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Abstract

We study the learning performance of gradient
descent when the empirical risk is weakly con-
vex, namely, the smallest negative eigenvalue
of the empirical risk’s Hessian is bounded in
magnitude. By showing that this eigenvalue
can control the stability of gradient descent,
generalisation error bounds are proven that
hold under a wider range of step sizes com-
pared to previous work. Out of sample guar-
antees are then achieved by decomposing the
test error into generalisation, optimisation
and approximation errors, each of which can
be bounded and traded off with respect to
algorithmic parameters, sample size and mag-
nitude of this eigenvalue. In the case of a two
layer neural network, we demonstrate that
the empirical risk can satisfy a notion of lo-
cal weak convexity, specifically, the Hessian’s
smallest eigenvalue during training can be
controlled by the normalisation of the layers,
i.e., network scaling. This allows test error
guarantees to then be achieved when the pop-
ulation risk minimiser satisfies a complexity
assumption. By trading off the network com-
plexity and scaling, insights are gained into
the implicit bias of neural network scaling,
which are further supported by experimental
findings.

1 Introduction

A standard task in machine learning is to fit a model
on a collection of training data in order to predict some
future observations. With a loss function evaluating
the performance of a model on a single data point, a
popular technique is to choose a model that minimises
the empirical risk, i.e., the loss with respect to all of the
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training data, with a form of regularisation to control
model complexity and avoid over fitting. Due to the
complexity of modern models (e.g., neural networks),
many empirical risk problems encountered in practice
are non-convex, resulting in an optimisation problem
where finding a global minimizer is generally computa-
tionally infeasible. Naturally, this has motivated the
adoption of tractable methods that incrementally im-
prove the model utilising first order gradients of the
empirical risk. In the case of gradient descent, model
parameters are iteratively updated by taking a step in
the direction of the negative gradient, and there is a
source of implicit regularization controlled by algorith-
mic parameters such as the step size and number of
iterations.

A model’s predictive performance is often measured
by the population risk (i.e., expected loss on a new
data point), which can be decomposed into optimisa-
tion and generalisation errors (Bousquet and Bottoul,
2008). The optimisation error accounts for how well
the model minimises the empirical risk, and thus, de-
creases with iterations of gradient descent. Meanwhile,
the generalisation error accounts for the discrepancy
between the empirical and population risk, and thus,
intuitively increases with the iterations of gradient de-
scent as the model fits to noise within the training data.
Guarantees for the population risk are then achieved
by considering these two errors simultaneously and, in
our case, trading them off each other by choosing the
number of iterations and step size appropriately, i.e.,
early stopping.

The optimisation and generalisation errors for gradient
descent have been investigated under a variety of dif-
ferent structural assumptions on the loss function. For
the optimisation error a rich literature on convex opti-
misation can be leveraged, see for instance (Nesterov)
2013]), while a broader range of non-convex settings can
be considered that include weak convexity (Nurminskii,
1973) as well as the Polyak-f.ojasiewicz and quadratic
growth conditions (Karimi et all |[2016). Meanwhile for
the generalisation error, the technique of stability (De-
vroye and Wagnerl, 1979; [Bousquet and Elisseeft] |2002])
has been applied to variants of gradient descent in both
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the convex and non-convex settings (Hardt et al., 2016
Lin et al.l 2016a}; [Kuzborskij and Lampert| 2018; |Chen
et al.l [2018; [Madden et al., 2020) with differing degrees
of success. Specifically, although near-optimal rates
are achieved in the convex case, for general non-convex
losses restrictive step size conditions are currently re-
quired as bounds grow exponentially with the step size,
number of iterations and the loss’s smoothness (Hardt
et al., |2016; [Kuzborskij and Lampert], |2018; [Yuan et al.|
2019; Madden et al.| [2020). This is in contrast to appli-
cations with non-convex losses where gradient descent
is routinely applied with a variety of step sizes. One
possible explanation for this difference is that problems
encountered in typical applications are not arbitrarily
non-convex; rather, the curvature of losses involving
neural networks, as measured empirically by the Hes-
sian spectrum, can often be more benign (LeCun et al.|
2012} [Sagun et al.| 2016, |2017; [Yao et al., |2018; |Ghor{
bani et al., [2019; [Yuan et all 2019)). This leads to
the question of whether there are natural curvature
assumptions that yield improved generalisation error
bounds for gradient descent in the non-convex setting.

