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Abstract

Methods of neural network attribution have
emerged out of a necessity for explanation
and accountability in the predictions of black-
box neural models. Most approaches use a
variation of sensitivity analysis, where indi-
vidual input variables are perturbed and the
downstream effects on some output metric are
measured. We demonstrate that a number of
critical functional properties are not revealed
when only considering lower-order perturba-
tions. Motivated by these shortcomings, we
propose a general framework for decomposing
the orders of influence that a collection of in-
put variables has on an output classification.
These orders are based on the cardinality of
input subsets which are perturbed to yield a
change in classification. This decomposition
can be naturally applied to attribute which
input variables rely on higher-order coordina-
tion to impact the classification decision. We
demonstrate that our approach correctly iden-
tifies higher-order attribution on a number of
synthetic examples. Additionally, we show-
case the differences between attribution in our
approach and existing approaches on bench-
mark networks for MNIST and ImageNet.

1 Introduction

With an ever-increasing presence of deep learning in
statistical modeling and prediction, the call for meth-
ods of explanation and interpretation of deep neural
networks continues to grow. Methods of neural network
attribution – whereby a score is assigned to individ-
ual inputs according to their influence on the output
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Figure 1: To measure importance of a joint coordinate
system, we compare ε-bounded perturbations (based on
some Lp norm) in high-dimensional space versus low-
dimensional subspaces. If exclusively high-dimensional
perturbation trajectories lead to misclassification (as
above) then importance is assigned jointly.

– are one class of approaches seeking to shine a light
inside these neural black-boxes. Measures of influence
in these settings are frequently based on gradients
[1, 2, 3, 4, 5, 6], or misclassification due to input per-
turbations [7, 8]. Note that both of these settings are
inherently perturbation-based, as gradients measure
the infinitesimal change around a particular data sam-
ple. A subject of contention within the attribution
community which has garnered considerable criticism
is the lack of insight gained by these methods [9, 10, 11].
Early work was evaluated qualitatively and through ap-
peal to human intuition, until it was shown that many
approaches ignore all details of the model [12]. To com-
bat this evaluation problem, attempts have been made
to introduce formal axioms (such as the sensitivity ax-
iom [1], or input invariance [9]) which dictate whether
a methods attributions are trustworthy. However, with
axioms acting as a proxy for quantitative analysis, there
has been a surge in candidate axioms without much
work done to determine which are critical or desirable
(see Appendix for axiom evaluation). A question worth
asking is, does a method which satisfies more axioms
tell us more about the underlying function?

Despite a perception of progress in the attribution liter-
ature, the use of gradients and input perturbations to
probe black-box functions has been around for decades
under the guise of sensitivity analysis [13] and property
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testing [14]; though these connections are rarely (if ever)
brought up in attribution papers. Through the wider
lens afforded by this literature, it becomes apparent
that many current attribution methods make critically
limiting assumptions that can skew or hide important
properties of the network. One example, which will
be the primary focus of this work, is the assumption
that higher-order influence can be disregarded. Al-
most all attribution methods only consider first-order
influence (either single-variable partial derivatives, or
single-variable input perturbations). This assumption
is especially limiting for the highly nonlinear networks
employed in modern vision and natural language tasks,
where first-order perturbations (alt. partial derivatives)
are loose approximations in the best case, and grossly
misinformative in the worst. Recent work has begun
to notice and address this limitation in a number of
different ways. One example is the inclusion of second-
order influence through computation of the Hessian
[2], and another proposes a framework for measuring
kth-order contributions by modifying the Shapely in-
teraction values [15]. Although these works take the
first step in establishing higher-order influence, they
do so by assuming access to an accurate and neutral
baseline [16]. We wish to challenge this assumption,
and demonstrate how the wrong choice of baseline can
lead to pathological reporting of functional properties.
In place of a fixed baseline, we propose to search for
one within local regions of increasing volume, which is
achieved by bounded adversarial perturbations.

