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A Coupled RankDistil Algorithm

We describe the full algorithm for coupled RankDistil in this section. As mentioned earlier, computing the
gradient of coupled RankDistil-Loss in Equation 3 can be expensive since it requires iterating over all the
permutations. Here, we use a Monte-Carlo approximation to obtain an unbiased estimate of the gradient.
Algorithm 2 lists the pseudo-code for the algorithm. Note that the algorithm is with Monte-Carlo approximation
on single permutation, however, it practice we use a batch of permutations.

Algorithm 2 Coupled RankDistil
Initialization: Initial predictor f , Teacher predictor f t, distribution Q(.|t), loss function `RankDistil, integer
p ≥ k, batch size m, mined batch size b ≤ m, thresholding function τ
for r = 0, · · · , R− 1 do
Uniformly randomly select an example {x, y}
Sample index set B of size m using the distribution Q(.|f t(x))
Compute P = Topp(f t(x)) and N = Topb,B(f(x))
Compute sl = fl(x) for l ∈ P ∪N
Randomly sample a permutation π according to r-Plackett’s model Pτ(αt,P )(.|P ∪N)
Compute gradient gr = −∇ logPs(π|P ∪N) (according to Definition 4)
Update predictor f using the gradient gr

end for

A.1 Proof of Proposition 5

Recall that

Ps(π|S) =
1

(|S| − r)!

r∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

.

To prove the first part of the result, we observe the following:

∑
π∈P(S)

Ps(π|S) =
∑

π∈P(S)

1

(|S| − r)!

r∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

.

Let Gl be the set of permutations of l elements selected from S. Then, it is easy to see that

∑
π∈P(S)

Ps(π|S) =
∑

π∈P(S)

1

(|S| − r)!

r∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

=
∑
π∈Gr

r∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

This can be shown by using the principle of mathematical induction on size of Gr. It is easy to see that it holds
for all subsets of size 1. Suppose it holds for all subsets of size r − 1. For any permutation π, we use {π} to
denote the set of all items in π. We consider the following:

∑
π∈Gr

r∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

=
∑

π∈Gr−1

r−1∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

∑
i∈S−{π}

exp(si)∑|S|
l∈S−{π} exp(sπ(l))

=
∑

π∈Gr−1

r−1∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

= 1.

The second equality follows from the induction hypothesis. Therefore, it also holds for all size r ≤ K. The base
case for r = 1 is easy to verify. The result follows by principle of mathematical induction.
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A.2 Computation of Coupled RankDistil-Loss

For the purpose of the discussion, let us assume M =∞. Coupled RankDistil-Loss can be computed in O(prr).
Recall that coupled RankDistil-Loss is

`RankDistil(t, s, P,N) = −
∑

π∈P(P∪N)

Pτ(αt,P )(π|P ∪N) logPs(π|P ∪N).

First note that we only have to consider permutations where items in N appear in the last |N | positions. This
is due to the fact that Pτ(αt,P )(π|P ∪N) = 0 when N appear in the last |N | positions due to the thresholding
function τ . Furthermore, only the first r positions of the permutation are important. In particular,

Pτ(αt,P )(π1|P ∪N) logPs(π1|P ∪N) = Pτ(αt,P )(π2|P ∪N) logPs(π2|P ∪N)

when first r positions of the π1 and π2 are the same. The number of such unique permutations is O(pr). The time
complexity for computing the loss for a permutation can be reduced to O(r) if

∑
i∈N e

si is computed beforehand.
This can be obtained by computing

∑
i∈P∪N e

si once and reusing them during the loss computation.

B Example Instantiations of RankDistil

We list a few interesting instantiations of RankDistil-Loss in this section.

Binary RankDistil-Loss

• Sigmoid CE + logistic

`RankDistil(t, s, P,N) =
∑
i∈P

∑
z∈{−1,1}

{
− 1

1 + e−zti
log

1

1 + e−zsi

}
+
∑
i∈N

log(1 + esi)

• Softmax CE + Logistic

`RankDistil(t, s, P,N) =
∑
i∈P

{
− eti∑

i∈P e
ti

log
esi∑
i∈P e

si

}
+
∑
i∈N

log(1 + esi)

