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A Generalised Weak Convexity and Two Layer Neural Networks

In this section we generalise the notation of weak convexity considered within the main body of the manuscript.
This section proceeds as follows. Section A.1 presents the generalised notation of weak convexity. Section A.2
gives bounds on the Optimisation & Approximation Error for two layer neural networks utilising generalised
weak convexity.

A.1 Generalised Weak Convexity

As highlighted in Remark 4, a drawback of Theorem 2 when optimising both layers for two layer neural network
is the Approximation Error’s dependence on the squared Euclidean norm of the population risk minimiser
‖ω?‖22. This stems from the weak convexity assumption (Assumption 3) penalising all co-ordinates equally i.e.
adding ‖ω‖22. To improve upon this we introduce the following assumption which aims to better encode the
Hessian’s structure.

Assumption 5 For a convex set X ⊆ Rp there exists non-negative function GX : Rp → R such that almost surely

u>∇2R(ω)u ≥ −GX (u) for any u ∈ Rp, ω ∈ X

Assumption 5 is a weakening of the weak convexity Assumption 3 in two respects. The first is that we have
restricted ourselves to a convex set X while Assumption 3 considers case X = Rp. The second difference, is that
the quadratic form of the Hessian with vectors u is lower bounded by a function GX (u). This function can then
encode additional structure of the Hessian which can be utilised to obtain tighter control on the Approximation
Error. We note by considering the function GX (u) = εX

2 ‖u‖
2
2 for some εX ≥ 0, we recover Assumption 3

restricted to the convex set X . Meanwhile more generally, GX (u) may depend upon other norms which penalise
subsets of co-ordinates as well as interactions. Given this assumption, we are present the following proposition
which bounds the Optimisation & Approximation Error that appears within the test error decomposition
(2).

Proposition 1 (Opt. & Approx. Error) Consider Assumption 1 and 5, step size ηs = η for all s ≥ 1 and
ω̃ ∈ X . Suppose that ωs ∈ X for all s ≥ 1. If ηβ ≤ 1/2 then

EI [E[R(ω̂I ]]− r(ω?)︸ ︷︷ ︸
Opt. & Approx. Error

≤ E[‖ω̂0 − ω̃‖22]
2ηt︸ ︷︷ ︸

Optimisation Error

+ 1
2

1
t

t∑
s=1

E[GX (ω̃ − ω̂s)] + E[R(ω̃)]− r(ω?)︸ ︷︷ ︸
Approximation Error

Observe that within Proposition 1 the bound now depends on the Hessian structure through GX (·) as well as
now a free parameter ω̃ ∈ X . The right most term can then be interpreted as an Approximation Error, as the
series involving GX (ω̃ − ω̂s) can be viewed as a regulariser, with ω̃ chosen thereafter to minimise a penalised
empirical risk. Although, we note that the regulariser depends upon the iterates of gradient descent i.e. the
difference ω̃− ω̂s, as such, to proceed we must decouple ω̃ and ω̂s by utilising the structure of GX (·). We therefore
now consider the case of a two layer neural network.

A.2 Optimisation and Approximation Error for Two Layer Neural Networks

In this section we demonstrate how the generalised notation of weak convexity just described in Section A.1 can be
applied to a two layer neural network when optimising both layers. Specifically, we consider the setting described
in Section 4.1, where the loss is a composition of a convex function g(·, y) and a Two Layer Neural network f . Let
us begin by introducing some additional notation. For a vector z ∈ Rq let Diag(z) ∈ Rq×q be the square diagonal
matrix where Diag(z)ii = zi for i = 1, . . . , q. Moreover, let us denote the vector u = (A(u), v(u)) ∈ RMd+M which
is composed in a manner matching ω = (A, v), so that A(u) ∈ RM×d is a matrix associated to the first layer
of weights and v(u) ∈ RM is the vector associated to the second layer of weights. Let us denote the maximum
between two real numbers a, b ∈ R as a ∨ b = max{a, b}.

To consider the generalised weak convexity Assumption 5 we first introduce the appropriate set X and functional
GX . For Lv ≥ 0 consider the set XLv ⊆ RMd+d as well as for C ≥ 0 the function GC : Rp → R+. The
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set is then defined as XLv := {ω ∈ RMd+d : ω = (A, v), ‖v‖∞ ≤ Lv}, while the functional is defined for
u = (A(u), v(u)) ∈ RMd+M as

GC(u) := C

M c
‖A(u)‖2F + C

M c
max
‖z‖∞≤1

∥∥A(u)>Diag(z)v(u)
∥∥

2.

The set XLv in our case is technical and is included to, in short, control the second layer weights that arises
within second derivative of first layer, see also Theorem 3. Meanwhile, the function GC now incorporates the
structure of the empirical risk Hessian. In particular, there is no term depending on the squared norm ‖v‖22, since
the Hessian restricted to the second layer is zero. The second term in GC(·) then arises to control the interaction
between the first and second layers, with the maximum over vectors ‖z‖∞ ≤ 1 coming from the activation σ(·).

Given the function GC we must now introduce a related function H : RMd+M → R which encodes the structure
of regularisation. It is similarly defined as follows

H(u) := ‖A(u)‖2F +
√
ηt‖v(u)‖2 + max

‖z‖∞≤1
‖A(u)>Diag(z)v(u)‖2.

Note the structure of H(·) closely aligns with GC(·) although an extra term
√
ηt‖v(u)‖2 is included. This arises

due to the coupling between the gradient descent iterates and place holder ω̃ i.e. GC(ω̃ − ω̂s). Given this, it
will be convenient to denote for λ ≥ 0 a minimiser ω̂λ ∈ argminω∈XLv

{
R(ω) + λH(ω − ω̂0)

}
. The following

theorem then utilises Proposition 1 to bound the Optimisation & Approximation Error within the test error
decomposition (2).

Theorem 4 (Two Layer Neural Network) Consider loss regularity Assumption 1 alongside the setting of
Theorem 3 with bounded activation |σ(·)| ≤ Lσ. Initialise gradient descent at ω̂0 = (A0, v0) ∈ RMd+M . If the
following holds almost surely

Lv ≥ ‖v?‖∞ ∨
(
‖v0‖∞ + ηtLg′Lσ

M c

)
C ≥ 2Lg′

[(
Lσ′
√

Tr
(
Σ̂
))
∨ (Lσ′′Lv‖Σ̂‖2)

]
,

then the optimisation and approximation error is bounded

EI [E[R(ω̂I ]]−r(ω?)︸ ︷︷ ︸
Opt. & Approx. Error

≤ E[‖ω̂λ − ω̂0‖22]
2ηt︸ ︷︷ ︸

Opt. Error

+ 3CE[R(ω0)−R(ω̂?)]ηt
M c︸ ︷︷ ︸

Opt. Component.

+ E[λ]H(ω? − ω̂0)︸ ︷︷ ︸
Stat. Approx.

where λ = 3C(
√
R(ω̂0)−R(ω̂?) ∨ 1)/M c.

Observe in Theorem 4 that the parameter Lv, which controls the constraint set XLv , is required to grow as
O(1 + ηt/M c), and therefore, is constant for sufficiently wide neural networks (see also discussion in Section 3.2).
Meanwhile, the parameter C, which controls the functional, must almost surely upper bound spectral quantities
related to the covariates covariance, namely, the trace Tr

(
Σ̂
)
. This can then be more refined than assuming

almost surely bounded co-ordinates i.e. ‖x‖∞, as done within the main body of the manuscript. The resulting
bound on the Optimisation and Approximation Error then consists of two new terms: Opt. Component
and Stat. Approx.. The Opt. Component. is order O(dηt/M c) and arises from the dependence on gradient
descent iterates ω̂s. Meanwhile, the Stat. Approx. depends upon the population risk minimiser evaluated at
the regulariser i.e. E[λ]H(ω? − ω̂0), and can be interpreted as a statistical bias resulting from the non-convexity.
Note it now depends upon H(·) and is scaled by λ which is O

(√
Tr(Σ̂)/M c

)
.

It is natural to investigate (picking ω̂0 = 0) the size of the Stat. Approx. for a particular problem instance.
Following the limitations of the weakly convex setting highlighted within remark 4 in the main body of the
manuscript, we focus on whether Stat. Approx. can be smaller than the Total Weight of the network TW(f).
Denoting ω? = (A?, v?) a minimiser of the population risk, we focus on upper bounding

√
Tr(Σ̂)H(ω?)/M c by

the Total Weight of the network, since
√

Tr(Σ̂)H(ω?)/M c equals the Stat. Approx. up to constants
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Begin by noting that H(·) depends upon the interaction between the first and second layer, therefore, introduce
the single valued decomposition A? = ΓΛΞ> =

∑d
`=1 λ`γ`ξ

>
` where left-singular vectors {γ`}d`=1 are the columns

of Γ ∈ RM×d, the right-singular vectors {ξ}d`=1 are the columns of Ξ ∈ Rd×d and {λi}di=1 are the singular values.
Let us also denote the element wise multiplication of two vectors u, v ∈ Rp as u � v = (u1v1, . . . , upvp) ∈ Rp.
With the single valued decomposition the regulariser can then be written as follows

1
M c

H(ω?) = 1
M c

(
‖A?‖2F +

√
ηt‖v?‖2

)
︸ ︷︷ ︸

Norm Condition

+ max
‖z‖∞≤1

1
M c

√√√√ d∑
j=1
|λj |2|〈z, v? � γj〉|2︸ ︷︷ ︸

Interaction

.

The first two terms above depend upon the norm of the population risk minimiser ω?, while the third term now
encodes the interaction between the first and second layer. For clarity, let a1, a2 ∈ R and assume each of the
second layers weights are the same magnitude so |v?j | = a1 for j = 1, . . . ,M as well as the singular values so
|λj | = a2 for j = 1, . . . , d. The Interaction term can then be upper bounded by taking the maximum max‖z‖∞≤1
inside the series

Interaction = 1
M c

max
‖z‖∞≤1

√√√√ d∑
j=1
|λj |2|〈z, v? � γj〉|2 ≤

1
M c

√√√√ d∑
j=1
|λj |2‖v? � γj‖21 = a1a2

1
M c

√√√√ d∑
j=1
‖γj‖21.