To measure how collections of variables with varying
cardinality contribute to the total influence, we intro-
duce the following formulation:

IxA
:= E[Z | do(xA = [adv(ε)]k)]

I(k) :=
1�
n
k

� X
xa∈XA

IxA
− 1�

n
k−1

� X
xb∈XB

IxB

where Z = |y − yadv| measures the displacement in
classification due to adversarial perturbation, and xA
is a set of input variables with cardinality k (alt. xB
with cardinality k − 1). Intuitively, I(k) measures the
impact of ε-adversarial perturbations which is exclu-
sive to subsets of size k. It does this by contrasting
subsets of size k with subsets of size k−1 using average
misclassification as a metric. Most of the paper will
be spent justifying and expanding on these choices.
Figure 1 illustrates an example of higher-order per-
turbations leading to a change in classification which
would not be possible with a perturbation along any
of the lower-order subspaces.

The following four objectives aptly summarize what this
work sets out to achieve: 1) briefly review the literature
on sensitivity analysis, and draw parallels to current

methods of neural network attribution; 2) propose a
framework for decomposing the total influence based
on perturbations to the power set of input variables; 3)
discuss how this decomposition can be used in practice
to reveal functional properties not captured by existing
attribution methods; 4) demonstrate the effectiveness
of the decomposition on synthetic examples and in
comparison with existing approaches to attribution.

2 Preliminaries

Implicit in most approaches to interpretability is the
assumption that relevant details of the model can be
distilled into something that is comprehensible to hu-
mans [17]. For attribution, an ideal description of the
model should reveal how input features contribute to
the final output. To measure this, it’s necessary to
investigate how changes in a feature lead to changes in
the output. Historically, this investigation is referred to
as sensitivity analysis. As a special case of sensitivity
analysis, one may be interested in how the presence
of a feature contrasts with its absence. This is the
case with many attribution methods, which view the
all-zero vector as a baseline that captures the absence
of all features. This implies that the study of Boolean
functions is relevant to the study of attribution. In the
next section, we will briefly introduce literature on sen-
sitivity analysis, and its connection with the analysis
of Boolean functions. This discussion will lay a theoret-
ical foundation, before transitioning to its application
in neural networks.

2.1 Sensitivity Analysis

Analysis of black-box functions has a long history in
theoretical computer science and learning theory. It is
often desirable to introduce some measure of function
complexity, or to test whether a function belongs to
a restricted class (ex: linear, monotone) as a way to
gain insight into a functions behavior [14]. We will
start by considering the class of Boolean functions of
the form f : {−1, 1}n → {−1, 1}. We use −1 instead
of 0 for ease in later results. A fundamental measure
of complexity for Boolean functions is sensitivity [18],
which measures whether the output bit (y) is flipped
when a particular input bit xi is flipped.

Sens(i) :=

(
1, if flip(xi)→ flip(y)

0, otherwise

When the sensitivity for a variable xi is averaged over
all samples, the resulting complexity measure is referred
to as the influence:

Inf(i) := Es

�
Sens(i)

�
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Intuitively, sensitivity and influence measure the ability
of individual changes in the input to propagate forward
and affect the output. This notion of sensitivity was
eventually broadened beyond Boolean functions to refer
to any analysis of how input changes affect the function
output [19]. This expanded definition of sensitivity
analysis clearly encompasses the goals and definitions
of neural network attribution.

A well-known property of Boolean functions is their
unique expression as multilinear polynomials:

Theorem 1 (Fourier Expansion Theorem [18]). Every
function f : {−1, 1}n → R can be uniquely expressed

with its Fourier Expansion: f(x) =
P

S⊆[n]

f̂(S) · xS

given Fourier Coefficients: f̂(S) ∈ R, and monomi-
als xS =

Q
i∈S

xi.

