,bt(t) ≤ Wt(bt, ct) ≤ ∆̂bt,ct(t) +Wt(bt, ct) = Bbt,ct(t) = −Bct,bt(t) + 2Wt(bt, ct) ≤ ∆bt,ct + 2Wt(bt, ct)

as event E holds. One can show with the same arguments as in the previous case that Bct,bt(t) ≤ −(∆bt ∨∆ct) +
3Wt(bt, ct).

(iii) bt 6∈ S?m and ct 6∈ S?m: In that case, there must exist b ∈ S?m that belongs to J(t)c. From the definition
of ct, it follows that Bct,bt(t) ≥ Bb,bt(t). Hence, using furthermore Property 1, the definition of ct, event E and
b ∈ S?m, Wt(bt, ct) ≥ Bct,bt(t) ≥ Bb,bt(t) ≥ ∆b,bt ≥ ∆m,bt = ∆bt . It follows that, using event E :

Bct,bt(t) ≤ ∆ct,bt + 2Wt(bt, ct) = (µct − µm) + (µm − µbt) + 2Wt(bt, ct) = −∆ct + ∆bt + 2Wt(bt, ct)

(bt 6∈ S?m and ct 6∈ S?m)

≤ −∆ct + 3Wt(bt, ct)

And it also holds by Property 1 that:

Bct,bt(t) ≤ Wt(bt, ct) = −Wt(bt, ct) + 2Wt(bt, ct)

≤ −∆bt + 2Wt(bt, ct) ≤ −∆bt + 3Wt(bt, ct)

Hence Bct,bt(t) ≤ −(∆bt ∨∆ct) + 3Wt(bt, ct).

(iv) bt ∈ S?m and ct ∈ S?m: In that case, there must exist c /∈ S?m such that c ∈ J(t). By Property 2, on event
E and using c ∈ (S?m)c, we know that Bct,bt(t) = maxj∈J(t) maxi/∈J(t)Bi,j(t) ≥ maxi/∈J(t)Bi,c(t) ≥ Bct,c(t) ≥
µct −µc ≥ µct −µm+1 = ∆ct . Hence, using furthermore Property 1 yields ∆ct ≤ Bct,bt(t) ≤Wt(bt, ct). It follows
that, using event E :

Bct,bt(t) ≤ µct − µbt + 2Wt(bt, ct) = µct − µm+1 + µm+1 − µbt + 2Wt(bt, ct)

= ∆ct −∆bt + 2Wt(bt, ct) ≤ −∆bt + 3Wt(bt, ct)



And using again Property 1, one has:

Bct,bt(t) ≤ Wt(bt, ct) = −Wt(bt, ct) + 2Wt(bt, ct) ≤ −∆ct + 2Wt(bt, ct)

≤ −∆ct + 3Wt(bt, ct)

Hence Bct,bt(t) ≤ −(∆bt ∨∆ct) + 3Wt(bt, ct), which is what we wanted to show.

Lemma 8. Upper bound in m-LinGapE with either or both bt and ct pulled at time t
(m-LinGapE(1)) Maximum number of samplings on event E is upper-bound by infu∈R∗+{u > 1 +

Hε(m-LinGapE(1), µ)C2
δ,u}, where Hε(m-LinGapE(1), µ) , 4σ2

∑
a∈[K] max

(
ε, ε+∆a

3

)−2
.

Proof. Combining Lemma 4 with stopping rule τLUCB , at time t < τLUCB :

ε ≤ Bct,bt(t) ≤ min(−(∆bt ∨∆ct) + 3Wt(bt, ct),Wt(bt, ct))

⇔ max

(
ε,
ε+ ∆bt

3
,
ε+ ∆ct

3

)
≤Wt(bt, ct) ≤Wt(bt) +Wt(ct) ≤ 2Wt(at) = 2Cδ,t||xat ||Σ̂λt
(where at = maxa∈{bt,ct}Wt(a))

= 2σCδ,t||xat ||(V̂ λt )−1 ≤ 2σCδ,t
||xat ||√

Nat(t)||xat ||

= 2σCδ,t
1√
Nat(t)

(using Lemma 2 and λ > 0, Nat(t) > 0, since at is pulled at t)