Note that this quantity now aligns with the `1,2 element-wise matrix norm on the left-singular vectors of A? i.e. Γ.
Therefore, let us assume that the left-singular vectors {γi}di=1 are supported on disjoint sets of size M/d ≥ s ≥ 1
and are such that |(γi)j | = 1√

s
for i = 1, . . . , d, j ∈ Supp(γi) (where Supp(·) denotes the support of a vector) and

zero otherwise. Noting that ‖v?‖2 = a1
√
ds since the second layer of weights will be supported on the non-zero

rows of A? as well as that ‖γi‖1 =
√
s, yields the upper bound on the Stat. Approx. term√

Tr
(
Σ̂
)
H(ω?)

M c
≤
√

Tr
(
Σ̂
)( da2

M c
+ a1

√
ηt
√
ds

M c︸ ︷︷ ︸
Norm Condition

+ a1a2
√
ds

M c︸ ︷︷ ︸
Interaction

)
.

Let us now consider the Total Weight with this particular choice of weights ω? = (v?, A?). Precisely, for this
particular choice of second layer weights v?, singular values {λj}dj=1 and singular vectors {γi}di=1, the Total
Weight aligns with the `2,1 element-wise matrix norm of Γ>

TW (f) = 1
M c

M∑
j=1
|v?j ‖A?j‖2 = a1a2

M c

M∑
j=1

√√√√ d∑
i=1

(γi)2
j = a1a2

M c

d×s∑
j=1

√
1
s

= a1a2
d
√
s

M c
.

Where we note that the first equality arises from the single valued decomposition A?j =
∑d
i=1 λi(γi)jξi and thus

‖A?j‖2 =
√∑d

i=1 λ
2
i (γi)2

j . Meanwhile for the second equality, for each j = 1, . . . , d× s we have j ∈ Supp(γk) for
at most one k ∈ {1, . . . , d} since {γi}di=1 are supported on disjoint sets. Meanwhile for j = d × s + 1, . . . ,M
we have j 6∈ Supp(γk) since the supports are of size at most s. This means for j = 1, . . . , d × s we get∑d

i=1(γi)2
j =

∑
i:j∈Supp(γi)(γi)

2
j = 1

s , and then zero otherwise. Dividing the Stat. Approx. by the Total Weight
we have

1
TW (f)

√
Tr
(
Σ̂
)
H(ω?)

M c
=
√

Tr
(
Σ̂
)( 1
a1
√
s

+
√
ηt

a2
√
d

+ 1√
d

)
.

Now, if s > d ≥ 9, a1, a2 ≥ 1 and ηtTr(Σ̂) ≤ d/9 then the Stat. Approx. error is upper bounded by the Total
Weight

√
Tr(Σ̂)H(ω?)/M c ≤ TW (f), as required.

B Proof of Generalisation Error Bounds under Weak Convexity

In this section we present the proofs related to the first half of the manuscript which gives generalisation
error bounds for gradient descent under pointwise weak convexity Assumption 2 and standard weak convexity
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Assumption 3. We begin by presenting the proof of Theorem 1 in Section B.1. Section B.2 present the proof of
Lemma 1 which is technical result used within the proof of Theorem B.1. Section B.3 then presents and proves a
generalisation error bound for gradient descent under standard weak convexity Assumption 3.

B.1 Proof of Theorem 1

In this section we give the proof of Theorem 1. Using equation (1) we can then bound the generalisation error for
gradient descent in terms of the difference between gradient descent with and without a resampled datapoint.
Specifically, using that the loss is L-Lipschitz as well as Jensen’s Inequality to take the absolute value inside the
expectation we get

|E[R(ŵt)− r(ŵt)]| ≤
1
N

N∑
i=1
|E[`(ŵ(i)

t , Z ′i)− `(ŵt, Z ′i)]| ≤
L

N

N∑
i=1

E[‖ŵ(i)
t − ŵt‖2].

For i = 1, . . . , N it then suffices to bound the deviation ‖ŵt − ŵ(i)
t ‖2. Using that the gradient of the empirical

risk can be denoted ∇R(i)(w) = ∇R(w) + 1
N (∇`(w,Z ′i)−∇`(w,Zi)) alongside the Lipschitz assumption we get

for any k ≥ 1,

‖ŵk − ŵ(i)
k ‖2 ≤ ‖ŵk−1 − ŵ(i)

k−1 − ηk−1
(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
‖2 + 2ηk−1L

N
. (4)

The first term on the right hand side is then referred to as the expansiveness of the gradient update. Note, for
k = 1 it is zero since the iterates with and without the resampled data point are initialised at the same location
ω̂0 = ω̂

(i)
0 , and thus,

‖ŵ1 − ŵ(i)
1 ‖2 ≤

2η0L

N
. (5)

Therefore, let us consider the difference ‖ŵk − ŵ(i)
k ‖2 for k ≥ 2. Expanding the expansiveness of the gradient

update term we get

‖ŵk−1 − ŵ(i)
k−1 − ηk−1

(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
‖22

= ‖ŵk−1 − ŵ(i)
k−1‖

2
2 + η2

k−1‖∇R(ŵk−1)−∇R(ŵ(i)
k−1‖

2
2 − 2ηk−1〈∇R(ŵk−1)−∇R(ŵ(i)

k−1), ŵk−1 − ŵ(i)
k−1〉.

Now we must lower bound 〈∇R(ŵk−1)−∇R(ŵ(i)
k−1), ŵk−1 − ŵ(i)

k−1〉 utilising both the loss regularity (Assumption
1) and the pointwise weak convexity (Assumption 2). These steps are summarised within the following lemma.

Lemma 1 Consider assumptions 1 and 2. Then for s ≥ 1 and η ≥ 0

〈∇R(ŵs)−∇R(ŵ(i)
s ), ŵs − ŵ(i)

s 〉 ≥ 2η
(

1− βη

2

)
‖∇R(ŵs)−∇R(ŵ(i)

s )‖22

−
(
εs + 2β

N

)
‖ŵs − ŵ(i)

s − η
(
∇R(ŵs)−∇R(ŵ(i)

s )
)
‖22

− ρ

3‖ŵs − ŵ
(i)
s − η

(
∇R(ŵs)−∇R(ŵ(i)

s )
)
‖32

Utilising Lemma 1 with s = k− 1 and η = ηk−1 the expansiveness of the gradient update term can then be upper
bounded

‖ŵk−1 − ŵ(i)
k−1 − ηk−1

(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
‖22 ≤ ‖ŵk−1 − ŵ(i)

k−1‖
2
2

+ η2
k−1
(
1− 4

(
1− βηk−1

2
))
‖∇R(ŵk−1)−∇R(ŵ(i)

k−1)‖22

+ 2ηk−1
(
εk−1 + 2β

N

)
‖ŵk−1 − ŵ(i)

k−1 − ηk−1
(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
‖22

+ 2ηk−1
ρ

3‖ŵk−1 − ŵ(i)
k−1 − ηk−1

(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
‖32.
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Note from assumptions within the theorem that ηk−1 ≤ 3
2β so the second term on the right hand side is negative.

Meanwhile, if we denote ∆(k) = ŵk−1 − ŵ(i)
k−1 − ηk−1

(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
, the third term can be bounded

using Young’s inequality ab ≤ 1
2a

2 + 1
2b

2 as

2ηk−1
ρ

3‖∆(k)‖32 = (
√

2η
1

2α
k−1‖∆(k)‖2)(η1− 1

2α
k−1

√
2ρ
3 ‖∆(k)‖22)

≤ η
1
α

k−1‖∆(k)‖22 + η
2(1− 1

2α )
k−1

ρ2

9 ‖∆(k)‖42.

Collecting the squared terms and taking on the left hand side, the expansiveness of the gradient update term can
then be upper bounded

(1− 2ηk−1(εk−1 + 2β
N

)− η
1
α

k−1)‖∆(k)‖22 ≤ ‖ŵk−1 − ŵ(i)
k−1‖

2
2 + η2(1− 1

2α ) ρ
2

9 ‖∆(k)‖42

≤ ‖ŵk−1 − ŵ(i)
k−1‖

2
2 + 9η2(1− 1

2α )
k−1 ρ2‖ŵk−1 − ŵ(i)

k−1‖
4
2. (6)

Note that the second inequality above uses the Lipschitz property of the loss’s gradient and that ηk−1β ≤ 3/2 to
say

‖ŵk−1 − ŵ(i)
k−1 − ηk−1

(
∇R(ŵk−1)−∇R(ŵ(i)

k−1)
)
‖2 ≤ (1 + ηk−1β)‖ŵk−1 − ŵ(i)

k−1‖2
≤ 3‖ŵk−1 − ŵ(i)

k−1‖2.

Dividing both sides of (6) by 1 − 2ηk−1(εk−1 + 2β
N ) − η

1
α

k−1, taking care this quantity is non-negative from an
assumption within the theorem, applying the square root and plugging into (4) then yields the recursion

‖ŵk − ŵ(i)
k ‖2 ≤

( 1

1− 2ηk−1(εk−1 + 2β
N )− η

1
α

k−1

)1/2
‖ŵk−1 − ŵ(i)

k−1‖2 + 2ηk−1L

N

+ 3η1− 1
2α

k−1 ρ
( 1

1− 2ηk−1(εk−1 + 2β
N )− η

1
α

k−1

)1/2
‖ŵk−1 − ŵ(i)

k−1‖
2
2.

Unravelling the iterates with the convention
∏k−1
s=k

( 1

1−2ηs(εs+ 2β
N )−η

1
α
s

)1/2 = 1 gives

‖ŵk − ŵ(i)
k ‖2 ≤

2L
N

k−1∑
j=0

k−1∏
s=j+1

( 1

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2
ηj

+ 3ρ
k−1∑
j=1

k−1∏
s=j

( 1

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2
η

1− 1
2α

j ‖ŵj − w(i)
j ‖

2
2

We must now bound the product of terms. Using the assumption within the theorem that 2ηs(εs+ 2β
N )+η

1
α
s < 1/2,

as well as th inequality 1 + x ≤ ex, we get the upper bound
k−1∑
j=0

k−1∏
s=j+1

( 1

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2
ηj =

k−1∑
j=0

k−1∏
s=j+1

(
1 +

2ηs(εs + 2β
N ) + η

1
α
s

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2
ηj

≤
k−1∑
j=0

exp
(
2

k−1∑
s=j+1

ηsεs +
4
∑k−1
s=j+1 ηsβ

N
+

k−1∑
s=j+1

η
1
α
s

)
ηj

where we have adopted the convention
∑k−1
s=k ηs = 0. This then leads to following upper bound for k ≥ 2

‖ŵk − ŵ(i)
k ‖2 ≤

2L
N

k−1∑
j=0

exp
(
2

k−1∑
s=j+1

ηsεs +
4
∑k−1
s=j+1 ηsβ

N
+

k−1∑
s=j+1

η
1
α
s

)
ηj (7)

+ 3ρ
k−1∑
j=1

k−1∏
s=j

( 1

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2
η

1− 1
2α

j ‖ŵj − w(i)
j ‖

2
2.
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Observe that the above bound depends on higher order terms from previous time steps ‖ŵj − w(i)
j ‖22. To control

‖ŵk − ŵ(i)
k ‖2 for some k ≥ 2, we now utilise the fact that the difference from earlier iterations ‖ŵj − ŵ(i)

j ‖2 for
j = 1, . . . , k − 1 can also be small. To this end, we use the upper bounds (5) and (7) to show inductively, under
the assumptions of the theorem, that the following holds for t ≥ k ≥ 2

‖ŵk − ŵ(i)
k ‖2 ≤

4L
N

k−1∑
j=0

exp
(
2

k−1∑
s=j+1

ηsεs +
4
∑k−1
s=j+1 ηsβ

N
+

k−1∑
s=j+1

η
1
α
s

)
ηj .