In this work we study the generalisation performance
of gradient descent on loss functions that satisfy a
notion of weak convexity (Nurminskii, [1973). The as-
sumption relates to the loss’s curvature as encoded by
the Hessian spectrum, specifically, the magnitude of
the most negative Eigenvalue. Our first main result
(Theorem (1)) shows that the magnitude of this Eigen-
value can control the stability of gradient descent, and
thus, the generalisation error. Precisely, provided the
magnitude of this Eigenvalue is sufficiently small with
respect to the step size and number of iterations, and
the sample size is sufficiently large, then generalisation
error bounds on the same order as the convex setting
hold with a wider range of step sizes than previously
known (Hardt et al., 2016} [Kuzborskij and Lampert],
2018)).

Building upon our first result, guarantees on the pop-
ulation risk for gradient descent with weakly convex
losses are then achieved by combining our generali-
sation error bounds with optimisation error bounds.
In short, we note that the objective is convex when
adding /s regularisation scaled by the magnitude of
the smallest negative Eigenvalue. Utilising this as a
proof device, the optimisation error becomes tractable
at the cost of an additional statistical bias, resulting
from the regularisation, which can be interpreted as an
approximation error. Our population risk bounds then
hold provided the approximation error is below the sta-
tistical precision, which then requires an assumption
on the complexity (as encoded by the ¢ norm) of a
population risk minimiser.

Utilising our population risk bounds, insights are then

gained into the influence of neural network scaling
on learning. Specifically, we consider a loss that is
the composition of a convex function and a two layer
neural network. The final layer of the network then
being scaled by a coefficient that is decreasing with the
network width to a polynomial power, allowing us to
interpolate between what are referred to as the kernel
(power 1/2 scaling) and mean field (power 1 scaling)
regimes (Chizat et al.|2019). By showing that the mag-
nitude of the Hessian’s smallest negative Eigenvalue
can be controlled by the network scaling, we show gradi-
ent descent can generalise provided the neural network
is sufficiently wide. In particular, this suggests that
wider networks with larger scalings are more stable,
and thus, can be trained for longer. Moreover, by trad-
ing off the complexity of the population risk minimiser
with the network scaling, we argue (theoretically and
empirically) that networks with larger scaling (higher
power) are biased to have weights with larger norms.
We now summarise our primary contributions.

e Generalisation Error Bound under Pointwise
Weak Convexity. Prove generalisation error
bounds for gradient descent with point wise weak
convexity (Assumption . When the weak convex-
ity parameter is small enough with respect to the
step size and number of iterations, and sample size
is sufficiently large, bounds hold under milder step
sizes conditions than in previous work (Hardt et al.l
2016 [Kuzborskij and Lampert}, 2018]) (Theorem .

e Test Error Bounds under Weak Convexity.
Prove test error bounds for gradient descent with
weak convexity (Assumption . When the weak con-
vexity parameter is small enough and the minimiser
of the population risk has small norm, bounds on
the same order of the convex setting are achieved.
(Theorem

e Influence of Neural Network Scaling. When
the loss is a composition of a convex function and
a neural network, we prove that the weak convexity
parameter is on the order of the network scaling.
Utilising this in conjunction with our theoretical re-
sults and empirical evidence, we argue that networks
with smaller scaling are biased towards weights with
larger norm (Section [4)).

The remainder of this work proceeds as follows. Section
[T summarises related works. Section Bl introduces the
setting we consider as well as the generalisation error
bounds. Section [3] presents bounds on the population
risk for gradient descent with weakly convex losses.
Section [ considers the particular case of two layer
neural networks.
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1.1 Related Work

In this section we discuss a number of related work.
For clarity, we adopt standard big O(:) notation so
a = O(b) if there is a constant ¢ > 0 independent of
dimension, sample size, iterations and stepsize such
that a < cb.