This theorem has interesting consequences for attri-
bution if it’s possible to quantify the presence or ab-
sence of an input feature (as is claimed in the liter-
ature). As a quick example, the max function over
two variables has the following Fourier expansion:
max(x1, x2) = 1

2 + 1
2x1 + 1

2x2 − 1
2x1x2. A method

seeking to explain how inputs influence the output
should be capable of revealing the second-order co-
ordination between x1 and x2. Is this information
attainable through perturbations alone?

Many properties of a Boolean function can be directly
determined using its Fourier spectrum (the collection
of Fourier coefficients), including influence [18]:

Inf(i) :=
X
S3i

f̂(S)2,

for a sum over subsets S containing the variable xi.
This relationship reveals that input perturbations of a
Boolean function yield access to information about
the monomials which uniquely define it. However,
this information is confounded due to the sum over
Fourier coefficients. To untangle this information, we
now consider a higher-order formulation of influence.
Instead of changes to individual variables xi, we now
consider changes to subsets xA of cardinality k. This
has the effect of including additional subsets S into the
sum of Fourier coefficients which contain any variable
present in xA. If we consider the difference between
average influences of order k and k − 1:

1�
n
k

� X
xA

X
S3A

f̂(S)2 − 1�
n

k−1

� X
xB

X
S3B

f̂(S)2,

the result captures the contribution of Fourier coeffi-
cients associated with monomials of a particular order.
This implies that the relevance of higher-order interac-
tions to the output decision can be determined through

the use of higher-order perturbations. Our approach
is inspired by this fact, and seeks to generalize to the
case of continuous neural networks. The next section
describes the steps we take towards this generalization,
and challenges the assumptions of existing approaches
that attempt to do something similar.

3 Method

3.1 Choosing the output metric

Formalizing a measure of influence in the case of con-
tinuous input variables requires a number of critical
choices to be made. As a guiding principle, we will
attempt to remain as close as possible to the notion of
influence for Boolean functions introduced in Section
2.1. Every approach to attribution requires measuring a
change in the function output relative to changes in the
input. The two most common metrics for measuring
output change are: a) the value of the loss function, and
b) the output class. Due to its discrete nature, output
class is closest to the definition for Boolean functions.
If we introduce a single binary variable representing
misclassification (0 for incorrect class prediction, 1 for
correct), then the two settings are equivalent. Besides
this similarity, there are a number of additional rea-
sons to believe that output class is a preferred metric.
Changes to the loss function are most commonly asso-
ciated with derivative-based methods [3], which are not
scalable to the higher-order settings we aim to test. Ad-
ditionally, there are a number of cases where a change
in the loss is not informative about misclassification
(whereas misclassification is always informative about
a change in the loss). One example is when the input
sample is near a local minimum, then local changes to
the loss may guide it away from a perturbation that
leads to misclassification.

3.2 Measuring input changes: local versus
global

The next choice is related to how input perturbations
are defined for subsets of size k. Since we only care
about a subsets ability to influence the output deci-
sion, we consider an adversarial perturbation instead of
enumerating and averaging over many fixed perturba-
tions. In the Boolean setting, there is a natural sense in
which features are flipped on or off to perform a change.
In the continuous case, perturbations are made along
an interval, and are frequently classified as local or
global [7]. Local perturbations can sometimes behave
pathologically, such as in the example of Section 3.1,
or when the local change along an axis is 0 (inspiring
the sensitivity axiom [1]). Global perturbations (such
as the use of the zero-vector as a baseline) are often
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used to contrast the presence of a particular feature.
Many popular attribution methods employ a hybrid
approach that uses a combination of local and global
perturbations. One example is Integrated Gradients
[1], which measures derivatives along a straight-line
interpolation between the sample and the zero-vector.
We chose to use a hybrid approach which starts within
a limited local region of possible perturbations that
expands radially in volume up to a limit. This is ac-
complished by incrementally increasing the value of ε in
a norm-bounded adversarial attack. By the nature of
image data, if an adversarial perturbation is allowed to
search without bounds, it will likely lead to a misclas-
sification. This is true even when considering a small
number of pixels, as evidenced by one-pixel attacks
[20] and methods that attribute a reduced subset of
features [21, 22]. Further comparison to these methods
can be found in the Appendix. With this in mind,
we start with small values of epsilon and grow until a
saturation occurs.