Showing the above would then imply the bound presented within the theorem. Let us begin by proving the base
case k = 2. Looking to (7) and plugging in the upper bound on ‖ŵ1 − ŵ(i)

1 ‖2 ≤ 2η0L/N from (5) yields

‖ŵ2 − ŵ(i)
2 ‖2 ≤

2L
N

1∑
j=0

exp
(
2

1∑
s=j+1

ηsεs+
4
∑1
s=j+1 ηsβ

N
+

1∑
s=j+1

η
1
α
s

)
ηj

+ 3ρ
( 1

1− 2η1(ε1 + 2β
N )− η

1
α
1

)1/2
η

1− 1
2α

1
4η2

0L
2

N2

= 2L
N

exp
(
2η1ε1 + 4η1β

N
+ η

1
α
1
)
η0 + 2Lη1

N
+ 3ρ

( 1

1− 2η1(ε1 + 2β
N )− η

1
α
1

)1/2
η

1− 1
2α

1
4η2

0L
2

N2 .

Note from the assumption within the theorem 2η1(ε1 + 2β
N )− η

1
α
1 ≤ 1/2 the third term can be upper bounded in

a similar manner to previously

( 1

1− 2η1(ε1 + 2β
N )− η

1
α
1

)1/2
η

1− 1
2α

1
4η2

0L
2

N2 ≤ exp(2η1(ε1 + 2β
N

) + η
1
α
1 )η1− 1

2α
1

4η2
0L

2

N2 ,

and thus

‖ŵ2 − ŵ(i)
2 ‖2 ≤

2L
N

exp
(
2η1ε1 + 4η1β

N
+ η

1
α
1
)
η0

(
1 + 6ρη1− 1

2α
1

η0L

N︸ ︷︷ ︸
Remainder Term

)
+ 2Lη1

N
.

It is then sufficient to show Remainder Term ≤ 1 for the base case to hold. Note that this is then implied by
the condition on the sample size within the theorem, namely that

N ≥ 24ρLexp
(

2
t∑

s=1
ηs
(
εs+ 4β

N

)
+η

1
α
s

) t∑
j=1

η
1− 1

2α
j

j−1∑
`=0

η`

≥ 6ρLη1− 1
2α

1 η0.

Let us now assume the inductive hypothesis holds up-to k and consider the case k + 1. Utilising the inductive
hypothesis for u = 1, . . . , k as well as multiplying and dividing by

(∑u−1
j=0 ηj

)2 allows the squared deviation to be
bounded

‖ŵu − ŵ(i)
u ‖22 ≤

( u−1∑
j=0

ηj
)2(4L

N

u−1∑
j=0

exp
(
2

u−1∑
s=j+1

ηsεs +
4
∑u−1
s=j+1 ηsβ

N
+

u−1∑
s=j+1

η
1
α
s

) ηj∑u−1
j=0 ηj

)2

≤
( u−1∑
j=0

ηj
)16L2

N2

u−1∑
j=0

ηj exp
(
4

u−1∑
s=j+1

ηsεs +
8
∑u−1
s=j+1 ηsβ

N
+ 2

u−1∑
s=j+1

η
1
α
s

)
≤
( u−1∑
j=0

ηj
)16L2

N2 exp
(
2
u−1∑
s=1

ηsεs +
4
∑u−1
s=1 ηsβ

N
+
u−1∑
s=1

η
1
α
s

)
×
( k∑
j=0

ηj exp
(
2

k∑
s=j+1

ηsεs +
4
∑k
s=j+1 ηsβ

N
+

k∑
s=j+1

η
1
α
s

))
,



Dominic Richards, Mike Rabbat

where we note the second inequality arises from convexity of the squared function, and the third inequality from
adding positive terms within the exponentials. Plugging the above into the squared terms of (7) for u = 1, . . . , k,

as well as factoring out 2L
N

∑k
j=0 exp

(
2
∑k
s=j+1 ηsεs +

4
∑k

s=j+1
ηsβ

N +
∑k
s=j+1 η

1
α
s

)
ηj allows the deviation at time

k + 1 to be bounded

‖ŵk+1 − ŵ(i)
k+1‖2 ≤

(2L
N

k∑
j=0

exp
(
2

k∑
s=j+1

ηsεs +
4
∑k
s=j+1 ηsβ

N
+

k∑
s=j+1

η
1
α
s

)
ηj

)

×
(
1+ 24ρL

N

k∑
j=1

k∏
s=j

( 1

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2
η

1− 1
2α

j

( j−1∑
`=0

η`
)

exp
(
2
j−1∑
s=1

ηsεs+
4
∑j−1
s=1 ηsβ

N
+
j−1∑
s=1

η
1
α
s

)
︸ ︷︷ ︸

Remainder Term

)
.

To prove the inductive hypothesis holds for k + 1 we must show that Remainder Term ≤ 1. To this end, follow
the previous steps to bound the product of terms for j = 1, . . . , k

k∏
s=j

( 1

1− 2ηs(εs + 2β
N )− η

1
α
s

)1/2 ≤ exp
(
2

k∑
s=j

ηsεs +
4
∑k
s=j ηsβ

N
+

k∑
s=j

η
1
α
s

)
to upper bound the Remainder Term

Remainder Term ≤ 24ρL
N

k∑
j=1

η
1− 1

2α
j

( j−1∑
`=0

η`
)

exp
(
2

k∑
s=1

ηsεs +
4
∑k
s=1 ηsβ

N
+

k∑
s=1

η
1
α
s .
)

Following the assumption with the theorem, we then have when k ≤ t

N ≥ 24ρL
t∑

j=1
η

1− 1
2α

j

( j−1∑
`=0

η`
)

exp
(
2

t∑
s=1

ηsεs +
4
∑t
s=1 ηsβ

N
+

t∑
s=1

η
1
α
s

)
≥ 24ρL

k∑
j=1

η
1− 1

2α
j

( j−1∑
`=0

η`
)

exp
(
2

k∑
s=1

ηsεs +
4
∑k
s=1 ηsβ

N
+

k∑
s=1

η
1
α
s

)
and therefore Remainder Term ≤ 1 as required and the inductive hypothesis holds. This completes the proof.

B.2 Proof of Lemma 1

In this section we give the proof of Lemma 1. We begin recalling a function f is β-smooth if for any x, y we have

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ β

2 ‖x− y‖
2
2

Moreover, to save on notational burden let us denote x = ŵs and y = ŵ
(i)
s .

We begin by following the standard proof for showing co-coercivity in the smooth convex setting, see for instance
(Nesterov, 2013). Let us define the functions φx(ω) = R(ω)− 〈R(x), ω〉 and φy(ω) = R(ω)− 〈R(y), ω〉. It is then
clear that φx, φy are both β-smooth. As such using smoothness we get

φx(y − η∇φx(y)) ≤ φx(y) + 〈∇φx(y), y − η∇φ(y)− y〉+ βη2

2 ‖∇φx(y)‖22

= φx(y) + η
(ηβ

2 − 1
)
‖∇φx(y)‖22

Plugging in the definition of φx, and repeating the steps for with x, y swapped we get the two inequalities

R(y − η
(
∇R(y)−∇R(x)

)
)− 〈∇R(x), y − η

(
∇R(y)−∇R(x)

)
〉 ≤ R(y)− 〈R(x), y〉

+ η
(ηβ

2 − 1
)
‖∇φx(y)‖22

R(x− η
(
∇R(x)−∇R(y)

)
)− 〈∇R(y), x− η

(
∇R(x)−∇R(y)

)
〉 ≤ R(x)− 〈R(y), x〉

+ η
(ηβ

2 − 1
)
‖∇φy(x)‖22
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We would now like to lower bound the left side of each of these inequalities. In the convex setting this is immediate
from the definition of convexity. In our case, we wish to use the local convexity of the iterates ŵs on the objective
∇R(·). We begin with lower bounding the left side of the first inequality.

Lower Bounding First Inequality Let us denote ỹ = y − η
(
∇R(y)−∇R(x)

)
. We then must lower bound

R(ỹ)− 〈∇R(x), ỹ〉.

Recall from Assumption 2 that the Hessian ∇2R(·) has minimum Eigenvalue lower bounded by −εs at the point
x = ω̂s. To utilise this let us define the function for α ∈ [0, 1]

g(α) = R(x+ α(ỹ − x)) + εs
2 ‖x+ α(ỹ − x)‖22 + α3

6 ρ‖x− ỹ‖32.

Taking derivatives of g with respect to α we observe that

g′′(α) = (ỹ − x)>∇2R(x+ α(ỹ − x))(ỹ − x) + εs‖ỹ − x‖22 + αρ‖x− ỹ‖32
= (ỹ − x)>(∇2R(x) + εsI)(ỹ − x)

+ (ỹ − x)>(∇2R(x+ α(ỹ − x))−∇2R(x))(ỹ − x) + αρ‖x− ỹ‖32
≥ 0− ‖ỹ − x‖22‖∇2R(x+ α(ỹ − x))−∇2R(x)‖2 + αρ‖x− ỹ‖32
≥ 0

where we have added and subtracted (ỹ − x)>∇2R(x)(ỹ − x) on the second equality, and note that the first term
is lower bounded from the pointwise weak convexity ∇2R(x) � −εsI.