Learning with First Order Gradient Methods.
Guarantees on the population risk for gradient descent
typically fall into one of two categories: single-pass or
multi-pass. In the single-pass setting, each sample is
used once to gain an unbiased estimate of the popula-
tion risk gradient, and thus, guarantees following from
studying the optimisation performance of stochastic
gradient descent. Weak convexity has then be previ-
ously investigated within the optimisation community
Poliquin and Rockafellar,|1992, [1996; Rockafellar, 1981}
Davis and Drusvyatskiy, [2019), with the most relevant
work to ours being (Davis and Drusvyatskiy, [2019)
which showed, for non-smooth objectives, a first order
stochastic proximal algorithm converges to a station-
ary point at the rate O(¢~/%) within ¢ iterations. In
contrast, we focus on smooth losses, standard gradient
descent and guarantees for the function value.

In the multi-pass setting of this work, optimisation and
generalisation errors are considered as each data point
is used multiple times. To bound the generalisation
error, stability (Devroye and Wagner| [1979; Bousquet,
and Elisseeff, [2002) was applied within (Hardt et al.
2016}, [Lin et al. [2016a}; [Kuzborskij and Lampert], 2018
Yuan et al., 2019; Madden et al., 2020)) for stochastic
gradient descent. In the general non-convex setting
these works then require an O(1/t) step size after ¢
iterations. In contrast, with pointwise weak convexity
and a sufficiently large sample size N, our bounds
hold with an O(1/(et®)) step size where 0 < o < 1
and € is an upper bound on the magnitude of the
Hessian’s (evaluated at the points of gradient descent
only) smallest negative Eigenvalue.

o

A number of other works have investigated the gen-
eralisation of first-order gradient methods, which we
now briefly discuss. The work (Lin et al [2016b) con-
siders the multi-pass setting for gradient descent on
convex losses. The works (Charles and Papailiopoulos,
2018; [Yuan et al., 2019; Madden et al., 2020)) considers
the stability on non-convex loss functions which satisfy
Polyak-Fojasiewicz and/or quadratic growth conditions.
Their setting is different to ours as their curvature condi-
tions require that the gradient norm grows unbounded
on unbounded domains (hence, e.g., excluding the lo-
gistic loss). The work (| m m gives stability
bounds for Stochastic Gradient Langevin Dynamics
(SGLD), while (Chen et al. [2018)) demonstrate a trade
off between the stability and the optimisation error.

Finally, we note works studying multi-pass gradient
methods for non-parametric regression (Bauer et al.
2007}, [Rosasco and Villa, 2015} [Pillaud-Vivien et al.
2018; [Pagliana and Rosasco, 2019).

