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Abstract

Methods of neural network attribution have
emerged out of a necessity for explanation
and accountability in the predictions of black-
box neural models. Most approaches use a
variation of sensitivity analysis, where indi-
vidual input variables are perturbed and the
downstream effects on some output metric are
measured. We demonstrate that a number of
critical functional properties are not revealed
when only considering lower-order perturba-
tions. Motivated by these shortcomings, we
propose a general framework for decomposing
the orders of influence that a collection of in-
put variables has on an output classification.
These orders are based on the cardinality of
input subsets which are perturbed to yield a
change in classification. This decomposition
can be naturally applied to attribute which
input variables rely on higher-order coordina-
tion to impact the classification decision. We
demonstrate that our approach correctly iden-
tifies higher-order attribution on a number of
synthetic examples. Additionally, we show-
case the differences between attribution in our
approach and existing approaches on bench-
mark networks for MNIST and ImageNet.

1 Introduction

With an ever-increasing presence of deep learning in
statistical modeling and prediction, the call for meth-
ods of explanation and interpretation of deep neural
networks continues to grow. Methods of neural network
attribution – whereby a score is assigned to individ-
ual inputs according to their influence on the output
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Figure 1: To measure importance of a joint coordinate
system, we compare ε-bounded perturbations (based on
some Lp norm) in high-dimensional space versus low-
dimensional subspaces. If exclusively high-dimensional
perturbation trajectories lead to misclassification (as
above) then importance is assigned jointly.

– are one class of approaches seeking to shine a light
inside these neural black-boxes. Measures of influence
in these settings are frequently based on gradients
[1, 2, 3, 4, 5, 6], or misclassification due to input per-
turbations [7, 8]. Note that both of these settings are
inherently perturbation-based, as gradients measure
the infinitesimal change around a particular data sam-
ple. A subject of contention within the attribution
community which has garnered considerable criticism
is the lack of insight gained by these methods [9, 10, 11].
Early work was evaluated qualitatively and through ap-
peal to human intuition, until it was shown that many
approaches ignore all details of the model [12]. To com-
bat this evaluation problem, attempts have been made
to introduce formal axioms (such as the sensitivity ax-
iom [1], or input invariance [9]) which dictate whether
a methods attributions are trustworthy. However, with
axioms acting as a proxy for quantitative analysis, there
has been a surge in candidate axioms without much
work done to determine which are critical or desirable
(see Appendix for axiom evaluation). A question worth
asking is, does a method which satisfies more axioms
tell us more about the underlying function?

Despite a perception of progress in the attribution liter-
ature, the use of gradients and input perturbations to
probe black-box functions has been around for decades
under the guise of sensitivity analysis [13] and property
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testing [14]; though these connections are rarely (if ever)
brought up in attribution papers. Through the wider
lens afforded by this literature, it becomes apparent
that many current attribution methods make critically
limiting assumptions that can skew or hide important
properties of the network. One example, which will
be the primary focus of this work, is the assumption
that higher-order influence can be disregarded. Al-
most all attribution methods only consider first-order
influence (either single-variable partial derivatives, or
single-variable input perturbations). This assumption
is especially limiting for the highly nonlinear networks
employed in modern vision and natural language tasks,
where first-order perturbations (alt. partial derivatives)
are loose approximations in the best case, and grossly
misinformative in the worst. Recent work has begun
to notice and address this limitation in a number of
different ways. One example is the inclusion of second-
order influence through computation of the Hessian
[2], and another proposes a framework for measuring
kth-order contributions by modifying the Shapely in-
teraction values [15]. Although these works take the
first step in establishing higher-order influence, they
do so by assuming access to an accurate and neutral
baseline [16]. We wish to challenge this assumption,
and demonstrate how the wrong choice of baseline can
lead to pathological reporting of functional properties.
In place of a fixed baseline, we propose to search for
one within local regions of increasing volume, which is
achieved by bounded adversarial perturbations.

To measure how collections of variables with varying
cardinality contribute to the total influence, we intro-
duce the following formulation:

IxA
:= E[Z | do(xA = [adv(ε)]k)]

I(k) :=
1(
n
k

) ∑
xa∈XA

IxA
− 1(

n
k−1
) ∑

xb∈XB

IxB

where Z = |y − yadv| measures the displacement in
classification due to adversarial perturbation, and xA
is a set of input variables with cardinality k (alt. xB
with cardinality k − 1). Intuitively, I(k) measures the
impact of ε-adversarial perturbations which is exclu-
sive to subsets of size k. It does this by contrasting
subsets of size k with subsets of size k−1 using average
misclassification as a metric. Most of the paper will
be spent justifying and expanding on these choices.
Figure 1 illustrates an example of higher-order per-
turbations leading to a change in classification which
would not be possible with a perturbation along any
of the lower-order subspaces.