Therefore g is convex in α ∈ [0, 1], and thus for α′ ∈ [0, 1] we get 0 ≤ g(α)− g(α′)− g′(α′)(α−α′). Picking α = 1
and α′ = 0 and plugging in the definition of g we have

0 ≤ R(ỹ) + εs
2 ‖ỹ‖

2
2 + ρ

6‖x− ỹ‖
3
2 −R(x)− εs

2 ‖x‖
2
2 − (ỹ − x)>(∇R(x) + εsx)

= R(ỹ)−R(x)− 〈∇R(x), ỹ − x〉+ εs
2 ‖x− ỹ‖

2
2 + ρ

6‖x− ỹ‖
3
2.

Rearranging the above then results in the lower bound

R(ỹ)− 〈∇R(x), ỹ〉 ≥ R(x)− 〈∇R(x), x〉 − εs
2 ‖x− ỹ‖

2
2 −

ρ

6‖x− ỹ‖
3
2,

which will be the lower bound that we will use.

Lower Bounding Second Inequality With x̃ = x− η(∇R(x)−∇R(y)) we now lower bound

R(x̃)− 〈∇R(y), x̃〉

This lower bound will be slightly more technical as the minimum Eigenvalue of ∇2R(y) = ∇2R(ŵ(i)
s ) is not

immediately lower bounded from our assumptions. Although, note that we have for any vector v ∈ Rp that

v>∇2R(y)v = v>∇2R(i)(y)v + v>∇2R(i)(y)−∇2R(y)v

= v>∇2R(i)(y)v + 1
N
v>
(
∇2`(y, Z ′i)−∇2`(y, Zi)

)
v

≥ −
(
εs + 2β

N

)
‖v‖22

Therefore ∇2R(y) has minimum Eigenvalue lower bounded by −
(
εs+ 2β

N

)
. Following an identical set of arguments

to the lower bound for the first inequality with εs swapped with εs + 2β
N we then get

R(x̃)− 〈∇R(y), x̃〉 ≥ R(y)− 〈∇R(y), y〉 − εs + 2β/N
2 ‖y − x̃‖22 −

ρ

6‖x̃− y‖
3
2
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Using Lower Bounds Given the two lower bounds we arrive at after rearranging

〈∇R(x), x− y〉 ≥ R(x)−R(y) + η
(
1− ηβ

2
)
‖∇φx(y)‖22 −

εs
2 ‖x− ỹ‖

2
2 −

ρ

6‖x− ỹ‖
3
2

〈∇R(y), y − x〉 ≥ R(y)−R(x) + η
(
1− ηβ

2
)
‖∇φy(x)‖22 −

εs + 2β/N
2 ‖y − x̃‖22 −

ρ

6‖x̃− y‖
3
2

The result is then arrived at by adding together the two above bounds and substituting in the definitions of
φx, φy, x̃, ỹ, x, y.

B.3 Generalisation Error Bound for Gradient Descent under Standard Weak Convexity

In this section we present and prove a generalisation error bound of gradient descent under standard weak
convexity Assumption 3. The following theorem presents the generalisation error bound.

Theorem 5 (Generalisation Error Bound Standard Weak Convexity) Consider Assumptions 1 and 3.
If ηβ ≤ 3/2 and 2ηε < 1, then the generalisation error of gradient descent satisfies

E[R(ŵt)− r(ŵt)] ≤
2ηL2

N

t−1∑
k=0

exp
( ηεk

1− 2ηε
)

The proof of Theorem 5 closely follows the steps in proving Theorem 1. Therefore in the proof we focus on the
key differences. We begin with the following lemma which lower bounds the co-coercivity of weakly convex losses.

Lemma 2 Consider Assumptions 1 and 3. Then for η ≥ 0 and x, y ∈ Rd

〈∇R(x)−∇R(y), x− y〉 ≥ 2η
(

1− βη

2

)
‖∇R(x)−∇R(y)‖22 − ε‖x− y − η

(
∇R(x)−∇R(y)

)
‖22

We now provide the proof of this Lemma.

Proof 1 (Lemma 2) Follow the proof of Lemma 1 to the point of lower bounding R(ỹ) − 〈∇R(x), ỹ〉 where
ỹ = y − η

(
∇R(y)−∇R(x)

)
. Now, let us alternatively choose

g(α) = R(x+ α(ỹ − x)) + ε

2‖x+ α(ỹ − x)‖22

We then immediate see that g′′(α) = (ỹ−x)>∇2R(x+α(ỹ−x))(ỹ−x) + ε‖ỹ− x‖22 ≥ 0 since Assumption 3 states
that ∇2R(ω) � −εI for every ω ∈ Rd. Therefore g(α) is convex on α ∈ [0, 1]. Using that 0 ≤ g(1)− g(0)− g′(0)
and rearranging we get the lower bound

R(ỹ)− 〈R(x), ỹ〉 ≥ R(x)− 〈∇R(x), x〉 − ε

2‖x− ỹ‖
2
2.

Performing an identical set of steps for R(x̃)−〈R(y), x̃〉 where x̃ = x− η
(
∇R(x)−∇R(y)

)
yields the lower bound

R(x̃)− 〈R(y), x̃〉 ≥ R(y)− 〈∇R(y), y〉 − ε

2‖x̃− y‖
2
2.

Following the steps in Lemma 1 then yields the result.

Given this proof, we now provide the proof of Theorem 5.

Proof 2 (Theorem 5) Let us begin by bounding the expansiveness of the gradient update. Note for 3/(2β) ≥
η ≥ 0 we have when using Lemma 2

‖x− y − η
(
∇R(x)−∇R(y)

)
‖22 = ‖x− y‖22 + η2‖∇R(x)−∇R(y)‖22 − 2η〈x− y,∇R(x)−∇R(y)〉

≤ ‖x− y‖22 + η2(1− 4
(
1− ηβ

2
))
‖∇R(x)−∇R(y)‖22

+ 2ηε‖x− y − η
(
∇R(x)−∇R(y)

)
‖22

≤ ‖x− y‖22 + 2ηε‖x− y − η
(
∇R(x)−∇R(y)

)
‖22
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It is then clear that the expansiveness of the gradient update can be upper bounded

‖x− y − η
(
∇R(x)−∇R(y)

)
‖2 ≤

1√
1− 2ηε

‖x− y‖2

Following the steps in the proof of Theorem 1 (similarly (Hardt et al., 2016)) we immediately get

‖ω̂t − ω̂(i)
t ‖2 ≤

1√
1− 2ηε

‖ω̂t−1 − ω̂(i)
t−1‖2 + 2ηL

N

≤ 2ηL
N

t−1∑
k=0

( 1√
1− 2ηε

)k
≤ 2ηL

N

t−1∑
k=0

exp
( ηεk

1− 2ηε
)

where we have used that 1/(1− u) = 1 + u
1−u ≤ e

u
1−u . This yields the result.

C Proofs of Test Error Bounds for General Loss Functions

In this section we present proofs related to test error bounds for general loss functions. This section proceeds as
follows. Section C.1 presents the proof of Theorem 2, which gives a test error bound for weakly convex losses.
Section C.2 presents the proof of Proposition 1 which is presented within Appendix A. Section C.3 gives the
proofs of additional lemmas used within this section.

C.1 Proof of Test Error Bounds for Weakly Convex Losses (Theorem 2)

In this section we present the proof of Theorem 2. We begin by introducing the penalised population objective
rε(ω) := r(ω) + ε

2‖ω̂0−ω‖22 as well as one of its minimiser ω?ε ∈ argminω rε(ω). The test error is then decomposed
as follows

EI [E[r(ω̂I)]]−min
ω
r(ω)

= EI [E[r(ω̂I)−R(ω̂I)]] + E[EI [R(ω̂I)]−R(ω̂?ε )] + E[R(ω̂?ε )]− rε(ω?ε ) + rε(ω?ε )−min
ω
r(ω)

≤ max
k=1,...,t

{
E[r(ω̂k)−R(ω̂k)]}︸ ︷︷ ︸

Generalisation Error

+ E[EI [R(ω̂I)]−R(ω̂?ε )]︸ ︷︷ ︸
Term 1

+ E[R(ω̂?ε )]− rε(ω?ε ) + rε(ω?ε )−min
ω
r(ω)︸ ︷︷ ︸

Term 2

which has three terms. The Generalisation Error is bounded by Theorem 5 within Appendix B.3, since we
assume standard weak convexity. Note the Generalisation Error term above depends upon the maximum from
k = 1, . . . , t therefore, apply the bound within Theorem 1 for each instance k = 1, . . . , t and take the largest at
k = t. We now set out to bound Term 1 and Term 2, beginning with Term 1. To do so, we introduce the
following lemma which is proved in Section C.3.

Lemma 3 Suppose assumption 1 and 3 hold, ηs = η for all s ≥ 0 and ηβ ≤ 1/2. Then

EI [R(ω̂I)] = 1
t

t−1∑
s=0

R(ω̂s+1) ≤ R(ω̂?ε ) + ‖ω̂0 − ω̂?ε ‖22
2ηt + ε

2
1
t

t−1∑
s=0
‖ω̂s+1 − ω̂?ε ‖22

and ‖ω̂s+1 − ω̂0‖2 ≤
√

2ηs(R(ω̂0)−R(ω̂?)) for s ≥ 0.

Note for t−1 ≥ s ≥ 0 that the deviation ‖ω̂s+1− ω̂?ε ‖22 can be bounded by adding and subtracting the initialisation
ω̂0 and applying the upper bound on ‖ω̂s+1− ω̂0‖2 from Lemma 3. Specifically, using triangle inequality alongside
that (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R gives

‖ω̂s+1 − ω?ε ‖22 ≤ 2‖ω̂s+1 − ω̂0‖22 + 2‖ω̂0 − ω̂?ε ‖22
≤ 2
(
ηt(R(ω̂0)−R(ω̂?)) + 2‖ω̂0 − ω̂?ε ‖22.
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Combining this with the first part of Lemma 3 and taking expectation then gives the following upper bound for
Term 1

Term 1 ≤ E[‖ω0 − ω̂?ε ‖22]
2ηt + ε

(
ηtE[R(ω̂0)−R(ω̂?)] + E[‖ω̂0 − ω̂?ε ‖22]

)
.