Scaling and Spectral Properties of Neural Net-
works. The scaling of neural networks has been shown
to influence the inductive bias in a number of settings
(Chizat et al.,[2019; Woodworth et al., [2020), with two
popular choices of scaling being “Neural Tanget Kernel”
(NTK) (Jacot et al.,|2018; Du et al., |2019bla} |Allen-Zhu
let al.| [2019; [Zou et al, [2020; [Arora et al.l 2019alb; [Zou
and Gu| [2019; [Cao and Gul, [2019; [Ji and Telgarsky
2019} [Jacot et all, [2019) and mean field (Chizat and
Bachl, [2018; Mei et al.| 2018, |2019; |Chizat et al., 2019).
Specifically, it was found that a larger network scal-
ing (i.e., mean field), can yield a richer implicit bias
(Chizat et al. [2019; [Woodworth et al., 2020). This
aligns with our findings (Section where, in short, a
larger network scaling allows gradient descent to learn
parameters with larger norms. A number of works have
also investigated the loss’s Hessian when using neural
networks, which we now discuss. By decomposing the
loss’s Hessian into two matrices, the work
2019) studies the asymptotic moments of the Hessian
with each of the aforementioned scalings. Similarly,
(Pennington and Bahri, 2017) utilise random matrix
theory to study the spectra of this decomposition by
modelling each matrix individually. In each case, focus
is placed upon the spectral distribution of the sum,
which, as suggested by (Jacot et al., 2019), can be
dominated by the first matrix. In contrast, our work is
purely focused on the negative Eigenvalues, for which
the second matrix primarily contributes since the first
matrix is positive semi-definite in our caseEl More gen-
erally, studies investigating the loss’s Hessian spectrum
can be traced back to (Bourrely, 1989} Bottou, 1991)
with a number of follow-up works (LeCun et al.l 2012
Sagun et all, 2016, 2017; [Yao et all, [2018; [Ghorbani|
et al., 2019; Yuan et al.,2019). Within (Sagun et al.,
2017; [Yuan et all [2019) in particular, it was demon-
strated empirically that the negative Eigenvalues of
the Hessian decreased in magnitude during training.
This observation is then explicitly leveraged within our
work through a pointwise weak convexity assumption
(Assumption [2| below).

Notation: For vectors w,z € RP, denote the ith
co-ordinate as w;, as well as standard Euclidean in-
ner product (w,r) = w'x = P wiz; and f5 norm
|wll2 = (w,w)'/2. For matrices A € RPX9 denote the

i, jth entry by A;; and the Euclidean operator norm,

!The work (Jacot et al, 2019) also demonstrates each

matrix within the decomposition becomes orthogonal within
the limit, in which case, it suffices to study the spectra of
each matrix individually.
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equivalently spectral norm, as ||A||z. The Frobenius
norm (i.e., entrywise ¢5 norm) of a matrix A is denoted
as ||A||p. For square matrices A € RP*P let A = 0
denote that A is positive semi-definite; i.e., for any
u € RP we have u' Au > 0. For B € RP*P denote
A > B if A — B is positive semi-definite. For a func-
tion f : R? — R denote the gradient with respect to
the ith co-ordinate as Jf(w)/dw;, and the vector of
gradients V f(w) € RP so that (Vf(w)); = df(w)/0w;.
Denote the second derivative of a function with respect
to the 4, jth co-ordinates as 0f(w)/0w;0w; as well as
the Hessian of the function V2 f(w) € RP*P such that

(V2 f(w))ij = 0f (w)/Owidw;.

2 Setup and Generalisation Error
Bounds

In this section we formally introduce the learning set-
ting as well as the generalisation error bounds. Section
formally introduces the setting. Section presents
the assumptions and generalisation error bound. Sec-
tion presents a sketch proof of the generalisation
error bound.

2.1 Generalisation, Stability and Gradient
Descent

We consider a standard learning setting (Vapnik, 2013)
which we now introduce. Let models be parameterised
by Euclidean vectors w € RP and data points be de-
noted by Z € Z. A loss function ¢ : RP x Z — R then
maps a model w and data point Z to a real number
l(w,Z) € R. Observations are random variables follow-
ing an unknown population distribution Z ~ P, and
the objective is to produce a model w that minimises
the expected loss with respect to the observations i.e.
population risk r(w) := Ez[l(w,Z)]. To produce a
model, a collection of independently and identically dis-
tributed samples Z; ~ P for ¢ = 1,..., N are observed
and an approximation to the population risk is consid-
ered; i.e., the empirical risk R(w) := Zf\il (w, Z;)/N.
In our case, an algorithm maps the observations to
a model A : Z¥ — RP so that & = A(Zy,...,2ZnN).
We then begin by considering the generalisation error
E[R(W) — r(w)].

To study the generalisation error we consider its sta-
bility (Bousquet and Elisseeff] |2002). Specifically, for
i=1,..., N consider the estimator with the ith data
point resampled independently from the population,
that iS, (1\1(1) = ./4(217 ceey Zi—17 Zz/’ Zi+17 ey ZN) where
Z! ~P. The expected generalisation error can then be

written as (Bousquet and Elisseeft] 2002))

=

W', Z) —(w, Z7)].