The following four objectives aptly summarize what this
work sets out to achieve: 1) briefly review the literature
on sensitivity analysis, and draw parallels to current

methods of neural network attribution; 2) propose a
framework for decomposing the total influence based
on perturbations to the power set of input variables; 3)
discuss how this decomposition can be used in practice
to reveal functional properties not captured by existing
attribution methods; 4) demonstrate the effectiveness
of the decomposition on synthetic examples and in
comparison with existing approaches to attribution.

2 Preliminaries

Implicit in most approaches to interpretability is the
assumption that relevant details of the model can be
distilled into something that is comprehensible to hu-
mans [17]. For attribution, an ideal description of the
model should reveal how input features contribute to
the final output. To measure this, it’s necessary to
investigate how changes in a feature lead to changes in
the output. Historically, this investigation is referred to
as sensitivity analysis. As a special case of sensitivity
analysis, one may be interested in how the presence
of a feature contrasts with its absence. This is the
case with many attribution methods, which view the
all-zero vector as a baseline that captures the absence
of all features. This implies that the study of Boolean
functions is relevant to the study of attribution. In the
next section, we will briefly introduce literature on sen-
sitivity analysis, and its connection with the analysis
of Boolean functions. This discussion will lay a theoret-
ical foundation, before transitioning to its application
in neural networks.

2.1 Sensitivity Analysis

Analysis of black-box functions has a long history in
theoretical computer science and learning theory. It is
often desirable to introduce some measure of function
complexity, or to test whether a function belongs to
a restricted class (ex: linear, monotone) as a way to
gain insight into a functions behavior [14]. We will
start by considering the class of Boolean functions of
the form f : {−1, 1}n → {−1, 1}. We use −1 instead
of 0 for ease in later results. A fundamental measure
of complexity for Boolean functions is sensitivity [18],
which measures whether the output bit (y) is flipped
when a particular input bit xi is flipped.

Sens(i) :=

{
1, if flip(xi)→ flip(y)

0, otherwise

When the sensitivity for a variable xi is averaged over
all samples, the resulting complexity measure is referred
to as the influence:

Inf(i) := Es

[
Sens(i)

]
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Intuitively, sensitivity and influence measure the ability
of individual changes in the input to propagate forward
and affect the output. This notion of sensitivity was
eventually broadened beyond Boolean functions to refer
to any analysis of how input changes affect the function
output [19]. This expanded definition of sensitivity
analysis clearly encompasses the goals and definitions
of neural network attribution.

A well-known property of Boolean functions is their
unique expression as multilinear polynomials:

Theorem 1 (Fourier Expansion Theorem [18]). Every
function f : {−1, 1}n → R can be uniquely expressed

with its Fourier Expansion: f(x) =
∑

S⊆[n]
f̂(S) · xS

given Fourier Coefficients: f̂(S) ∈ R, and monomi-
als xS =

∏
i∈S

xi.

This theorem has interesting consequences for attri-
bution if it’s possible to quantify the presence or ab-
sence of an input feature (as is claimed in the liter-
ature). As a quick example, the max function over
two variables has the following Fourier expansion:
max(x1, x2) = 1

2 + 1
2x1 + 1

2x2 −
1
2x1x2. A method

seeking to explain how inputs influence the output
should be capable of revealing the second-order co-
ordination between x1 and x2. Is this information
attainable through perturbations alone?