To bound Term 2 begin by noting that we have the lower bound

rε(ω?ε ) = E[`(ω?ε , Z) + ε‖ω̂0 − ω?ε ‖22]

= E
[ 1
N

N∑
i=1

`(ω?ε , Zi) + ε‖ω̂0 − ω?ε ‖22
]

= E[R(ω?ε ) + ε‖ω̂0 − ω?ε ‖22]
≥ E[R(ω̂?ε ) + ε‖ω̂0 − ω̂?ε ‖22],

where we recall that ω̂?ε = argminω
(
R(ω) + ε‖ω̂0−ω‖22

)
. Moreover, note that we also have rε(ω?ε ) ≤ rε(ω?) where

ω? ∈ argminω r(ω). By adding and subtracting εE[‖ω̂0− ω̂?ε ‖22] and using these two facts then yields the following
upper bound on Term 2

Term 2 = E[R(ω̂?ε ) + ε‖ω̂0 − ω̂?ε ‖22]− rε(ω?ε )︸ ︷︷ ︸
≤0

+rε(ω?ε )− r(ω?)− εE[‖ω̂0 − ω̂?ε ‖22]

≤ rε(ω?ε )− r(ω?)− εE[‖ω̂0 − ω̂?ε ‖22]
≤ ε‖ω̂0 − ω?‖22 − εE[‖ω̂0 − ω̂?ε ‖22].

Bringing together the bounds for theGeneralisation Error, Term 1 andTerm 2 and noting that εE[‖ω̂0−ω̂?ε ‖22]
in Term 1 and Term 2 cancel, yields the result.

C.2 Proof of Optimisation and Approximation Error Bounds under Generalised Weak
Convexity (Proposition 1)

In this section we present the proof of Proposition 1. Following the proof of Theorem 2 in the previous section,
we begin with the following decomposition of the Optimisation & Approximation Error. Specifically, for
ω̃ ∈ X

EI [E[R(ω̂I ]]− r(ω?)︸ ︷︷ ︸
Opt. & Approx. Error

= E[EI [R(ω̂I)]−R(ω̃)]︸ ︷︷ ︸
Term 1

+ E[R(ω̃)]− r(ω?)︸ ︷︷ ︸
Term 2

.

Where we have labelled the Term 1 and Term 2. We now proceed to bound Term 1. To do so we will use the
following lemma, which is a generalisation of Lemma 3 given previously.

Lemma 4 Suppose assumption 1 and 5 hold, ηs = η for s ≥ 0 and ηβ ≤ 1/2. Furthermore suppose that ω̂s ∈ X
for s ≥ 0. Then for ω̃ ∈ X we have

EI [R(ω̂I)] = 1
t

t−1∑
s=0

R(ω̂s+1) ≤ R(ω̃) + ‖ω̂0 − ω̃‖22
2ηt + 1

2
1
t

t−1∑
s=0

GX (ω̃ − ω̂s+1)

and ‖ω̂s+1 − ω̂0‖2 ≤
√

2ηs(R(ω̂0)−R(ω̂?)) for s ≥ 0.

Plugging the bound from the first part of Lemma 4 and taking expectation gives the result.

C.3 Proof of Lemma 3 and 4

In this section we provide the proof of both Lemma 3 and 4. We note that Lemma 4 holds under a weaker
assumption than Lemma 3. We therefore begin with the proof of Lemma 4, with the proof of Lemma 3 given
after.
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Proof 3 (Lemma 4) Recall that R(·) is β-smooth, and therefore, using smoothness and the first iteration of
gradient descent for s ≥ 0 i.e. ω̂s+1 = ω̂s − η∇R(ω̂s) we get

R(ω̂s+1) ≤ R(ω̂s) + 〈∇R(ω̂s), ω̂s+1 − ω̂s〉+ β

2 ‖ω̂s+1 − ω̂s‖22

= R(ω̂s)− η‖∇R(ω̂s)‖22 + η2β

2 ‖∇R(ω̂s)‖22

≤ R(ω̂s)−
η

2‖∇R(ω̂s)‖22 (8)

where at the end we used that ηβ ≤ 1. We now wish to upper bound R(ω̂s), for which we will use our Assumption
5. In particular, let us define the function for α ∈ [0, 1] as

g(α) = R(ω̂s + α(ω̃ − ω̂s)) + α2

2 GX (ω̃ − ω̂s).

Differentiating with respect to α twice we get

g′(α) = (ω̃ − ω̂s)>∇R(ω̂s + α(ω̃ − ω̂s)) + αGX (ω̃ − ω̂s)
g′′(α) = (ω̃ − ω̂t)>∇2R(ω̂s + α(ω̃ − ω̂s))(ω̃ − ω̂s) +GX (ω̃ − ω̂s).

Observe that g′′(α) ≥ 0 for α ∈ [0, 1] from Assumption 5. That is ω̂s + α(ω̃ − ω̂s) ∈ X , since both ω̂s, ω̃ ∈ X and
therefore so is the linear combination (1− α)ω̂s + αω̃ provided α ∈ [0, 1] by the convexity of the set X . Since g(α)
is convex on α ∈ [0, 1] we then have the inequality g(0) ≤ g(1)− g′(0). Plugging in the definition of g(·) into this
then gives

R(ω̂s) ≤ R(ω̃) + 1
2GX (ω̃ − ω̂s)− (ω̃ − ω̂s)>∇R(ω̂s).

Using this upper bound with (8) and following the standard steps for proving the convergence of gradient descent
yields

R(ω̂s+1) ≤ R(ω̃) +∇R(ω̂s)>(ω̂s − ω̃)− η

2‖∇R(ω̂s)‖22 + 1
2GX (ω̃ − ω̂s)

= R(ω̃) + 1
η

(
ω̂s − ω̂s+1

)>(ω̂s − ω̃)− 1
2η ‖ω̂s+1 − ω̂s‖22 + 1

2GX (ω̃ − ω̂s)

= R(ω̃) + 1
2η
(
‖ω̂s − ω̃‖22 − ‖ω̂s+1 − ω̃‖22

)
+ 1

2GX (ω̃ − ω̂s).

Summing up this bound for s = 0, . . . , t− 1 and diving by t gives

EI [R(ωI)] = 1
t

t−1∑
s=0

R(ω̂s+1) ≤ R(ω̃) + ‖ω̂0 − ω̃‖22
2ηt + 1

2
1
t

t−1∑
s=0

GX (ω̃ − ω̂s+1),

which proves the first part of the lemma. To show the second part of the lemma, upper bounding ‖ω̂s − ω̂0‖2, we
look back to (8). Recalling that η∇R(ω̂s) = ω̂s − ω̂s+1, and rearranging we get the upper bound

‖ω̂s+1 − ω̂s‖22 ≤ 2η
(
R(ω̂s)−R(ω̂s+1)

)
.

Summing up both sides yields
t−1∑
s=0
‖ω̂s+1 − ω̂s‖22 ≤ η

(
R(ω̂0)−R(ω̂t)

)
≤ η

(
R(ω̂0)−R(ω̂?)

)
,

where we have plugged in a minimiser ω̂? ∈ argminω R(ω). Note that convexity of the squared norm ‖ · ‖22 gives us
the lower bound 1

t

∑t
s=0 ‖ω̂s+1 − ω̂s‖22 ≥ ‖ 1

t

∑t
s=0 ω̂s+1 − ω̂s‖22 = 1

t2 ‖ω̂t+1 − ω̂0‖22. Using this to lower bound the
right hand side of the above when multiplying then proves the second part of the lemma.

We now proceed to the present the proof of Lemma 3, which come as an application of Lemma 4.

Proof 4 (Lemma 3) Note Assumption 3 implies Assumption 5 with X = Rp and GX (u) = ε‖u‖22. Plugging in
the bound from Lemma 4 immediately yields the result.
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D Proof of Results for Two and Three Layer Neural Networks

In this section we present proofs of the result within Section 4 as well as Theorem 4 from Appendix A. Recall that
we consider the supervised learning setting described within Section 4.1 where the loss function is a composition
of a function g : R× R→ R, which is convex and smooth in its first argument g(·, y) : R→ R for any y ∈ R, as
well as a prediction function parameterised by ω ∈ Rp such that f(·, ω) : Rd → R. For an observation Z = (x, y)
the loss function is then `(ω,Z) = g(f(x, ω), y).

Recall the minimum Eigenvalue of a matrix can be defined as the minimum quadratic form with vectors on a unit
ball i.e. for A ∈ Rp×p the quantity minu∈Rp ‖u‖2=1 u

>Au (see for instance Section 6.1.1 in (Wainwright, 2019)).
Therefore, we are focused on lower bounding quadratic forms of the empirical risk Hessian i.e. u>∇2R(ω)u with
u ∈ Rp. It will therefore be convenient to write out the gradient and Hessian of the empirical risk in this case

∇R(ω) = 1
N

N∑
i=1

g′(f(xi, ω), yi)∇f(xi, ω)

∇2R(ω) = 1
N

N∑
i=1

g′′(f(xi, ω), yi)∇f(xi, ω)f(xi, ω)> + 1
N

N∑
i=1

g′(f(xi, ω), yi)∇2f(xi, ω).

Moreover, note for u ∈ Rp the quadratic form of the Hessian then decomposes as

u>∇2R(ω)u = 1
N

N∑
i=1

g′′(f(xi, ω), yi)〈u,∇f(xi, ω)〉2︸ ︷︷ ︸
≥0

+ 1
N

N∑
i=1

g′(f(xi, ω), yi)u>∇2f(xi, ω)u. (9)

Since the first quantity above is non-negative, to lower bound the quadratic form u>∇2R(ω)u it is sufficient to
lower bound the second term only.

The remainder of this section is then as follows. Section D.1 presents the proof of Theorem 3 which considers
the minimum Eigenvalue of the empirical risk in the case of a two layer neural network. Section D.2 presents
the proof of Theorem 6 which considers a three layer neural network when both the first and third layers are
optimised.

D.1 Bounding Empirical Risk Hessian Minimum Eigenvalue for a Two Layer Neural Network
(Theorem 3)

Recall Section 4, where the prediction function is a two layer neural network. This is defined for width
M ≥ 1 and scaling 1/2 ≤ c ≤ 1 as f(x, ω) := 1

Mc

∑M
j=1 vjσ(〈Aj , x〉). The parameter is then the concatenation

ω = (A, v) ∈ RdM+M where the first layer A ∈ RM×d has been vectorised in a row-major manner. For a
parameter ω and input x ∈ Rd the gradient and Hessian of the prediction function are, respectively, a vector
∇f(x, ω) ∈ RMd+M and matrix ∇2f(x, ω) ∈ R(Md+M)×(Md+M). We now go on to calculate these quantities,
noting for k = 1, . . . , d that the kth co-ordinate of the input x will be denoted (x)k.

Let us decompose co-ordinates of the gradient (∇f(x))i for i = 1, . . . ,Md+M into two parts associated to the
first and second layer. Specifically, for the first layer consider i = (j − 1)d+ k with j = 1, . . . ,M and k = 1, . . . , d.
With this indexing, the ith co-ordinate aligns with the gradient of the jth neuron and kth input, which is

(∇f(x, ω))i = ∂f(x, ω)
∂Ajk

= 1
M c

vjσ
′(〈Aj , x〉)(x)k.

