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M. Karimi, N. Gürel, B. Karlaš, J. Rausch, C. Zhang, A. Krause

A Proofs and Supplementary Lemmas

A.1 On the Choice of Query Probability

Here we elaborate on the discussion for (1). Let wt be the current distribution over experts, and w
(c)
t+1 be the

hypothetical distribution over the experts having observed the loss if the true label is c.

First, according to (Narayanan and Rakhlin, 2010, Lemma 1), the divergence KL(wt‖w(c)
t+1) accumulates into the

regret. This means that if we do not update wt accordingly, we miss this amount of information.

Second, the KL divergence between wt and w
(c)
t+1 computes

KL(wt‖w(c)
t+1) = ηr + log(re−η + 1− r),

where r = 〈wt, `ct〉. By Höffdings inequality, one can show that this quantity is between 0 and η2/8. As the
variance is between 0 and 1/4, it makes sense to scale the KL divergence to the range [0, 1/4], by multiplying it
by 2/η2. The following lemma completes the comparison promised in Section 4.1. We drop the subscript t for
readability.

Lemma 1. For a distribution over the experts w and a fixed ` ∈ {0, 1}k, define w+ ∝ w e−η`. Then∣∣∣∣Var
A∼w

`A −
2

η2
KL(w‖w+)

∣∣∣∣ < 1

18
√

3
η +O(η2).

Proof. Define r = 〈w, `〉. We have that

KL(w‖w+) = ηr + log(re−η + 1− r) = logE e−η(X−EX),

where X is a Bernoulli random variable with EX = r. Note that the equation above is the cumulant generating
function of X and has the Taylor series

logE e−η(X−EX) =
η2

2
Var(X) +

η3

6
κ3 +O(η4),

where κ3 is the third cumulant. Note that by the relation between cumulants of a Bernoulli random variable, we
have

κ3 = r(1− r) d
dr
κ2 = r(1− r)(1− 2r).

Easy algebra finds that for r ∈ [0, 1], we have κ3 ∈ [−1/6
√

3, 1/6
√

3].

Summing all up, we find
2

η2
KL(w‖w+) = Var(X) +

κ3

3
η +O(η2),

and the result of the lemma follows.

A.2 Mix Loss Properties

Define L̂T,∗ := mini∈[k] L̂T,i.

Lemma 2. The cumulative mix loss MT is bounded above by L̂T,∗ + log k
ηT

.

Before stating the proof, first we bring a standard lemma:

Lemma 3 (de Rooij et al. (2013)). The cumulative mix loss MT has the following properties for constant learning
rates (ηt ≡ η for all t ≥ 1):

(i) MT = − 1
η log

∑
i∈[k] e

−ηL̂T,i + 1
η log k,

(ii) MT ≤ L̂T,∗ + 1
η log k.
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Moreover, for any sequence of decaying learning rates {ηt}t≥1, let MT ({ηt}) be the corresponding cumulative mix
loss, and set MT (ηT ) be the cumulative mix loss for fixed learning rate ηT . Then, it holds that MT ({ηt}) ≤MT (ηT ).

Proof. Define Wt =
∑
i∈[k] e

−ηL̂t,i . For part (i) observe that

〈wt, e−η
ˆ̀
t〉 =

∑
i∈[k]

e−ηL̂t−1,i

Wt−1
e−η

ˆ̀
t,i =

Wt

Wt−1
.

Hence, log〈wt, e−η
ˆ̀
t〉 = −ηmt = logWt− logWt−1, and MT = 1

η (logW0− logWT ). Observing that W0 = k gives

(i).

Noticing that WT ≥ e−ηL̂T,∗ easily implies (ii).

For the last part of the lemma, first we prove that MT for constant learning rate η is nonincreasing in η. This is
shown by looking at the derivative of MT with respect to η which is equal to

1
η2 log

∑
i∈[k]

e−ηL̂T,i − 1

η

∑
L̂T,ie

−ηL̂T,i∑
e−ηL̂T,i

− 1
η2 log k ≤ 0,

as log
∑
i∈[k] e

−ηL̂T,i ≤ log k.

Now we can prove the last part of the lemma.

T∑
t=1

mt({ηt}) =

T∑
t=1

Mt(ηt)−Mt−1(ηt) ≤
T∑
t=1

Mt(ηt)−Mt−1(ηt−1) ≤MT (ηT ).