Many properties of a Boolean function can be directly
determined using its Fourier spectrum (the collection
of Fourier coefficients), including influence [18]:

Inf(i) :=
∑
S3i

f̂(S)2,

for a sum over subsets S containing the variable xi.
This relationship reveals that input perturbations of a
Boolean function yield access to information about
the monomials which uniquely define it. However,
this information is confounded due to the sum over
Fourier coefficients. To untangle this information, we
now consider a higher-order formulation of influence.
Instead of changes to individual variables xi, we now
consider changes to subsets xA of cardinality k. This
has the effect of including additional subsets S into the
sum of Fourier coefficients which contain any variable
present in xA. If we consider the difference between
average influences of order k and k − 1:

1(
n
k

) ∑
xA

∑
S3A

f̂(S)2 − 1(
n

k−1
) ∑

xB

∑
S3B

f̂(S)2,

the result captures the contribution of Fourier coeffi-
cients associated with monomials of a particular order.
This implies that the relevance of higher-order interac-
tions to the output decision can be determined through

the use of higher-order perturbations. Our approach
is inspired by this fact, and seeks to generalize to the
case of continuous neural networks. The next section
describes the steps we take towards this generalization,
and challenges the assumptions of existing approaches
that attempt to do something similar.

3 Method

3.1 Choosing the output metric

Formalizing a measure of influence in the case of con-
tinuous input variables requires a number of critical
choices to be made. As a guiding principle, we will
attempt to remain as close as possible to the notion of
influence for Boolean functions introduced in Section
2.1. Every approach to attribution requires measuring a
change in the function output relative to changes in the
input. The two most common metrics for measuring
output change are: a) the value of the loss function, and
b) the output class. Due to its discrete nature, output
class is closest to the definition for Boolean functions.
If we introduce a single binary variable representing
misclassification (0 for incorrect class prediction, 1 for
correct), then the two settings are equivalent. Besides
this similarity, there are a number of additional rea-
sons to believe that output class is a preferred metric.
Changes to the loss function are most commonly asso-
ciated with derivative-based methods [3], which are not
scalable to the higher-order settings we aim to test. Ad-
ditionally, there are a number of cases where a change
in the loss is not informative about misclassification
(whereas misclassification is always informative about
a change in the loss). One example is when the input
sample is near a local minimum, then local changes to
the loss may guide it away from a perturbation that
leads to misclassification.

3.2 Measuring input changes: local versus
global

The next choice is related to how input perturbations
are defined for subsets of size k. Since we only care
about a subsets ability to influence the output deci-
sion, we consider an adversarial perturbation instead of
enumerating and averaging over many fixed perturba-
tions. In the Boolean setting, there is a natural sense in
which features are flipped on or off to perform a change.
In the continuous case, perturbations are made along
an interval, and are frequently classified as local or
global [7]. Local perturbations can sometimes behave
pathologically, such as in the example of Section 3.1,
or when the local change along an axis is 0 (inspiring
the sensitivity axiom [1]). Global perturbations (such
as the use of the zero-vector as a baseline) are often
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used to contrast the presence of a particular feature.
Many popular attribution methods employ a hybrid
approach that uses a combination of local and global
perturbations. One example is Integrated Gradients
[1], which measures derivatives along a straight-line
interpolation between the sample and the zero-vector.
We chose to use a hybrid approach which starts within
a limited local region of possible perturbations that
expands radially in volume up to a limit. This is ac-
complished by incrementally increasing the value of ε in
a norm-bounded adversarial attack. By the nature of
image data, if an adversarial perturbation is allowed to
search without bounds, it will likely lead to a misclas-
sification. This is true even when considering a small
number of pixels, as evidenced by one-pixel attacks
[20] and methods that attribute a reduced subset of
features [21, 22]. Further comparison to these methods
can be found in the Appendix. With this in mind,
we start with small values of epsilon and grow until a
saturation occurs.

3.3 Challenging neutral baselines

Most approaches to attribution measure the impor-
tance of a feature relative to a predefined notion of
its absence. Previous work has highlighted some of
the issues that can arise from this definition of impor-
tance [9, 16], but we wish to expand on some of them
in this section, and discuss how our approach avoids
them. If the presence/absence of a feature is measured
using its linear distance to a baseline, the following
cases would result in incorrect attribution: 1) features
with opposite baselines. For example, assume our base-
line is the zero-vector, and our image is a human eye.
The presence of a pupil is defined by the absence of
pixel intensity in a particular region, but this would be
deemed unimportant relative to our baseline. 2) fea-
tures with nonlinear importance relative to its distance
to the baseline. 3) features with discontinuous regions
of importance. For example, a feature may be ”present”
within a limited local range, and ”absent” everywhere
else. Measuring with respect to one direction inherently
biases the search, and can lead to skewed results. The
commonality between each of these examples is that
a rich and potentially complex notion of importance
along a continuous range is reduced to the simplest
constant or linear approximation. The solution is to
use more expressive ways of searching the space of
global perturbations, and to redefine the notions of
importance that use this information. Our work begins
to do the former by expanding the search space radially
without a bias in any particular direction, and through
the use of adversarial search in this space. Under our
measure, a variable is considered important if it’s inclu-
sion as a coordinate in the perturbation search space
leads to a change in classification that would not have

otherwise occurred (on average).