Meanwhile, for the second layer consider i = Md+ k with k = 1, . . . ,M . The ith co-ordinate then aligns with the
gradient of the kth weight in the second layer, which is

(∇f(x, ω))i = ∂f(x, ω)
∂vk

= 1
M c

σ(〈Ak, x〉).

Let us now decompose the entries of the Hessian (∇2f(x, ω))i` for i, ` = 1, . . . ,Md+M into three parts associated
to the second derivative of the first layer only, second derivative of the second layer only, and the derivative with
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respect to both the first and second layers. Specifically, for the second derivative with respect to the first layer
consider ` = (j̃ − 1)d + k̃ and i = (j − 1)d + k with j, j̃ = 1, . . . ,M and k, k̃ = 1, . . . , d. For these indices the
Hessian is

(∇2f(x, ω))i` = ∂2f(x, ω)
∂Ajk∂Aj̃k̃

=
{

1
Mc vjσ

′′(〈Aj , x〉)(x)k(x)
k̃

if j = j̃

0 otherwise
.

For the second derivative with respect to the second layer, consider the indices i = Md+ j and ` = Md+ j̃ with
j, j̃ = 1, . . . ,M . For these indices Hessian is

(∇2f(x, ω))i` = f(x, ω)
∂vj∂ṽj

= 0.

Finally, for the derivative with respect to the first and second layers consider the indicies i = (j − 1)d+ k and
` = Md+ j̃ with j, j̃ = 1, . . . ,M and k = 1, . . . , d. For these indices the Hessian is

(∇2f(x, ω))i` = ∂2f(x, ω)
∂Ajk∂ṽj

=
{

1
Mcσ

′(〈Aj , x〉)(x)k if j = j̃

0 Otherwise
.

Now let the vector u ∈ RMd+M have unit norm ‖u‖2 = 1 and be composed in a manner matching the parameter
ω = (A, v) so that u = (A(u), v(u)) where A(u) ∈ RM×d has been vectorised in a row-major manner and
u(v) ∈ RM . Following the previous definitions, the quadratic form of the prediction function Hessian is

u>∇2f(x, ω)u =
M∑

j̃,j=1

d∑
k,̃k=1

A(u)jkA(u)̃
jk̃

∂2f(x, ω)
∂Ajk∂Aj̃k̃

+ 2
M∑

j,̃j=1

d∑
k=1

A(u)jkv(u)̃
j

∂2f(x, ω)
∂Ajk∂ṽj

+
M∑

j,̃j=1

v(u)jv(u)̃
j

∂2f(x, ω)
∂vj∂ṽj

= 1
M c

M∑
j=1

vjσ
′′(〈Aj , x〉)〈x,A(u)j〉2 + 2 1

M c

M∑
j=1

v(u)jσ′(〈Aj , x〉)〈x,A(u)j〉.

Let us now lower bound the quadratic form of the empirical risk’s Hessian u>∇2R(ω)u, and thus, the minimum
Eigenvalue. Recall the discussion around equation (9), in that the first term in the decomposition of the quadratic
form u>∇2R(ω)u is non-negative. Utilising this and plugging in the above gives the following lower bound

u>∇2R(ω)u ≥ 1
N

N∑
i=1

g′(f(xi, ω), yi)u>∇2f(xi, ω)u

= 1
M c

1
N

N∑
i=1

g′(f(xi, ω), yi)
M∑
j=1

vjσ
′′(〈Aj , xi〉)〈xi, A(u)j〉2

+ 2 1
M c

1
N

N∑
i=1

g′(f(xi, ω), yi)
M∑
j=1

v(u)jσ′(〈Aj , xi〉)〈xi, A(u)j〉. (10)

We now set to lower bound each of the terms in (10). For the first term note we have, using upper bounds on the
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derivative of g as well as the activation σ, the lower bound

1
M c

1
N

N∑
i=1

g′(f(xi, ω), yi)
M∑
j=1

vjσ
′′(〈Aj , xi〉)〈xi, A(u)j〉2

≥ − 1
M c

1
N

N∑
i=1

M∑
j=1
|g′(f(xi, A), yi)vjσ′′(〈Aj , xi〉)|〈xi, A(u)j〉2

≥ −Lg
′Lσ′′‖v‖∞
M c

1
N

N∑
i=1

M∑
j=1
〈xi, A(u)j〉2

= −Lg
′Lσ′′‖v‖∞
M c

M∑
j=1

A(u)>j
( 1
N

N∑
i=1

xix
>
i

)
A(u)j

≥ −Lg
′Lσ′′‖v‖∞
M c

‖Σ̂‖2
M∑
j=1
‖A(u)j‖22

Let us now consider the second term in (10). Bringing out the summation over j = 1 . . . ,M and using
Cauchy-Schwarz we get

1
N

N∑
i=1

g′(f(xi, ω), yi)
M∑
j=1

v(u)jσ′(〈Aj , xi〉)〈xi, A(u)j〉

=
M∑
j=1

v(u)j
1
N

N∑
i=1

g′(f(xi, ω), yi)σ′(〈Aj , xi〉)〈xi, A(u)j〉

≥ −
∣∣∣ M∑
j=1

v(u)j
1
N

N∑
i=1

g′(f(xi, ω), yi)σ′(〈Aj , xi〉)〈xi, A(u)j〉
∣∣∣

≥ −

√√√√ M∑
j=1

v(u)2
j

√√√√ M∑
j=1

( 1
N

N∑
i=1

g′(f(xi, ω), yi)σ′(〈Aj , xi〉)〈xi, A(u)j〉
)2

≥ −

√√√√ M∑
j=1

v(u)2
j

√√√√ M∑
j=1

1
N

N∑
i=1

(
g′(f(xi, ω), yi)σ′(〈Aj , xi〉)

)2〈xi, A(u)j〉2

≥ −Lσ′Lg′

√√√√ M∑
j=1

v(u)2
j

√√√√ M∑
j=1

1
N

N∑
i=1
〈xi, A(u)j〉2

≥ −Lσ′Lg′

√√√√ M∑
j=1

v(u)2
j

√
‖Σ̂‖2

√√√√ M∑
j=1
‖A(u)j‖22

where we note some key steps within the above calculation. The third inequality arises from convexity of the
squared function. Meanwhile the fourth inequality follows from the steps to bound the first term. Plugging each
of these bounds in (10) then immediately yields the lower bound

u>R(ω)u ≥ −Lg
′Lσ′′‖Σ̂‖2‖v‖∞

M c

M∑
j=1
‖A(u)j‖22 − 2

Lσ′Lg′
√
‖Σ̂‖2

M c
‖v(u)‖2

√√√√ M∑
j=1
‖A(u)j‖22

≥ −Lg
′Lσ′′‖Σ̂‖2‖v‖∞

M c
− 2

Lσ′Lg′
√
‖Σ̂‖2

M c
,

where at the end we used that ‖u‖22 = ‖v(u)‖22 +
∑M
j=1 ‖A(u)j‖22 = 1. This is then a lower bound on the minimum

Eigenvalue, as required.
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D.2 Bounding Empirical Risk Hessian Minimum Eigenvalue for a Three Layer Neural Network

In this section we provide a lower bound on the minimum Eigenvalue of the empirical risk Hessian when the
prediction function is a three layer neural network. Specifically, for M1,M2 ≥ 1 and 1/2 ≤ c ≤ 1 the prediction
function takes the form

f(x, ω) = 1
M c

2

M2∑
i=1

viσ
( 1
M c

1

M1∑
s=1

A
(2)
is 〈A

(1)
s , x〉

)
, (11)

where we have denoted the first layer of weights A(1) ∈ RM1×d, the second layer of weights A(2) ∈ RM2×M1

and third layer of weights v ∈ RM2 . The first activation is linear, while the second activation is more generally
σ : R→ R. We consider the setting in which we only optimise the first and third set of weights, and thus, the
parameter will be the concatenation ω = (A(1), v) ∈ RM1d+M2 where the first layer of weights A(1) have been
vectorised in a row-major manner. It will also be convenient to denote the empirical covariance of the second
layer Σ̂A(2) := 1

M2
(A(2))>A(2). The following theorem then presents the lower bound on the minimum Eigenvalue

in this case.

Theorem 6 Consider the loss function as in Section 4.1 with three layer neural network prediction function
(11). Suppose the activation σ has first and second derivative bounded by Lσ′ and Lσ′′ respectively. Moreover,
suppose the function g has bounded derivative |g′(ỹ, y)| < Lg′ . Then with ω = (A(1), v)

∇2R(ω) � −
(
Lσ′′Lg′

‖Σ̂‖2‖Σ̂A(2)‖2
M2c

1 M c−1
2

‖v‖∞ + 2Lg′Lσ′

√
‖Σ̂‖2‖Σ̂A(2)‖2
M

c−1/2
2 M c

1

)
I.

We now briefly discuss the above theorem, with the proof presented thereafter. We note that the lower bound
in Theorem 6 now scales with the product of layer widths i.e. M2c

1 M c−1
2 and M c−1/2

2 M c
1 . Let us then suppose

that each layer is the same width so M1 = M2 = M , the spectral norm of the second layer’s empirical covariance
‖Σ̂A(2)‖2 is constant and the third layer remains bounded ‖v‖∞. In this case the bound is then O(1/(M2c−1/2)).
In contrast, the bound for a two layer neural network presented in Theorem 3 is O(1/M c). The lower bounds are
then the same order for c = 1/2, while for c > 1/2, the three layer neural network case is smaller. We now give
the proof of Theorem 6.

Proof 5 (Theorem 6) In a similar manner to the proof of Theorem 3, let us begin by defining the gradient and
Hessian of the prediction function with respect to the parameter ω. In this case they are, respectively, a vector
∇f(x, ω) ∈ RM1d+M2 and matrix ∇2f(x, ω) ∈ R(M1d+M2)×(M1d+M2).

Once again split the co-ordinates of the gradient (∇f(x, ω))i for i = 1, . . . ,M1d+M2 into two parts associated to
the first and third layers. For the first layer, consider i = (j − 1)d+ k with j = 1, . . . ,M1 and k = 1, . . . , d. This
aligns with the gradient of the jth neuron in the first layer and kth input, which is

(∇f(x, ω))i = ∂f(x, ω)
∂A

(1)
jk

= 1
M c

2

M2∑
i=1

viσ
′
( 1
M c

1

M1∑
s=1

A
(2)
is 〈A

(1)
s , x〉

)A(2)
ij

M c
1

(x)k.