Proof of Lemma 2. By the lemma above, we see that MT ≤MT (ηT ) ≤ L̂T,∗ + log k
ηT

, where we lower bounded the

sum over the models by the one that corresponds to L̂T,∗.

A.3 Lemmas for Regret Bound

Lemma 4. For any η > 0 it holds that

E
[
log〈wt, e−η

ˆ̀
t〉+ η〈wt, ˆ̀

t〉
]
≤ η2.

Proof. If the predictions are all the same, there is nothing to prove, as ˆ̀
t ≡ 0 and the expectation vanishes.

Let wc =
∑
i:pt(i)=c

wt,i and set c∗ to be the true label of this round. We can then rewrite qt as qt =

maxc∈C wc(1−wc) ∨ η. Observe that

log〈wt, e−η
ˆ̀
t〉 = log

[
(1−wc∗) exp

{
− η
qt
Qt

}
+wc∗

]
.

It is clear that E 〈wt, ˆ̀
t〉 = 〈wt, `t〉 = 1−wc∗ . Hence, the expected value in the lemma is equal to

η(1−wc∗) + qt · log[(1−wc∗) exp{−η/qt}+wc∗ ]. (2)

Our desired result follows from Lemma 5 by setting x = 1−wc∗ and noticing that qt ≥ wc∗(1−wc∗) ∨ η.

Lemma 5. For all x ∈ (0, 1) and all η ∈ (0, 1], defining u = x(1− x) ∨ η, one has

f(x, u, η) := ηx+ u log
[
x e−

η
u + 1− x

]
≤ η2.

Moreover, for fixed x and η, f(x, u, η) is decreasing in u for u ≥ η.
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Proof. Note that the value of the LHS and RHS agree when η = 0, so we have to prove that for all η ≥ 0, the
derivative of the LHS is at most η. Fix some x ∈ [0, 1). We prove this fact in two cases:

Case where η ≤ x(1− x). In this case, u = x(1− x). For brevity, define y := η
x(1−x) . The derivative of f with

respect to η becomes
(ey − 1)x(1− x)

ey(1− x) + x
,

and we are left with proving
(ey − 1)

ey(1− x) + x
≤ 2y

As 0 < y ≤ 1, we have that 1 + y + y2/2 ≤ ey ≤ 1 + y + (e− 2)y2. Replacing these bounds in the equation above
leaves us with proving that

1 + (e− 2)y

1 + (y + y2/2)(1− x)
≤ 2.

For a fixed y, the left hand side is increasing in x, and hence, it is enough to prove that

1 + (e− 2)y ≤ 2,

but this is true as y ≤ 1 and e− 1 < 2. Thus, we are done with the proof of this case.

Case where η > x(1− x). In this case, u = η, and f(x, η) = ηx + η log
[
xe−1 + 1− x

]
. To prove the claim, we

have to show that x+ log
[
xe−1 + 1− x

]
≤ η, or, as the left hand side does not depend on η, we shall prove

x+ log
[
xe−1 + 1− x

]
≤ x(1− x),

or, equivalently,

1− (1− e−1)x ≤ e−x
2

,

which is proven in Lemma 6. Thus, in both cases, we have proved our inequality and we are done with the proof
of the first part of lemma.

We now prove the monotonicity of f with respect to u. For that, we show the derivative of f with respect to u is
nonpositive. The derivative computes

f ′(u) = log
[
xe−η/u + 1− x

]
+

xe−η/uη/u

xe−η/u + 1− x
.

Define a = η/u. The equation above is zero for a = 0. So it suffices to show that the derivative of above is
nonpositive for 0 ≤ a ≤ 1. Computing the derivative w.r.t. a and setting it less than 0 is equivalent to

xe−a + 1− x− xe−a ≥ 0,

which is true. Hence, we are done.

Lemma 6. For all x ∈ [0, 1] one has 1− (1− e−1)x ≤ exp{−x2}.

Proof. Note that exp(−x2) is concave on [0,
√

1/2] and convex on [
√

1/2, 1]. Also at x = 0 and x = 1, both sides

are equal. Hence, we just have to show that at x =
√

1/2, the right hand side is bigger than the left hand side,

which automatically shows the inequality for x ∈ [0,
√

1/2], and we have to show that the derivative of the right
hand side is smaller than the left hand side at x = 1, which automatically shows the inequality for the other half
of the interval, as exp(−x2) is convex there. For the first part, evaluate

exp(−1/2)− 1 + (1− 1/e)
√

1/2 = (1− 1/
√
e)

(
1√
2

(1 +
1√
e

)− 1

)
≥ 0.