Stability

E[R(w) - Z

Generalisation Error

(1)

The stability of an estimator aligns with its sensitivity
to individual data points in the training set. Intuitively,
a stable estimator does not change much if a data point
is resampled, and thus, generalises better owing to not
depending in a strong way on any individual datapoint.
This is captured within the above equality, where the
difference on the right hand side involves the change
in loss when resampling each training data point.

The algorithm considered will be gradient descent ap-
plied to the empirical risk. This produces a sequence of
estimates indexed by s>1 and denoted {@;}s>¢. For
a sequence of non-negative step sizes {ns}s>0 and an
initialisation @y € R?, the iterates of gradient descent
are defined recursively for s>0 as
@s-&-l = @s - nsVR(as)

Fori=1,..., N let us denote the sequence of estima-
tors produced with the ith observation resampled by

{A(l }s>0. These estimators are initialised at the same

point w( ) = 3o and are updated using the gradient
of the empirical risk with the resampled data point
VRO (w) := VR(w) + (Vl(w, Z]) — Vi(w, Z;)) /N.

2.2 Generalisation Error Bound for Gradient
Descent with Weakly Convex Losses

In this section we present a bounded on the generalisa-
tion error when the empirical risk satisfies a notation
of weak convexity. We begin with a collection of Lips-
chitz (Lip.) assumptions on the loss function and its
gradients.

Assumption 1 (Loss Regularity) There exists
L,3,p > 0 such that for any w,w’ € RP and Z € Z:
L-Lip. loss: [{(w,Z) — (', Z)| < L||lw — w'||2.

B-Lip. gradient: ||Vl(w, Z)=VEl(w', Z)|2 < Bllw —w'|2.
p-Lip. Hessian: ||V2(w, Z)-V2U(', Z)||2 < pllw—'|2-

The first two conditions in Assumption [I] respectively
state that the loss is L-Lipschitz and S-smooth, which
are common assumptions when considering both the
optimisation and generalisation of gradient descent
algorithms (Nesterov, |2013; [Hardt et al., [2016]). The
third condition has been considered previously when
studying the stability of gradient descent (Kuzborskij
and Lampert, [2018]) and is satisfied if the third-order
derivative exists and is bounded (Ge et al., 2015).
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The next assumption is related to the Hessian of the
empirical risk, and encodes a notation of weak convex-

ity.

Assumption 2 (Pointwise Weak Convexity)
There exists a mon-negative deterministic sequence
{€s}s>0 such that almost surely for any s > 0 and
i=1,...,N

V2R(W,) = —e I and VZRD (@) = —e,I .
Assumption [2] states that the smallest negative Eigen-
value of the Hessian is almost surely lower bounded at
the points evaluated by gradient descent. This is milder
than standard weak convexity, which requires a lower
bound everywhere, i.e., for there to exist € > 0 such
that V2R(w) = —el for any w € RP. The lower bound
also depends upon the time step s > 1 of gradient de-
scent. This allows us to encode that the magnitude of
the most negative Eigenvalue can decrease during train-
ing (Sagun et al.l 2017 [Yuan et al.| |2019)) (precisely
Figure 2 in (Yuan et all|2019))), which is itself linked
to the residuals contributing to the Hessian’s negative
Eigenvalues (Pennington and Bahri, 2017; |Jacot et al.l
2019). In Section [4| we demonstrate for the composition
of a smooth convex function and a two layer neural
network, that Assumption [2| can be satisfied provided
the network is sufficiently wide. With these assump-
tions we now bound the generalisation error of gradient
descent.