3.3 Challenging neutral baselines

Most approaches to attribution measure the impor-
tance of a feature relative to a predefined notion of
its absence. Previous work has highlighted some of
the issues that can arise from this definition of impor-
tance [9, 16], but we wish to expand on some of them
in this section, and discuss how our approach avoids
them. If the presence/absence of a feature is measured
using its linear distance to a baseline, the following
cases would result in incorrect attribution: 1) features
with opposite baselines. For example, assume our base-
line is the zero-vector, and our image is a human eye.
The presence of a pupil is defined by the absence of
pixel intensity in a particular region, but this would be
deemed unimportant relative to our baseline. 2) fea-
tures with nonlinear importance relative to its distance
to the baseline. 3) features with discontinuous regions
of importance. For example, a feature may be ”present”
within a limited local range, and ”absent” everywhere
else. Measuring with respect to one direction inherently
biases the search, and can lead to skewed results. The
commonality between each of these examples is that
a rich and potentially complex notion of importance
along a continuous range is reduced to the simplest
constant or linear approximation. The solution is to
use more expressive ways of searching the space of
global perturbations, and to redefine the notions of
importance that use this information. Our work begins
to do the former by expanding the search space radially
without a bias in any particular direction, and through
the use of adversarial search in this space. Under our
measure, a variable is considered important if it’s inclu-
sion as a coordinate in the perturbation search space
leads to a change in classification that would not have

otherwise occurred (on average).

3.4 Implementation Details

We define the subset influence of order k for neural
networks as the displacement Z = |y−yadv| in the orig-
inal classification decision after adversarial intervention
over a subset of k variables:

IxA
:= E[Z | do(xA = [adv]k)]

I(k) :=
1�
n
k

� X
xa∈XA

IxA
− 1�

n
k−1

� X
xb∈XB

IxB

We use do(·) notation to represent the act of perturbing
a subset xA, inspired by the notation for interventions
in a related measure of Average Causal Effect/ Causal
Attribution [7]. The expectation in IxA

is taken over
m samples, with the value of m differing in each ex-
perimental setting. The value of I(k) is arrived at by
taking averages of this expectation over all subsets of
size k and k − 1. Since it is intractable to consider
all subsets if n and k are sufficiently large, we employ
two task-dependent sampling strategies. The first is to
simply sample l subsets uniformly at random, which
is consistent with sampling strategies used by exist-
ing higher-order approaches (such as Shapley sampling
[23, 24, 15]). The other is to consider contiguous blocks
of size k × k, which imposes an implicit bias of local
contiguity that works well in certain settings (such as
pixel-level image features). The attack strategies for
adversaries in IxA

are a subject of experimentation
(see Section 5.4), but many experiments use a simple
gradient attack (such as the fast gradient sign method
[25], or its L2 bounded variation).

4 Experiments

4.1 Higher-order Perturbations in Synthetic
Boolean Circuits

We’ll begin by introducing three small synthetic
Boolean circuits with fundamentally different behavior.
Using traditional Boolean sensitivity analysis, we will
show that higher-order perturbations help to reveal the
true logic underlying each function, which is not always
possible with single-variable perturbations. Finally, we
demonstrate that a standard practice in attribution
– measuring influence in a single sample relative to a
baseline – fails to distinguish any differences between
the functions. This fact will be important for later
experiments on neural networks.

The three Boolean functions of interest for our analysis
are parity, majority, and the OR gate. We will consider
the case of n = 4 input variables and one output
variable. To briefly explain these functions: parity
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