For the second part, note that d
dx exp(−x2) = −2x exp(−x2), and at x = 1 it is equal to

−2/e ≤ −(1− 1/e),

as 3/e > 1. Hence, we are done.
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A.4 Proof of Theorem 2

Proof. We assume that at all rounds we have qt > 0, as there is no label request on the rounds that all models
predict the same. First observe that

E
T∑
t=1

Qt ≤ E

{
T∑
t=1

ηt +
∑
c∈C wt,c(1−wt,c)

}
,

as maximum of positive numbers is less than their sum. Next, at round t suppose that the true label is ct. As
x(1− x) is concave and

∑
c6=ct wt,c = 1−wt,ct = 〈wt, `t〉 =: rt, using Jensen’s inequality we have∑

c∈C
wt,c(1−wt,c)

= wt,ct(1−wt,ct) +
∑
c6=ct

wt,c(1−wt,c)

≤ wt,ct(1−wt,ct) + (1−wt,ct)
(

1− 1−wt,ct
|C|−1

)
= rt

(
2− |C|

|C|−1rt

)
.

Using Jensen now for the concave function x(2− |C|
|C|−1x), we get

T∑
t=1

∑
c∈C

wt,c(1−wt,c) ≤ T ·
(∑

rt
T

)(
2− |C|

|C|−1

∑
rt
T

)
.

Now observe that if the expected total loss of the best model is L∗, by our regret bound in Theorem 1 we have

E
∑
rt ≤ 2

√
2T log k + L∗.

Also note that for x ≤ |C|−1
|C| , the function x(2− |C|

|C|−1x) is increasing. Hence, for large enough T (as described in

the theorem), 1
T

∑
rt ≤ |C|−1

|C| , and we have

E
T∑
t=1

∑
c∈C

wt,c(1−wt,c) ≤
(

2
√

2T log k + L∗
)
·
(

2− |C|
|C|−1

(
2
√

2 log k/T + L∗/T
))
.

Noting that
∑
ηt ≤

√
2T log k, one obtains the result.

A.5 Proof of Theorem 6

Proof. First, we remind the following martingale inequality, which is an improved version of McDiarmid’s:

Lemma 7 (Seldin and Lugosi (2017)). Let ξ1, . . . , ξT be a martingale difference sequence with respect to the
filteration {Ft}t≤T , where each ξt is integrable and bounded. Let Mt :=

∑
s≤t ξs be the associated martingale.

Define νT =
∑
t≤T E{ξ2

t | Ft−1} and cT = maxt≤T ξt. Then for any β, ν, c > 0,

Pr

{(
MT ≥

√
2νβT +

1

3
cβT

)
∧ (νT ≤ ν) ∧ (cT ≤ c)

}
≤ e−βT .

Remember that the weight of model i at the end of round t is proportional to exp{−ηt+1L̂t}. Hence, identifying

the best model i∗ after round t reduces to the fact that L̂t,i∗ = minj∈[k] L̂t,j . The probability of this event not
happening can be bounded by a union bound on the models:

Pr{∃j 6= i∗ : L̂t,i∗ ≥ L̂t,j} ≤
∑
j 6=i∗

Pr{L̂t,i∗ ≥ L̂t,j} =
∑
j 6=i∗

Pr{D̃t,j ≤ 0},
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where we define D̃t,j = L̂t,j − L̂t,i∗ . From now on, we focus on a single model j and drop the index j from ∆j

and θj . Set dt := `t,j − `t,i∗ and define

ξt := ∆− dtQt
qt

.

Note that E{ξt | Ft−1} = E{E{ξt | `t,Ft−1} | Ft−1} = 0. Moreover, the following holds:

ξt ≤ ∆ +
1

qt
≤ ∆ + η−1

t , E{ξ2
t | Ft−1} = E

{
d2t
qt
| Ft−1

}
−∆2 ≤ θη−1

t −∆2.

The sum of the conditional variances up to T satisfies

T∑
t=1

E{ξ2
t | Ft−1} ≤ Tη−1

T θ − T∆2 =: ν

Also, set c = ∆ + η−1
T . By lemma above we have

Pr

{
D̃T,j =

T∑
t=1

dtQt
qt
≤ T∆−

√
2Tνβ − 1

3cβT

}
≤ e−βT .