⇔ Nat(t) ≤
4σ2C2

δ,t

max
(
ε,
ε+∆bt

3 ,
ε+∆ct

3

)2 ≤ min
a∈{bt,ct}

4σ2C2
δ,t

max
(
ε, ε+∆a

3

)2 ≤ 4σ2C2
δ,t

max
(
ε,
ε+∆at

3

)2

⇔ Nat(t) ≤
4σ2C2

δ,t

max
(
ε,
ε+∆at

3

)2 = T ∗(at, δ, t)

Using Lemma 6, if T (µ, δ) is the number of samplings of m-LinGapE on bandit instance µ for δ-fixed confidence
Top-m identification:

T (µ, δ) ≤ inf
u∈R∗+

u > 1 + C2
δ,u

∑
a∈[K]

4σ2

max
(
ε, ε+∆a

3

)2
 ≤ inf

u∈R∗+
{u > 1 + C2

δ,uHε(m-LinGapE(1), µ)}

D TECHNICAL LEMMAS

Lemma 9. Let us fix K > m > 0, t > 0 and i ∈ [K]. Let us consider µ such that µ1 ≥ µ2 ≥ · · · ≥ µK , and a

series of distinct values (Bj,i(t))j∈[K] such that Bj,i(t) ≥ µj − µi for any j ∈ [K]. Then
m

max
j∈[K]

Bj,i(t) ≥ µm − µi.

Proof. Assume by appealing to the extremes that
m

max
j∈[K]

Bj,i(t) < µm − µi. Then, using our assumption on

(Bj,i(t))j∈[K] and (µj)j∈[K], for any j ∈ [m], Bj,i(t) ≥ µj − µi ≥ µm − µi >
m

max
j∈[K]

Bj,i(t), which means at

least m distinct values of (Bj,i(t))j≤K are strictly greater than
m

max
j∈[K]

Bj,i(t), which yields a contradiction. Thus

m
max
j∈[K]

Bj,i(t) ≥ µm − µi. Note that we can assume the condition on (Bi,j(t))i,j∈[K] being distinct is satisfied

except for some degenerate cases where two arm features are equal and the observations made from both arms
are exactly the same.



Lemma 10. For all t > 0, for any subset J ⊆ [K] of size m, for all j ∈ J ,
m

max
i 6=j

Bi,j(t) ≤ maxi/∈J Bi,j(t).

(Lemma 1 in the paper)

Proof. Indeed,
m

max
i6=j

Bi,j(t) = minS⊆[K],|S|=m−1 maxi 6∈(S ∪{j})Bi,j(t) (set S matching the outer bound is

[m−1]
arg max

i 6=j
Bi,j(t), meaning that we consider then the maximum value over the set of (Bi,j(t))i∈[K] from which the

m− 1 largest values and Bj,j(t) are removed). Then consider S = J \ {j}, which is included in [K] and is of size

m− 1 (j ∈ J). Then
m

max
i 6=j

Bi,j(t) ≤ maxi/∈S∪{j}Bi,j(t) = maxi/∈J Bi,j(t).

Lemma 11. For any t > 0, for any a ∈ [K] such that Na(t) > 0, for all x ∈ RN , ||x||2
(V̂ λt )−1

≤ x>(λIN +

Na(t)xax
>
a )−1x.

Proof. Let us prove this lemma by induction on K ≥ 2 (case K = 1 is trivial). Let At(a) , Na(t)xax
>
a ,

At , λIN + At(a). For [K] = {a1, a2, . . . , aK−1, a} and K ≥ 2, let us denote BtK ,
∑K−1
i=1 At(ai), such that

V̂ λt = At + BtK . We will prove a stronger claim, which is “for any t ∈ N∗, for any x ∈ RN , and K ≥ 2, At
and At + BtK are invertible and ||x||2(At+BtK)−1 < ||x||2A−1

t

”. Note that, for any K and t, since λ > 0, At is then

a Gram matrix with linearly independent columns, thus is positive definite, and BtK is a Gram matrix, thus a
non-negative definite matrix. Then At +BtK and At are positive definite and invertible.

If K = 2: then let us assume that [K] = {a, a1}:

||x||2(At+Bt2)−1 , x>(At +Bt2)−1x = x>(At +Na1(t)xa1x
>
a1)−1x (using Sherman-Morrison formula)

= x>(A−1
t −

A−1
t Na1(t)xa1x

>
a1A

−1
t

1 +Na1(t)||xa1 ||2A−1
t

)x = ||x||2
A−1
t
− (A−1

t x)>Bt2(A−1
t x)

1 +Na1(t)||xa1 ||2A−1
t

≤ ||x||2
A−1
t
− 0

using the fact that Bt2 is nonnegative definite and At, and then A−1
t , are both symmetric.