3.4 Implementation Details

We define the subset influence of order k for neural
networks as the displacement Z = |y−yadv| in the orig-
inal classification decision after adversarial intervention
over a subset of k variables:

IxA
:= E[Z | do(xA = [adv]k)]

I(k) :=
1(
n
k

) ∑
xa∈XA

IxA
− 1(

n
k−1
) ∑

xb∈XB

IxB

We use do(·) notation to represent the act of perturbing
a subset xA, inspired by the notation for interventions
in a related measure of Average Causal Effect/ Causal
Attribution [7]. The expectation in IxA

is taken over
m samples, with the value of m differing in each ex-
perimental setting. The value of I(k) is arrived at by
taking averages of this expectation over all subsets of
size k and k − 1. Since it is intractable to consider
all subsets if n and k are sufficiently large, we employ
two task-dependent sampling strategies. The first is to
simply sample l subsets uniformly at random, which
is consistent with sampling strategies used by exist-
ing higher-order approaches (such as Shapley sampling
[23, 24, 15]). The other is to consider contiguous blocks
of size k × k, which imposes an implicit bias of local
contiguity that works well in certain settings (such as
pixel-level image features). The attack strategies for
adversaries in IxA

are a subject of experimentation
(see Section 5.4), but many experiments use a simple
gradient attack (such as the fast gradient sign method
[25], or its L2 bounded variation).

4 Experiments

4.1 Higher-order Perturbations in Synthetic
Boolean Circuits

We’ll begin by introducing three small synthetic
Boolean circuits with fundamentally different behavior.
Using traditional Boolean sensitivity analysis, we will
show that higher-order perturbations help to reveal the
true logic underlying each function, which is not always
possible with single-variable perturbations. Finally, we
demonstrate that a standard practice in attribution
– measuring influence in a single sample relative to a
baseline – fails to distinguish any differences between
the functions. This fact will be important for later
experiments on neural networks.

The three Boolean functions of interest for our analysis
are parity, majority, and the OR gate. We will consider
the case of n = 4 input variables and one output
variable. To briefly explain these functions: parity
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Figure 2: Plots of accuracy versus subset perturbation: ”unimportant” (left) and ”important” (middle) variables
from Integrated Gradients, contrasted with all variables (right)

outputs 1 if the total number of 1’s in the input is odd;
majority outputs 1 if the total number of 1’s in the
input is ≥ n

2 ; and the OR gate outputs 1 in all cases,
except when all inputs are 0 (alt., −1). Performing
standard measurements of sensitivity and influence (as
defined in Section 2.1) yield the following results:

Function Infi Total Influence

Parity 1.0 4.0
Majority 0.375 1.5

OR 0.125 0.5

Note that influence is the same for each variable i in
these functions, so we only report one value. While
these results demonstrate that there are measurable
differences in the influence of each function, a single
scalar is not always enough to reveal their core proper-
ties. For example, the importance of n

2 as a threshold
in majority cannot be determined from 0.375. If we in-
stead use the proposed influence decomposition, where
adversarial perturbations are based on some sequence
of bit flips, we get:

Function I(4) I(3) I(2) I(1)
Parity 0.0 0.0 0.0 1.0

Majority 0.0 0.0 0.625 0.375
OR 0.5 0.25 0.125 0.125

Looking at each function independently, we can see
that the influence decomposition does a better job of
showcasing relevant properties. For parity, all of the
influence is concentrated around first-order perturba-
tions, owing to the fact that it’s a higher-order function,
and single bit flips change the global parity. For ma-
jority, there is a clear separation in the decomposition
around k = n

2 . Once the order of perturbations exceed
this halfway point, there is always a way to change the
majority, and thus change the output bit. This results
in a concentration of influence around the first n

2 terms.
Lastly, most of the influence in the OR gate comes
from perturbations to higher-order subsets, since all

1’s must be eliminated from the input to change the
output.