We will find the largest β such that the right hand side of the inequality above becomes positive. As it is a
quadratic polynomial in

√
β, we should have that

√
β ≤

√
2ν/T + 4

3c∆−
√

2ν/T

2
3c

.

Now we lower bound the right hand side, and write γ := η−1
T for brevity:√

2ν/T + 4
3c∆−

√
2ν/T

2
3c

≥
4∆
√

2ν/T

8ν/T + 4
3c∆

as
√
x+ a−

√
x ≥ 2a

√
x

4x+ a

=
3∆
√

2ν/T

6ν/T + c∆

=
3∆
√

2(γθ −∆2)

6γθ − 5∆2 + γ∆

=
3
√

2
√
γ

∆
√
θ −∆2/γ

6θ + ∆− 5∆2/γ

≥ 3
√
γ

∆
√
θ

7θ
as θ ≥ ∆ and ∆2/γ ≤ θ/2.

Hence, we conclude that setting

β = 0.18
√

log k
1√
2T

∆2

θ

gives the desired property. The proof follows by plugging in the value of β and taking a union bound over the
experts.

A.6 Proof of Theorem 4

The proof is very much similar to Theorem 6. The difference is that the conditional variance is bounded above by

E{ξ2
t | Ft−1} ≤ η−1

t −∆2,

and the rest of the proof follows by setting θ = 1.
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A.7 Proof of Theorem 3

The first bound is standard and can be found in (Slivkins, 2019). The argument is completed by noting that the
expected accuracy gap will be bounded by

1

T
E[LT,Iτ −LT,i∗ ] ≤

√
8 log k

T
,

and setting the right hand side less than ε.

For the second part, we use Theorem 4. With probability at most k · e−0.18∆2√T log k the recommended expert is
not the best, for which its accuracy gap is at most 1, and otherwise, the best expert is returned, with accuracy
gap 0. Combining the two gives the result.

A.8 Proof of Theorem 7

The proof is very similar to Theorem 3, with the difference that here one upper bounds the accuracy gap by
maxi ∆i instead of 1.

A.9 Proof of Theorem 8

First we prove a lemma that help us proving the theorem:

Lemma 8. The expected number of times that the recommendation πt is not the best model is a constant up to
any round and is bounded by 62k

λ2 log k .

Proof. By Theorem 6, we know that the probability of not recommending the best model at round t is upper
bounded by k · e−0.18λ

√
T log k. Using integral approximation, one finds that

∑∞
t=1 e

−a
√
t ≤ 2/a2 for all a > 0.

This gives

E

[ ∞∑
t=1

I{πt 6=i∗}

]
=

∞∑
t=1

Pr{πt 6= i∗} ≤
∞∑
t=1

k · e−0.18λ
√
T log k ≤ 62k

λ2 log k
.

Using the lemma, over T rounds, we make at most 62k
λ2 log k mistakes, for which we get at most maxi ∆i added to

the regret, and in other rounds, we make no mistakes, hence no regrets on those rounds. Adding up gives the
result.

B Example for Large Number of Updates

Consider a binary classification scenario with two models. Set the loss sequence to be (1, 0), (0, 1), (1, 0), . . ., that
is, on the odd rounds the second model is correct and on the even rounds, the first one. One can see that the
probability of querying the label is always wt,1wt,2 ∨ ηt for all t. Hence, this probability is always near 1/4, as
the models weights are always around 1/2. Hence, the total number of queries is linear.

C Experiments

C.1 Details on the Model Collections

• CIFAR-10: As an image classification dataset, we train 80 models on CIFAR-10 dataset varying in machine
learning models (ranging from DenseNet, Resnet to VGG), architecture and parameter setting. The ensemble
of models have accuracies between 55-92% on a test set consists of 10 000 instances.