Theorem 1 (Generalisation Error Bound)
Consider Assumptions[fand[d, 1 > a >0 andt > 1. If

max>k>0 kS < 3/2, max;>k>0 nk(€k+%)+ﬂ,§ <1/2
and

¢ t Jj—1
N >24pLexp (22 s (%"F%)‘Hls%) anl‘_ﬁ Zm’
s=1 j=1 £=0

then the generalisation error of gradient descent satis-

fies

-1 t—1 46 N
N 2P (2 > 775(65+N>+77§Y)77j-

7=0 s=j+1

We now provide some discussion of Theorem [I} The
condition on the sample size ensures that a sufficiently
small step size {n;}s>0 and number of iterations ¢
is taken with respect to the total number of data
points N. In particular, if we choose the step size
ns = (s +1)7%/log(t) for s > 0 and the minimum
Eigenvalue is lower bounded so that e, < 1/t1=¢
for s > 1, then the term within the exponential is
O(t'=*/N). We would then expect this quantity to be

small as it aligns with the Generalistion Error bound in
the smooth and convex setting (Hardt et all 2016)).
The condition on the sample size N is then domi-
nated by the summation over step sizes, which are
S ioi (G 4+ D2 (04 1) = Ot
and thus, we require the number of iterations to be
upper bounded by t = O(NY(C0=-2)+1/2)) " Picking
a = 3/4, the iterations can grow linearly with the total
number of samples, while @ > 3/4 allows the itera-
tions to grow as O(N?) for some 1 < ¢ < 2. Given
the condition on the sample size is satisfied, the re-
sulting generalisation error bound is on the order of
O(t'=%/N), aligning with the smooth and convex set-
ting (Hardt et al.| [2016).

In comparison to previous generalisation error bounds
for gradient descent with non-convex objectives, see for
instance (Hardt et al. 2016} [Kuzborskij and Lampert},
2018]), we highlight that the bound in Theorem allows
for a larger step size to be taken. Previous bounds held
in the non-convex setting with ns = O(1/s), while here
under the additional assumption of point wise weak
convexity, we can consider n, = O(1/s%) for « € [0, 1].
Such a step size will allow us to achieve guarantees on
the optimisation error, and thus, the test error (see

Section .
2.3 Proof Sketch of Theorem [I]

Here a proof sketch of Theorem [I] is provided, with
the full proof given in Appendix [B:I] Recalling that
the loss is L-Lipschitz and recalling , we see to
bound the generalisation error it is sufficient to bound
the deviation between the iterates of gradient descent
with and without the resampled datapoint, i.e., &; —
@f). Using the definition of the empirical risk gradient
with the sampled data point VR (w) and the triangle
inequality, we get for k > 1

2L
N
+ @1 =8, = n(VR@r-1) — VR@ |2,

&k — |l <

Expansiveness of Gradient Update

where 2nL/N arises from using the Lipschitz property
to upper bound n(VE(w,Z{) — VE(w,Zi))/N for any
w € RP. The remaining term is referred to as the ex-
pansiveness of the gradient update (Hardt et al., |2016).
To provide context, we now describe some previous
approaches for bounding this term.

Following previous work (Hardt et al.l 2016)), when
the loss is convex we have for any =,y € RP that
le —y —n(VR(z) — VR(y))|l2 < ||z — y||2. This allows
the deviation to be simply unravelled and bounded
Ik — @](;)HQ < 2nk/N. Meanwhile, in the non-
convex setting the expansiveness was upper bounded as
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lz =y =n(VR(z) = VR(y))l2 < (1+np)llz —yll2, ulti-
mately yielding a bound on the order of ||@), — @,(f) ll2 <
exp(nBt)nt/N. To control this exponential term we
then require n = O(1/t).