To contrast the insight gained from the influence decom-
position on these synthetic circuits, we will compare to
what is learned from standard tools in the attribution
literature. We start by assuming that these functions
represent the input-output mapping of a neural network.
For an example of neural architectures that implement
these functions, see the Appendix. Common practice
in attribution is to select a sample, and assign scores to
individual input variables relative to some baseline. If
we assume {0, 0, 0, 0} is our baseline, {0, 1, 1, 1} is our
input sample, and Integrated Gradients is the attribu-
tion method, then X1, X2, and X3 will all receive the
same non-zero attribution score. The problem is that
these variables will be deemed important regardless
of which of the three functions we are attributing. It
becomes clear that in this setting, Integrated Gradi-
ents is simply assigning importance to non-zero inputs,
which tells us very little about the function. Given that
the primary goals of neural network attribution are in-
terpretability and increased understanding of network
properties, such non-informative results should be a
cause for concern. Since these are Boolean functions,
one might make the case that this behavior is atypical
of attribution methods, and not representative of their
informativeness on continuous image data. However,
in the next section we provide evidence that this is not
the case.

4.2 Analysis of Intermediate MLP Layers on
MNIST

Having demonstrated the ability of our influence de-
composition to reveal meaningful properties on small
synthetic circuits, we now move on to its application
in neural networks. In this first setup, we train a three
layer MLP with ReLU activations on MNIST, where
each intermediate layer contains 256 neurons. The
network was trained for 3 epochs using the standard
MNIST train/test split until a test accuracy of 97 per-
cent was reached. This simple network provides a test-
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Figure 3: Attribution in our approach (top row) for varied k versus existing approaches (bottom row). For k = 75
and 50, ε = 1.0, otherwise ε = 4.0. Intensity of red represents the absolute value of an attribution.

bed for exploring hypotheses and comparing against
existing attribution approaches prior to investigating
modern networks.

Consider the task of trying to understand the input-
output relationships in this network. For each layer,
we will use standard attribution techniques to try to
identify which neurons are most important. As an
example, we will use Integrated Gradients (also known
as Total Conductance or Neuron Integrated Gradients
when used on intermediate layers [26]). Using the zero-
vector as a baseline, we apply this method and record
the importance scores for pre-activation values of all
256 neurons. Next, we measure the average importance
for each sample, and use it to threshold the scores. If a
neurons importance is greater than the mean for a given
sample, we record a 1, otherwise 0. On average, about
20 percent of the neurons were marked as important
under this thresholding scheme, which was consistent
across each layer. If we ablate neurons not deemed
important (Ablation-Exclusive), the accuracy of the
network actually increases. Additionally, if we ablate
important neurons (Ablation-Inclusive), the accuracy
of the network reduces to 0. While this may seem like
evidence in favor of Integrated Gradients, the full story
is a bit more complicated. If we threshold the pre-
activation neurons such that values > 0 are marked as
1 (i.e, we create an activation mask) and compare this
with the importance mask of the previous experiment,
the two masks are equal for roughly 90 percent of neu-
rons on average (consistent across layers). This implies
that for Integrated Gradients, importance is nearly

synonymous with activation. This result is similar to
the findings on synthetic Boolean circuits. To challenge
this, Table 1 shows the results of applying adversar-
ial perturbations to all neurons deemed ”important”
(Adv-Inc) versus all neurons deemed ”unimportant”
(Adv-Exc) by Integrated gradients. In general, we
observe that even small perturbations (ε = 0.5) to
”unimportant” variables leads to drastic changes in
classification accuracy. In addition to exploring the

Methods Layer 1 Layer 2 Layer 3

Ablation-Exclusive 99.0 99.7 99.6
Ablation-Inclusive 0.0 0.0 3.0

Adv-Exc(ε = 0.1) 88.4 92.4 94.6
Adv-Inc(ε = 0.1) 94.5 96.5 96.5

Adv-Exc(ε = 0.5) 22.9 43.4 72.9
Adv-Inc(ε = 0.5) 54.0 94.2 94.1

Adv-Exc(ε = 1.0) 3.2 4.9 25.4
Adv-Inc(ε = 1.0) 9.9 89.5 89.2

Table 1: Perturbations to important vs. unimportant
neurons

effects of global perturbations to the set of important/
unimportant neurons, we can explore perturbations to
subsets of these variables through our proposed decom-
position. The results of this experiment can be found
in Figure 2, which plots how accuracy changes as a
function of the subset size. The cardinality of subsets
was determined based on a percentage of neurons in a
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Figure 4: Plots showing the effect of increasing ε on adversary strength for fixed norm and attack strategy