• ImageNet: This dataset consists of 102 image classification models (ranging from ResNet, Inception to
MobileNet) pre-trained on ImageNet that are available on TensorFlow Hub. The accuracy of models occupy
the range in 50-80%. For each model, we obtain the ImageNet validation dataset with 50 000 data examples,
and furthermore normalize and resize them according to expected input format for each model, and finally
conduct inference on the given model to produce predicted labels.
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Table 1: Datasets characteristics

Dataset #Classes #Instances #Models Accuracy of Models
CIFAR-10 10 10 000 80 55-92%
ImageNet 1 000 50 000 102 50-80%
Drift 6 3 000 9 25-60%
EmoContext 4 5 509 8 88-92%
CIFAR-10 (worse models) 10 10 000 80 40-70%

• Drift: For the Drift dataset, we trained models on the gas sensor drift data that is collected over a course
of three years. The dataset has ten batches, each collected in different months. We trained an SVM classifier
on each of the batch but the last one, and use the last batch of size 3 000 as test set. Although each model
has good training accuracy on the batch it is trained on, namely above 90%, their accuracy on the test set
lies in 25-60%. This is due to the drift behaviour of sensor data among different time intervals.

• EmoContext: This dataset consist of pretrained models that are the development history of a participant
on EmoContexttask in SemEval 2019. The task aims to detect emotions from text leveraging contextual
information which is deemed challenging due to the lack of facial expressions and voice modulations. We
treat each development as an individual pretrained model where development stages differ in various word
representations including ELMo Peters et al. (2018) and GloVe Pennington et al. (2014). The dataset consists
of 8 pre-trained models whose accuracy varies between 88-92% on the test set of size 5 509.

• CIFAR-10 V2: We also train a set of models with relatively lower accuracies on CIFAR-10 and call it
CIFAR-10 V2. The sole purpose behind creating such a collection is to investigate the performance of
Model Picker on a practical scenario like this. Using similar model architectures to that of CIFAR-10,
the pretrained models have accuracy between 40-70% on a test set of size 10 000.
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Figure 3: Counts of model accuracies

The properties of model collections for all datasets are depicted in Table 1 on page 19 and Figure 3.

C.2 Note on the Baselines

In this section, we provide further details on some of the adapted baseline methods, namely, query by committee
(Entropy), importance weighted active learning (Importance) and efficient active learning (Efal).

• Query by Committee: As indicated in Section 5, we adapt the query-by-committee paradigm proposed in Dagan
and Engelson (1995) for model selection in the online setting. The query by committee method consist of two
sub-strategies (a) ensemble learning, and (b) determining a maximal disagreement measure. The ensemble
learning indicates how the committee is formed from the candidate classifiers. This step is crucial to make the
disagreement measure more reliable while aiming to form a set of classifiers with high accuracy. In literature,
there exist many ensemble learning methods including Abe and Mamitsuka (1998); Melville and Mooney
(2004); Breiman (1996); Freund and Schapire (1995). Most, if not all, of these methods are either designed for
pool-based sampling or for cases where observed data is stored. Bagging predictors Breiman (1996) proposes
to improve performance of a single predictor by forming a committee from multiple versions of it, where the
versions are trained on the bootstrap replicates of training data. This is followed by Abe and Mamitsuka (1998)
where diverse ensembles are generated using bagging and boosting techniques previously introduced by Freund
and Schapire (1995). These strategies focus on a setting where the observed data is stored as opposed to our
setting. Another popular ensemble learning algorithm, Active-Decorate relies on the existence of artificial
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training data to form a diverse set of examples. In our setting, however, we assume neither storing of previously
seen data nor availability of artificial data. In the online setting, however, one could benefit from the strategy
introduced in Freund and Schapire (1995). Upon seeing the label ct, the authors propose to update the belief
on the models such that wt ∝ wt−1β

`t . We note that, this update rule very closely resembles that of the
structural query by committee, which we include in our numerical analysis. In fact, it is identical when both of
β are tuned to query budget b amount of label in average over many realizations.

As a disagreement measure, popular choices include vote margin, vote entropy and KL divergence between
the label distributions of each committee member and the consensus in Settles and Craven (2008). We first
note that the latter two are equivalent for 0-1 loss functions `. The former, vote margin is measured by the
difference between the votes of most voted and second most voted label. We omit this in our analysis motivated
by the preliminary observation on the success of entropy over the vote margin.

• Importance Weighted Active Learning : As indicated earlier, we implement the importance weighted active
learning algorithm, introduced by Beygelzimer et al. (2008). Formally, upon seeing a new instance xt, the
algorithm computes a rejection threshold θt using sample complexity bounds, and update the hypothesis space
Ht to contain only the models whose weighted error is θt greater than weighted error of the current best

model at time t. The sampling probability qt is set to maxi,j∈Ht,c∈[C] `
(c)
t,i − `

(c)
t,j . We use 0-1 loss. Therefore,

adaptation in our setting becomes making query decision based merely on the disagreement between the
surviving hypotheses at time t. That is, we query the label ct if and only if the surviving classifiers at time t
disagree on the labeling of xt.