For the third layer consider i = M1d+ k with k = 1, . . . ,M2. This aligns with the gradient of the kth weight in
the third layer, which is

(∇f(x, ω))i = ∂f(x, ω)
∂vk

= 1
M c

2
σ
( 1
M c

1

M1∑
s=1

A
(2)
ks 〈A

(1)
s , x〉

)
.

Let us now decompose the entries of the Hessian (∇2f(x, ω))i` for i, ` = 1, . . . ,M1d+M2 into three parts associated
to the second derivative of the first layer only, second derivative of the third layer only, and the derivative with
respect to the first and third layer. For the second deriative of the first layer consider the indices i = (j − 1)d+ k

and ` = (j̃ − 1)d+ k̃ with j, j̃ = 1, . . . ,M1 and k, k̃ = 1, . . . , d. For these indices the Hessian is

(∇2f(x, ω))i` := ∂2f(x, ω)
∂A

(1)
jk ∂A

(1)
j̃k̃

= 1
M c

2

M2∑
i=1

viσ
′′
( 1
M c

1

M1∑
s=1

A
(2)
is 〈As, x〉

)A(2)
ij

M c
1

A
(2)
ĩj

M c
1

(x)k(x)
k̃
.
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Meanwhile for the Hessian with respect to the third layer consider the indices i = M1d+ k and ` = M1d+ k̃ with
k, k̃ = 1, . . . ,M2. The Hessian in this case is then

(∇2f(x, ω))i` := ∂2f(x, ω)
∂vk∂vk̃

= 0.

Finally, for the derivative with respect to the first and third layers consider the indices i = (j − 1)d + k and
` = M1d+ k̃ with j = 1, . . . ,M1 and k = 1, . . . , d and k̃ = 1, . . . ,M2. The Hessian in this case is then

(∇2f(x, ω))i` := ∂2f(x, ω)
∂A

(1)
jk ∂vk̃

= 1
M c

2
σ′
( 1
M c

1

M1∑
s=1

A
(2)
k̃s
〈A(1)

s , x〉
)A(2)

k̃j

M c
1

(x)k.

Let the vector u ∈ RM1d+M2 have unit norm ‖u‖2 = 1 and be composed in a manner matching the parameter
ω = (A(1), v), so that u = (A(1)(u), v(u)) where A(1)(u) ∈ RM1×d has been vectorised in a row-major manner and
v(u) ∈ RM2 . Following the previous definitions, the quadratic form of the prediction function Hessian then takes
the form

u>∇2f(x, ω)u =
M1∑
j,̃j=1

d∑
k,̃k=1

A(1)(u)jkA(1)(u)̃
jk̃

∂2f(x, ω)
∂A

(1)
jk ∂A

(1)
j̃k̃

+ 2
M1∑
j=1

d∑
k=1

M2∑
k̃=1

A(1)(u)jkv(u)
k̃

∂2f(x, ω)
∂A

(1)
jk ∂vk̃

+
M2∑
k,̃k=1

v(u)kv(u)
k̃

∂2f(x, ω)
∂vk∂vk̃

=
M1∑
j,̃j=1

1
M c

2

M2∑
i=1

viσ
′′
( 1
M c

1

M1∑
s=1

A
(2)
is 〈A

(1)
s , x〉

)A(2)
ij

M c
1

A
(2)
ĩj

M c
1
〈A(1)(u)j , x〉〈A(1)(u)̃

j
, x〉

+ 2
M1∑
j=1

M2∑
k̃=1

v(u)
k̃

1
M c

2
σ′
( 1
M c

1

M1∑
s=1

A
(2)
k̃s
〈A(1)

s , x〉
)A(2)

k̃j

M c
1
〈x,A(1)(u)j〉

= 1
M c

2

M2∑
i=1

viσ
′′
( 1
M c

1

M1∑
s=1

A
(2)
is 〈A

(1)
s , x〉

) 1
M2c

1

〈 M1∑
j=1

A
(2)
ij A

(1)(u)j , x
〉2

+ 2
M2∑
k̃=1

v(u)
k̃

1
M c

2
σ′
( 1
M c

1

M1∑
s=1

A
(2)
k̃s
〈A(1)

s , x〉
) 1
M c

1

〈
x,

M∑
j=1

A
(2)
k̃j
A(1)(u)j

〉
where on the second equality we have taken the summation over j, j̃ = 1, . . . ,M inside the inner products. We now
set to lower bound the quadratic form involving the empirical risk Hessian u>∇2R(ω)u, and thus, the minimum
Eigenvalue. Recalling the discussion around equation (9) and plugging in the above we get

u>∇2R(ω)u

≥ 1
N

N∑
`=1

g′(f(x`, ω), y`)u>∇2f(x`, ω)u

= 1
N

N∑
`=1

g′(f(x`, ω), y`)
1
M c

2

M2∑
i=1

viσ
′′
( 1
M c

1

M1∑
s=1

A
(2)
is 〈A

(1)
s , x`〉

) 1
M2c

1

〈 M1∑
j=1

A
(2)
ij A

(1)(u)j , x`
〉2

︸ ︷︷ ︸
=:Term 1

+ 2 1
N

N∑
`=1

g′(f(x`, ω), y`)
M2∑
k̃=1

v(u)
k̃

1
M c

2
σ′
( 1
M c

1

M1∑
s=1

A
(2)
k̃s
〈A(1)

s , x`〉
) 1
M c

1

〈
x`,

M∑
j=1

A
(2)
k̃j
A(1)(u)j

〉
︸ ︷︷ ︸

=:Term 2

.

Which has then been decomposed into two components labelled Term 1 and Term 2, each of which will now be
lower bounded separately. For Term 1, aligning with the Hessian of the first layer, we get using the upper bound
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on the gradient of g i.e |g′(·, y)| ≤ Lg′ and the activation |σ′′(·)| ≤ Lσ′′

Term 1 ≥ −Lg
′Lσ′′‖v‖∞
M c

2

1
N

1
M2c

1

N∑
`=1

M2∑
i=1

〈 M1∑
j=1

A
(2)
ij A

(1)(u)j , x`
〉2

Meanwhile, for Term 2 bring out the sum over k̃ = 1, . . . ,M2 and apply Cauchy-Schwarz to get

Term 2

=
M2∑
k̃=1

v(u)
k̃

1
N

N∑
`=1

g′(f(x`, ω), y`)
1
M c

2
σ′
( 1
M c

1

M1∑
s=1

A
(2)
k̃s
〈A(1)

s , x`〉
) 1
M c

1

〈
x`,

M1∑
j=1

A
(2)
k̃j
A(1)(u)j

〉

≥−

√√√√√M2∑
k̃=1

v(u)2
k̃

√√√√√M2∑
k̃=1

( 1
N

N∑
`=1

g′(f(x`, ω), y`)
1
M c

2
σ′
( 1
M c

1

M1∑
s=1

A
(2)
k̃s
〈A(1)

s , x`〉
) 1
M c

1

〈
x`,

M∑
j=1

A
(2)
k̃j
A(1)(u)j

〉)2

≥ −Lg
′Lσ′

M c
2M

c
1

√√√√√M2∑
k̃=1

v(u)2
k̃

√√√√√M2∑
k̃=1

1
N

N∑
`=1

〈
x`,

M1∑
j=1

A
(2)
k̃j
A(1)(u)j

〉2
.

Where for the second inequality we have followed a similar set of steps to those within the proof of Theorem 3. In
particular, we applied convexity of x→ x2 as well as the upper bounds on the gradient of g and the activation σ.
We are now left to upper bound the quantity 1

N

∑N
`=1
∑M2
i=1

〈∑M1
j=1A

(2)
ij A

(1)(u)j , x`
〉2

which appears within the
bounds for both Term 1 and Term 2. To bound this quantity, let us rewrite the summation as a vector matrix
multiplication so

∑M1
j=1A

(2)
ij A

(1)(u)j = A
(2)
i A(1)(u) where A(2)

i is the ith row of A(2). Normalising by M2, we note
this quantity can be bounded in terms of the spectral norm of the empirical covariance ‖Σ̂‖2 and covariance of the
second layer ‖Σ̂A(2)‖2. Specifically,

1
M2

1
N

N∑
`=1

M2∑
i=1

〈 M1∑
j=1

A
(2)
ij A

(1)(u)j , x`
〉2

= 1
M2

M2∑
i=1

(
A

(2)
i A(1)(u)

)> ( 1
N

N∑
`=1

x`x
>
`

)
︸ ︷︷ ︸

Σ̂

(
A

(2)
i A(1)(u)

)

≤ ‖Σ̂‖2
1
M2

M2∑
i=1
‖A(2)

i A(1)(u)‖22

= ‖Σ̂‖2
1
M2

M2∑
i=1

Tr
(
A

(2)
i A(1)(u)

(
A(1)(u)

)>(
A

(2)
i

)>)
= ‖Σ̂‖2 Tr

(
A(1)(u)

(
A(1)(u)

)> ( 1
M2

M2∑
i=1

(
A

(2)
i

)>
A

(2)
i

)
︸ ︷︷ ︸

Σ̂
A(2)

)

≤ ‖Σ̂‖2‖Σ̂A(2)‖2‖A(1)(u)‖2F

The final lower bound is then arrived at by using the above to lower bound Term 1 and Term 2 and recalling
that ‖u‖22 = ‖v(u)‖22 + ‖A(1)(u)‖2F = 1.

D.3 Bounding Optimisation and Generalisation Error for a Two Layer Neural Network
(Theorem 4)

In this section we present the proof of Theorem 4 from Appendix A.2. The proof proceeds in two steps. The
first step is to apply Proposition 1 from Appendix A.1 to bound the Opt. & Approx. Error. The second step
involves utilising the structure of GC(·) to decouple the place holder ω̃ and the iterates of gradient descent ω̂s.
Each of these steps will, respectively, be included in the following paragraphs Applying Proposition 1 and
Decoupling Gradient Descent Iterates.
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Applying Proposition 1 To applying Proposition 1 we require showing two conditions: Assumption 5 holds for
the set XLv and function GC(·) described in Section A.2; and the iterates of gradient descent to remain within
the set ω̂s ∈ XLv for s ≥ 0. Let us begin with the first of these conditions.