particular set (Adv-Inc/ Adv-Exc), since the set size
changed for every sample. 500 subsets were chosen
uniformly at random for each sample of the test set.
We also used this procedure to select subsets from all
neurons in a given layer, which appears as the right-
most plot. As the layers progress, neurons deemed
”important” (Adv-Inc) by Integrated Gradients are un-
affected by small perturbations. Additionally neurons
deemed ”unimportant” (Adv-Exc) steadily increased in
robustness to higher-order perturbations as a function
of the layers. This trend was mirrored when all neurons
were considered, but to a lesser degree.

Taking local differences based on the accuracies re-
ported in Figure 2 yields an influence decomposition,
which is reported in Table 2. If we compare this to the
decomposition reported for synthetic circuits, there are
a number of similarities. At layer one, most of the influ-
ence is concentrated around lower-order perturbations,
which resembles the logic of a parity function. At the
second layer, most of the influence is concentrated in
the first half, which resembles the logic of a majority
function. Finally, at the last layer, the logic resembles
an OR gate, or reversed Majority. While these compar-
isons are not exact, they help to illustrate how the logic
of network changes as a function of the layer. Small
changes in the input can lead to big changes of the
output, but once the network forms an intermediate
representation, it becomes robust.

4.3 Pixel-level Attributions for ResNet-18 on
ImageNet

We now demonstrate the use of our approach in a stan-
dard attribution setting, where the goal is to highlight
the pixel-level features in a single image that contribute
the most to the decision. Plotting the heatmaps for
different values of k shows how influence changes as we
restrict ourselves to smaller and smaller subsets.

Our method is compared against existing measures

of attribution on a pretrained ResNet-18 [27] for
ImageNet[28]. The first comparisons are made against
commonly used Gradient-based methods, such as In-
put x Gradients [5], and Integrated Gradients. Given
the ResNet architecture, we could not compare to ap-
proaches like DeepLift[4], since it has compatibility
issues with the ReLU activations. We wanted to com-
pare with Shapley value approaches (since alternative
approaches to higher-order decomposition use them
[15]), but every implementation we tried was too com-
putationally expensive (even for a single ImageNet
sample under maximally restrictive assumptions). As a
substitute, we show attributions for GradientShap[29],
which is a gradient-based approximation of the Shap-
ley values. Finally, we compare against Occlusion [8]
for different sized k × k blocks of ablated input pixels.
Many of the attribution methods we used were based
on implementations from the Captum library [30]. Oc-

- I(180) I(140) I(100) I(60) I(20)
Layer 1 4.7 5.4 12.6 29.9 35.7
Layer 2 7.9 11.6 23.6 29.9 19.5
Layer 3 32.9 18.6 21.4 15.7 7.5

Table 2: Influence Decomposition for 3-layer MLP

clusion is the approach that is the most conceptually
similar to ours for a number of reasons. To start, oc-
clusion samples contiguous blocks of the input space.
Although our approach is technically not restricted to
contiguous blocks as a sampling strategy, we found it
to be the best choice for evaluating the input pixels of
an image. Another similarity is that occlusion applies
a perturbation to each selected subset of pixels. The
difference is that in Occlusion, the perturbations are
always to the zero vector. As discussed in previous
sections, this is to contrast the presence of signal in a
subset with a global change capturing its absence. In
addition to the flaws pointed out in Section 3.3, large
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global perturbations to many variables may lead to a
changes in classification despite the variables not being
important. This idea is brought up in [11], where they
argue that such large changes bring the sample out-
of-distribution. In this setting, it’s impossible to tell
whether the attribution is due to the out-of-distribution
errors, or feature importance. Since our approach only
makes imperceptible adversarial changes relative to
the input sample, the likelihood of distribution shift is
greatly reduced.