• Efficient Active Learning : We adapt the efficient active learning algorithm presented by Beygelzimer et al.
(2010, 2011). In a manner similar to the importance weighted approach, the efficient active learning algorithm
also uses the importance weighted framework. Upon receiving a new instance xt, the algorithm measures the
weighted error estimate between two competing models, and specifies a sampling probability based on a threshold
that is a function of C0 log t

t−1 for some parameter C0 > 0. If the gap between the estimated weighted errors of two
competing models are below this threshold, then the label ct is queried. Otherwise, the algorithm computes the
sampling probability qt that is roughly min

{
1,O(1/G2

k + 1/Gk)C0 log k
k−1

}
where Gk = mini∈[k] Lt,i−minj∈[k],j 6=i Lt,j .

We refer to Algorithm 1 of Beygelzimer et al. (2010) for further details. In our implementation, we consider the
threshold parameter C0 as hyperparameter and tune for efficient active learning algorithm to request amount of
labels not exceeding the labelling budget b. However, as indicated in Figure 4, it underperforms the importance
weighted active learning algorithm. However, it is crucial to emphasize again that these methods are meant
to improve supervised training of classifiers instead of ranking of pretrained models. We include them in our
comparison for the completeness.
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Figure 4: Comparison of importance weighted methods {Importance, Efal} and on the EmoContext and
CIFAR-10 datasets

C.3 Performance of Model Picker on models with low accuracies

As mentioned in Section 5, we conduct another numerical analysis on the performance of Model Picker when
pretrained models have relatively lower accuracies. Towards that, we train 80 models on CIFAR-10 varying in
machine learning models and parameters. The accuracy of pretrained models line in 40-70% over a test set of
of size 10 000. We compare the model selection methods over this new model collection by following the exact
same procedure as in the Section 5. We use a stream size of 5 000 and average the results over 500 realizations.
Figure 5 summarize the comparison. When the accuracy of pre-trained models are low, the query by committee
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algorithm expectedly underperforms as the disagreement measure becomes noisy under the existence of models
with low accuracies. Model Picker, on the other hand, noticeably outperforms in returning the true best model
as well as the ranking of the models (Figure 5). The regret analysis in Figure 5 suggests that the structural query
by committee method maintains a low regret throughout the streaming process as well as for different labeling
budgets, and very closely followed by Model Picker.
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Figure 5: Performance evaluation of model selection methods on CIFAR-10 V2 dataset that consist of pre-trained
models with low accuracies.

C.4 Hyperparameters

The hyperparameter tuning is performed via grid search. For each grid point, we run the experiment for 100
realizations and compute the average number of requests. The grid search was performed over the following
search space:

• CIFAR-10: Model Picker: [0, 3 000], Entropy: [0, 20], S-QBC: [0, 10], Importance: [0, 0.9],
Efal: [0, 1.5e-2]

• ImageNet: Model Picker: [0, 135], Entropy: [0, 22], S-QBC: [0, 20], Importance: [0, 1]

• Drift: Model Picker: [0, 60], Entropy: [0, 4], S-QBC: [0, 4], Importance: [0, 05]

• EmoContext: Model Picker: [0, 60], Entropy: [0, 4], S-QBC: [0, 4], Importance: [0, 05],
Efal: [0, 1e-2]

• CIFAR-10 V2: Model Picker: [0, 1 000], Entropy: [0, 3], S-QBC: [0, 10], Importance: [0,

0.9], Efal: [0, 1e-1]

with grid size of 250 where grid points are equally spaced. The respective number of requests for each grid point
can be found in our publicly available repository8.

Remark that the amount of requests by Model Picker saturates when Model Picker reaches at a high
identification probability. Therefore, the update probability is upscaled with a very high value such that Model
Picker queries large number of labels, and thus comparison to other methods for large budget constraints are
made possible. Practically, this would not be required as Model Picker itself decides when to stop requesting
labels. For example, when the update probability is upscaled by a factor of 11 for CIFAR-10 V2 dataset, the
number of requests made by Model Picker is 3 800 labels, whereas an upscaling of 835 is used to enable Model
Picker requests nearly 4 800 labels.

8https://github.com/DS3Lab/online-active-model-selection

https://github.com/DS3Lab/online-active-model-selection