To ensure Assumption 5 holds we must lower bound the quadratic form u>∇2R(ω)u ≥ −GC(u) for ω ∈ XLv and
u ∈ RMd+M . To this end, let us recall the steps in the proof of Theorem 3 in Appendix D.1. Specifically, looking
to equation (10) where we have for u = (A(u), v(u)) ∈ RMd+M a lower bound on the quadratic form u>∇2R(ω)u
involving the sum of two terms. For the first term simply consider the lower bound presented within Theorem 3
which is −Lg′Lσ′′‖Σ̂‖2‖v‖∞‖A(u)‖2F /M c. For the second term note it can be lower bounded

2 1
M c

1
N

N∑
i=1

g′(f(xi, ω), yi)
M∑
j=1

v(u)jσ′(〈Aj , xi〉)〈xi, A(u)j〉

≥ −2Lg
′

M c

1
N

N∑
i=1

∣∣∣〈 M∑
j=1

v(u)jσ′(〈Aj , xi〉)A(u)j , xi
〉∣∣∣

= −2Lg
′

M c

1
N

N∑
i=1

∣∣∣〈 M∑
j=1

v(u)jσ′(〈Aj , xi〉)A(u)j , xi
〉∣∣∣

≥ −2Lg
′

M c

1
N

N∑
i=1

∥∥∥ M∑
j=1

v(u)jσ′(〈Aj , xi〉)A(u)j
∥∥∥

2
‖xi‖2

where at the end we applied Hölders inequality. Furthermore, if we denote the vector α ∈ RM such that
α` = σ′(〈Al, xi〉) for ` = 1, . . . ,M , note we can rewrite

∑M
j=1 v(u)jσ′(〈Aj , xi〉)A(u)j = A(u)>Diag(α)v(u).

Since the activation σ has derivative bounded by Lσ′ we then have αi/Lσ′ ∈ [−1, 1] and the upper bound∥∥A(u)>Diag(α)v(u)
∥∥

2 ≤ Lσ′ max‖z‖∞≤1
∥∥A(u)>Diag(z)v(u)

∥∥
2. Combined with the upper bound on the covariates

1
N

∑N
i=1 ‖xi‖2 ≤

1
N

√
N
√∑N

i=1 ‖xi‖22 =
√

Tr
(
Σ̂), we get the lower bound

2 1
M c

1
N

N∑
i=1

g′(f(xi, ω), yi)
M∑
j=1

v(u)jσ′(〈Aj , xi〉)〈xi, A(u)j〉

≥ −2
Lg′Lσ′

√
Tr
(
Σ̂
)

M c
max
‖z‖∞≤1

∥∥A(u)>Diag(z)v(u)
∥∥

2.

Bringing together the bounds on the two terms yields

u>∇2R(ω)u ≥ −Lg
′Lσ′′‖Σ̂‖2
M c

‖v‖∞‖A(u)‖2F − 2
Lg′Lσ′

√
Tr
(
Σ̂
)

M c
max
‖z‖∞≤1

∥∥∥A(u)>Diag(z)v(u)
∥∥∥

2
.

We then see that Assumption 5 is satisfied with XLv and GC(·) provided C ≥ 2Lg′
[(
Lσ′
√

Tr
(
Σ̂
))
∨(Lσ′′Lv‖Σ̂‖2)

]
.

Let us now ensure the iterates of gradient descent remain within the set XLv . To do so we must consider the
infinity norm of the second layer throughout training. Let the gradient descent iterates be denoted as ω̂s = (As, vs)
for s ≥ 0 where As ∈ RM×d has been vectorised in a row-major manner. Plugging in the definition of the
empirical risk gradient, the second layer is updated for s ≥ 0 as

vs+1
k = vsk − η

1
N

N∑
i=1

g′(f(xi, ω), yi)
1
M c

σ(〈Ak, xi〉).

Using the upper bound on the derivative |g′(·)| ≤ Lg′ as well as the activation |σ(·)| ≤ Lσ we get ‖vs+1‖∞ ≤
‖vs‖∞ + ηLg′Lσ

Mc ≤ ‖v0‖∞ + ηtLg′Lσ
Mc . Therefore, we can ensure ω̂s ∈ XLv for t ≥ s ≥ 0 if Lv ≥ ‖v0‖∞ + ηtLg′Lσ

Mc .
We can now apply Proposition 1, to upper bound the Opt & Approx. Error.

Decoupling Gradient Descent Iterates: Given the upper bound presented within Proposition 1, we must
now decoupling the iterates of gradient descent ω̂s and the placeholder ω̃ within the Approximation Error,
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specifically GC(ω̃ − ω̂s). We will, in short, add and subtract the initialisation of gradient descent ω̂0 and apply
triangle inequality a number of times. Let us denote the placeholder ω̃ = (Ã, ṽ) where Ã ∈ RM×d has been
vectorised in a row-major manner and the second layer of weights is ṽ ∈ RM . For a general ω = (A, v) and
ω̂0 = (A0, v0), we then get when adding and subtracting A0 inside the Frobeinus norm to get

GC(ω̃ − ω) ≤ 2C
M c
‖Ã−A0‖2F + 2C

M c
‖A0 −A‖2F

+ C

M c
max
‖z‖∞≤1

∥∥(Ã−A)>Diag(z)(ṽ − v)
∥∥

2.

We now consider the second term. Adding and subtracting A0 and v0 we get the following four terms∥∥(Ã−A)>Diag(z)(ṽ − v)
∥∥

2

≤
∥∥(Ã−A0)>Diag(z)(ṽ − v)

∥∥
2 +

∥∥(A0 −A)>Diag(z)(ṽ − v)
∥∥

2

≤
∥∥(Ã−A0)>Diag(z)(ṽ − v0)

∥∥
2 +

∥∥(Ã−A0)>Diag(z)(v0 − v)
∥∥

2

+
∥∥(A0 −A)>Diag(z)(ṽ − v0)

∥∥
2 +

∥∥(A0 −A)>Diag(z)(v0 − v)
∥∥

2.

The second, third and fourth terms can then be bounded as follows. The second term can be bounded∥∥(Ã−A0)>Diag(z)(v0 − v)
∥∥

2 ≤
∥∥(Ã−A0)>

∥∥
2‖Diag(z)‖2‖v0 − v‖2

≤ 1
2‖Ã−A

0‖2F + 1
2‖v

0 − v‖22

≤ 1
2‖Ã−A

0‖2F + 1
2‖ω̂0 − ω‖22

where we have used the following set of steps. The first inequality arises from using the consistency of matrix
norms to be break the product of matrices into operator norms. The second inequality follows from: noting
that ‖Diag(z)‖2 ≤ 1 since ‖z‖∞ ≤ 1; upper bounding the matrix `2 operator norm by the Frobenius norm; and
using young’s inequality to break apart the product of norms. The final inequality comes from simply adding the
co-ordinates associated to the first layer to the second term. Following a similar set of steps the fourth term can
be bounded

∥∥(A0 −A)>Diag(z)(v0 − v)
∥∥

2 ≤
1
2‖A

0 −A‖2F + 1
2‖v

0 − v‖22

= 1
2‖ω̂0 − ω‖22.

Meanwhile, the third term is bounded without applying Young’s inequality so∥∥∥(A0 −A)>Diag(z)(ṽ − v0)
∥∥∥

2
≤ ‖A0 −A‖F ‖ṽ − v0‖2

≤ ‖ω̂0 − ω‖2‖ṽ − v0‖2.

Bringing everything together we get the following upper bound on the function GC(ω̃ − u)

GC(ω̃ − ω) ≤ 3C
M c
‖ω̂0 − ω‖22

+ 3C
M c
‖Ã−A0‖2F + C

M c
‖ω̂0 − ω‖2‖ṽ − v0‖2

+ C

M c
max
‖z‖∞≤1

∥∥(Ã−A0)>Diag(z)(ṽ − v0)
∥∥

2.

We now utilise the above within the Approximation Error in Proposition 1. In particular, for s = 1, . . . , t pick
ω = ω̂s and sum up the above for s = 1, . . . , t. Utilising the bound ‖ω̂s − ω̂0‖2 ≤

√
2ηt(R(ω̂0)−R(ω̂?)) (See
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Lemma 4) then yields

1
t

t∑
s=1

GC(ω̃ − ω̂s) ≤
6Cηt(R(ω̂0)−R(ω̂?))

M c
+ 3C
M c
‖Ã−A0‖2F +

C
√

2ηt((R(ω̂0)−R(ω̂?))
M c

‖ṽ − v0‖2

+ C

M c
max
‖z‖∞≤1

∥∥(Ã−A0)>Diag(z)(ṽ − v0)
∥∥

2

≤ 6Cηt(R(ω̂0)−R(ω̂?))
M c

+
3C(

√
(R(ω̂0)−R(ω̂?)) ∨ 1)

M c

×
(
‖Ã−A0‖2F +

√
ηt‖ṽ − v0‖2 + max

‖z‖∞≤1

∥∥(Ã−A0)>Diag(z)(ṽ − v0)
∥∥

2

)
︸ ︷︷ ︸

H(ω̃−ω̂0)

where on the second inequality we simply pulled out the constant on the second term. Plugging into the
Approximation Error within Proposition 1, then yields

1
2

1
t

t∑
s=1

GC(ω̃ − ω̂s) +R(ω̃)− r(ω?) ≤ 3Cηt(R(ω̂0)−R(ω̂?))
M c

+
3C(

√
(R(ω̂0)−R(ω̂?)) ∨ 1)

M c
H(ω̃ − ω̂0) +R(ω̃)− r(ω?)

= 3Cηt(R(ω̂0)−R(ω̂?))
M c

+ λH(ω̃ − ω̂0) +R(ω̃)− r(ω?)

where we have defined λ = 3C(
√

(R(ω̂0)−R(ω̂?))∨1)
Mc . With a population risk minimiser ω? = (A?, v?), we recall that

Lv ≥ ‖v?‖∞ and thus, ω? ∈ XLv . Therefore, if we pick ω̃ = ω̂λ ∈ argminω∈XLv
{
R(ω) + λH(ω − ω̂0)

}
, the right

most quantity above can be upper bounded

λH(ω̃ − ω̂0) +R(ω̃)− r(ω?) ≤ λH(ω? − ω̂0) +R(ω?)− r(ω?).

Taking expectation and noting that E[R(ω?)] = r(ω?) yields the following bound on the Approximation Error

1
2

1
t

t∑
s=1

E[GC(ω̃ − ω̂s)] + E[R(ω̃)]− r(ω?) ≤ 3CηtE[R(ω̂0)−R(ω̂?)]
M c

+ E[λ]H(ω? − ω̂0).

The result is then arrived at by plugging the above into the bound presented within Proposition 1, and recalling
that ω̃ = ω̂λ.