If K > 2: using the induction, At + BtK−1 is invertible. Similarly to the previous step, using the Sherman-
Morrison formula:

||x||2(At+BtK)−1 = x>(At +BtK−1)−1x−
x>(At +BtK−1)−1At(aK−1)(At +BtK−1)−1x

1 +NaK−1
(t)||xaK−1

||2
(At+BtK−1)−1

= x>(At +BtK−1)−1x−
((At +BtK−1)−1x)>At(aK−1)((At +BtK−1)−1x)

1 +NaK−1
(t)||xaK−1

||2
(At+BtK−1)−1

(same argument as previously, since At(aK−1) is a Gram matrix)

≤ x>(At +BtK−1)−1x− 0 = ||x||2(At+BtK−1)−1

Then, using the induction, ||x||2
(V̂ λt )−1

= ||x||2(At+BtK)−1 ≤ ||x||2(At+BtK−1)−1 ≤ ||x||2A−1
t

= ||x||2(λIN+Na(t)xaxTa )−1 .

Lemma 12. ∀t > 0,∀a ∈ [K],∀y ∈ RN , ||y||(V̂ λt )−1 ≤ ||y||/
√
Na(t)||xa||2 + λ. (Lemma 2 in the paper)

Proof. Using successively Lemma 11, Sherman-Morrison formula and Cauchy-Schwarz inequality:

||y||2
(V̂ λt )−1 ≤ ||y||2(λIN+Na(t)xax>a )−1 =

||y||2

λ
− λ−2Na(t)(< y, xa >)2

1 + λ−1Na(t)||xa||2

≤ ||y||
2

λ
− λ−2Na(t)||y||2||xa||2

1 + λ−1Na(t)||xa||2
=

||y||2

λ+Na(t)||xa||2



Lemma 13. Let T ∗ : [K]× (0, 1)× N∗ → R∗+ be a function that is nondecreasing in t, and It the set of pulled
arms at time t. Let E be an event such that for all t < τδ, δ ∈ (0, 1), ∃at ∈ It, Nat(t) ≤ T ∗(at, δ, t). Then it holds
on the event E that τδ ≤ T (µ, δ) where

T (µ, δ) , inf

{
u ∈ R∗+ : u > 1 +

K∑
a=1

T ∗(a, δ, u)

}
.

(Lemma 6 in the paper)

Proof. Let us denote T ∈ N∗. Let us study min(τδ, T ), because min(τδ, T ) < T =⇒ τδ < T . On event E :

min(τδ, T ) = 1 +
∑
t≤T

1(t < τδ) ≤ 1 +
∑
t≤T

1(∃at ∈ It, Nat(t) ≤ T ∗(at, δ, t)) (using definition of T ∗, and E holds)

= 1 +
∑
t≤T

t∑
m=1

1(∃at ∈ It, Nat(t) = m ∧m ≤ T ∗(at, δ, t)) (using ∀a ∈ [K], Na(t) ∈ [t] ∧ ∀a ∈ It, Na(t) > 0)

≤ 1 +

T∑
m=1

T∑
t=m

∑
a∈[K]

1(a ∈ It)1(Na(t) = m ∧m ≤ T ∗(a, δ, t)) (using the union bound on pulled arms)

= 1 +
∑
a∈[K]

T∑
m=1

T∑
t=m

1(a ∈ It)1(Na(t) = m)1(m ≤ T ∗(a, δ, t))

≤ 1 +
∑
a∈[K]

T∑
m=1

[
T∑
t=m

1(a ∈ It)1(Na(t) = m)

]
1(m ≤ T ∗(a, δ, T )) (since T ∗ is nondecreasing in t)

≤ 1 +
∑
a∈[K]

T∑
m=1

1× 1(m ≤ T ∗(a, δ, T )) ≤ 1 +
∑
a∈[K]

T ∗(a, δ, T )

Choosing any T that satisfies 1 +
∑
a∈[K] T

∗(a, δ, T ) < T yields min(τδ, T ) < T and therefore τδ ≤ T . The
smallest possible such T is

T (µ, δ) , inf

u ∈ R∗+ : u > 1 +
∑
a∈[K]

T ∗(a, δ, u)

 .