In the visualizations of Figure 3, we use adversarial
perturbations based on the L2-FG (FG stands for Fast
Gradient [25]) attack. This approach applies an ε
change independently to each variable of the subset in
the direction opposite the gradient. The global change
is then bounded based on the L2 norm. This metric
was chosen for computational efficiency and ease of
use. In order to compare with existing attribution
methods and properly visualize the scores, we restrict
ourselves to evaluation on a single input image. Note
that this differs from previous experiments that aver-
age over multiple samples. Given an input sample, we
construct a (k× k) sliding window with stride 4, which
is used for both our approach and the occlusion base-
line. If perturbations to pixels within this window lead
to misclassification, each perturbed pixel is assigned a
uniform score of 1/(k× k). The pixel-level scores of all
misclassifying windows are averaged and displayed as
a heatmap. Across multiple values of k, our approach
produces cleaner qualitative results. Additionally, dif-
ferent values of k seem to focus on different parts of
the image, potentially hinting at relevant features at
that order. Approaches based on gradients do not show
intuitive results for this image, and Occlusion demon-
strates its tendency to over-attribute many irrelevant
parts of the image (such as the background). Although
we used this particular sample as a representative for
the paper, it was by no means an outlier. We show
additional examples of qualitative evaluation in the
Appendix. The main computational cost of our ap-
proach comes from the number of times the network is
evaluated, scaling roughly O(Mn) for M the number of
subsets (sliding windows) and n the number of samples.
Each heatmap took less than 20 seconds to generate
on a single GTX 2070 GPU with a batch size of 250.
While this is longer than the gradient methods (such
as Integrated Gradients, which took 2 seconds per plot
and used a single pass of the network), it is still a
reasonable amount of time for a higher-order approach.
In contrast, all approaches to estimate the Shapley
values (other than GradientShap) were unable to run
on ImageNet due to memory issues and intractable
computational complexity.

Figure 5: Plot showing the effect of attack strategy on
adversary strength for fixed norm and ε.

4.4 Effect of Adversarial Attack on the
Influence Decomposition

Lastly, we look at the effect of hyperparameters asso-
ciated with adversarial perturbations on terms of the
influence decomposition. In particular, we will look
at the perturbation radius ε that bounds the search
space, the adversarial attack strategy, and the norm
(L2 or L∞) that ε is measured in. We use the same
ResNet-18 architecture introduced in the previous sec-
tion, and average over 20 randomly selected images.
Within a given bounded region specified by the algo-
rithm, some attack strategies may be better equipped
to find a perturbation which leads to a change in clas-
sification. Employing powerful attack strategies that
are able to discover these changes is a critical part of
accurate reporting for our decomposition. However,
there is always a trade-off between how powerful an
attack is, and how computationally intensive it is. For
each experiment, we measured the output accuracy
after applying perturbations to k × k sliding windows
of various size. The first set of results appear in Figure
4, which fixes the attack strategy and the norm, but
varies ε. Both plots reveal that increasing ε generally
leads to an increase in successful attacks. When using
L2 as the norm (leftmost plot), there is a clear drop
in accuracy every time ε increases. Additionally the
shape of each curve is different, implying the influence
decompositions will change slightly. For example, when
using ε = 0.5, less influence will be concentrated around
lower-order perturbations (relative to the other values
of ε). In contrast, the L∞ norm (rightmost plot) is less
sensitive to changes in ε. A saturation point is reached
around ε = 0.5, and larger values don’t increase the
misclassification. L∞ leads to stronger adversaries than
L2, as L∞(ε = 0.1) is almost as strong as L2(ε = 10.0).
We did not include L2(ε = 0.1) because it did not lead
to any misclassification.

Figure 5 shows results for accuracy as a function of
attack strategy. Here, PGD stands for projected gradi-
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ent descent [31], and BI stands for the basic iterative
method [32]. We attempted to compare against itera-
tive noise attacks [33] – where an Lp ball is explored
by iteratively sampling random noise from some distri-
bution (Uniform or Gaussian) – but these approaches
resulted in very weak adversaries. Additionally, we
tried to use stronger adversaries (such as the Boundary
attack [34]), but these approaches were too computa-
tionally intensive. A large table with all hyperparame-
ter results is included in the Appendix. Although each
method does not yield the same accuracy, overall we
found very little difference between methods when a
norm and ε were fixed. This result lends support to
the hypothesis that reported results are close to the
ground truth, given fixed hyperparameters.

5 Conclusion

In this work, we introduced a method for attributing
different orders of influence to the output of a neural
network. The method was inspired by influence in
Boolean functions, and its ability to elucidate proper-
ties of higher-order coordination from perturbations
alone. Using these measures, we demonstrated simple
cases where existing attribution methods fail to explain
the underlying logic of a function. Additionally, we
compared against existing approaches to attribution in
modern networks, and demonstrated how higher-order
influence might shine a new light on interpretability in
neural networks.
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