• 2-Regression + Square Hinge

`RankDistil(t, s, P,N) = ‖tP − sP ‖2 +
∑
i∈N

max{0, γ + si}2

Pairwise RankDistil-Loss

• Softmax CE + Pairwise Hinge

`RankDistil(t, s, P,N) =
∑
i∈P

{
− eti∑

i∈P e
ti

log
esi∑
i∈P e

si

}
+
∑
i∈N

∑
j∈P

max{0, γ + si − sj}

• Pairwise Hinge + Pairwise Hinge

`RankDistil(t, s, P,N) =
∑
i 6=j∈P

∑
z∈{−1,1}

1(z(ti − tj)) max{0, γ + z(sj − si)}+
∑
i∈N

∑
j∈P

max{0, γ + si − sj}

• Pairwise Logistic + Pairwise Logistic

`RankDistil(t, s, P,N) =
∑
i 6=j∈P

∑
z∈{−1,1}

1(z(ti − tj)) log(1 + ez(sj−si)) +
∑
i∈N

∑
j∈P

log(1 + esi−sj )
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C Consistency results

C.1 Proof of Claim 3

The proof of Claim 3 follows easily from Definition 2. First note that [s∗(x)][p+1] < [s∗(x)][p]. Furthermore, p ≥ k
and argmaxis

∗(x) = argmaxif
t(x) for all i ∈ [p]. Thus, it follows that the items in top-k of s∗(x) and f t(x) are

exactly the same (including the order according to the respective scores). Since f t is k-compatible, the result
follows.

C.2 Proof of Theorem 6

We provide the proof for the case where b = m in Algorithm 2. The proof for b < m is similar. First, recall that
RankDistil-Loss is

`d(t, s) = EB∼Q(.|t)

[
`RankDistil(t, s,Topp(t),Topb,B(s))

]
,

where
`RankDistil(t, s, P,N) = Eπ∼Pτ(αt,P )(.|P∪N) [− logPs(π|P ∪N)]

Note that P is always Topp(t). We choose M such that [f t(x)]i ≥ −M for all i ∈ [K]. Let us analyze a
minimizer s̄ ∈ argmins`RankDistil(t, s, P,N) for a particular a N ⊆ [K]−Topp(t). We claim that s̄N = −αM
and s̄P = αtP . This is obtained from the fact that minimizer of the cross-entropy `RankDistil(t, s, P,N) is when
the scores match (this can be easily verified by finding point such that ∇`RankDistil(t, s, P,N) = 0. Let s∗ such
that s∗P = αtP and s∗K−Topp(t) = −αM then s∗ ∈ argmins`RankDistil(t, s, P,N) for all N ⊆ [K]. Therefore, by
Lemma 9, s∗ ∈ argmins`d(t, s), which completes the proof.

C.3 Proof of Theorem 7

We provide the proof for the case where b = m in Algorithm 1. The proof for b < m is similar. Since the
`RankDistil in binary RankDistil-Loss case is separable in P and N , RankDistil-Loss can be written as

`d(t, s) = Ψ(t, s,Topp(t)) + EB∼Q(.|t)
∑
i∈B

ϕ(−si)

From the above form, it is easy to see that s∗i ≤ γ for all i /∈ Topp(t) since ϕ is strictly decreasing in (−∞,−γ] and
supp(Q(.|t)) = [K]−Topp(t). Furthermore, argmaxis

∗
P = argmaxif

t
P (x) for all x ∈ X, i ∈ [p] and [f t(x)][p] > γ.

Combining these facts gives us the desired result.

C.4 Proof of Theorem 8

The proof is similar to the binary case. Similar to the binary case, we provide the proof for the case where b = m
in Algorithm 1. The proof for b < m is similar. In the pairwise case, RankDistil-Loss can be written as

`d(t, s) = Ψ(t, s,Topp(t)) + EB∼Q(.|t)
∑
i∈B

∑
j∈Topp(t)

ϕ(sj − si)

From the above form, it is easy to see that s∗i < s∗j for all i /∈ Topp(t) and j ∈ Topp(t) since ϕ is strictly
decreasing in (−∞, 0] and supp(Q(.|t)) = [K]−Topp(t). Also, argmaxis

∗
P = argmaxif

t
P (x) for all x ∈ X, i ∈ [p].

Putting these facts together completes the proof for the result.

Lemma 9. Suppose F (u) = Ez[G(u, z)] where G : RK × Z → R. If u∗ ∈ argminuG(u, z) for all z ∈ Z, then
u∗ ∈ argminuF (u).

Proof. The result trivially follows from the definition of argmin.