The presence of the smoothness coefficient § within
the exponential in the non-convex setting arises to
control the loss curvature through an upper bound
on the Hessian’s spectral norm [|[V2/(-, Z)||2 (see also
the data-dependent bound in (Kuzborskij and Lam-
pert, |2018) and Lemma 12 in appendix of (Yuan et al.,
2019)). Although, when comparing to the convex case,
we intuitively believe that the exponential term may
only depend upon negative Eigenvalues of the Hes-
sian, i.e., the least Eigenvalue, since that can differ-
entiate the convex and non-convex cases. For clarity,
let us then assume that the loss is e-weakly convex so
V2R(w) = —el for any w € RP. Then the expansive-
ness of the gradient updated can be upper bounded
[z —y = n(VR(z) = VR())ll2 < [lz — yll2/v/T —2ne
(see proof of Theorem [5|in Appendix . The multi-
plicative factor can then be interpreted as 1/(1—2n¢) =
1+2ne/(1—2ne) < exp (2ne/(1—2ne)) and therefore di-
rectly controlled by the weak convexity parameter €. In
contrast, previously the multiplicative factor was 14+70.
Unravelling the deviation with this upper bound yields
a generalisation error bound on the order exp(ent)nt/N
(see Theorem [5 in Appendix), with the convex case
being recovered when ¢ = 0. Now, the condition on the
sample size N within Theorem [I| arises from the fact
we consider a milder pointwise weak convexity assump-
tion which only evaluates the Hessian at the iterates
of gradient descent (note standard weak convexity is
a global lower bound). Precisely, the milder pointwise
assumption results in the expansiveness of the gradient
update containing higher order terms.

Remark 1 (Stochastic Gradient Descent)
Eaxtending to the stochastic gradient setting, where a
subset of randomly chosen data points are evaluated at
each iteration, is challenging here as the higher order
terms in the gradient expansiveness bound results in
higher order moments of the deviation at previous
iterations. We thus leave this direction to future work
as we may require stronger high probability bounds, see
also (Madden et all, |2020).

3 Test Error Bounds for Gradient
Descent with Weakly Convex Losses

In this section we use the generalisation error bounds to
achieve guarantees on the population risk for gradient
descent with weakly convex losses. The remainder of
this section is then as follows. Section presents the
error decomposition. Section presents bounds on
the population risk for the iterates of gradient descent.

3.1 Test Error Decomposition

Recall we wish to produce a model that minimised the
population risk r(w). Therefore, denoting a popula-
tion risk minimiser w* € argmin,, r(w), we now set to
investigate the Test Error of gradient descent. Specif-
ically, for an independent uniform random variable
I ~ Uniform(1,...,t) we consider E;[E[r(@)]]—r(w*).
We note that the iterate is evaluated at a uniform ran-
dom variable @y as the loss is non-convex, and thus,
the loss at the average of iterates 1 Zizl Ws is not im-
mediately upper bounded by the average of the losses
E[ [T(@[)]

To bound the test error we consider the following de-
composition

E/[E[r(@7)]] - r(w") = Ef[E[r(@r) - R(@)]  (2)

Test Error

Gen. Error
+ E;[E[R(©;]] — r(w™).

Opt. & Approx. Error

The first term intuitively accounts for the discrepancy
between the empirical and population risk and aligns
with the generalisation error studied within Section
The second term, the Optimisation and Approxi-
mation Error, will be composed of two components.
The first component is an optimisation error that, in-
tuitively, accounts for how well the iterates of gradi-
ent descent minimise the empirical risk. The second
component is an approximation error arising from the
non-convex setting. Specifically, it results from a proof
technique of adding regularisation to make the loss con-
vex, and thus, the optimisation error tractable. The
approximation error therefore reflects the weak con-
vexity assumption. Specifically, it will be scaled by
the weak convexity parameter and more generally (see
Proposition [1] in Appendix [A]) can depend upon the
Hessian structure. Section [3.2] then presents the upper
bound on the test error utilising this error decomposi-
tion.

3.2 Test Error for Weakly Convex Losses

In this section we present a test error bound for weakly
convex losses. Let us begin with the following assump-
tion.

Assumption 3 (Weak Convexity) There exists an
€ > 0 such that V2R(w) = —el for all w € RP.

Given this assumption, let us define the minimiser of the
penalised objective &} = argmin,, { R(w)+e€||@o—w||3},
as well as a minimiser of the unpenalised objective
w* € argmin, R(w). The test error bound is then
presented within the following theorem.
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Theorem 2 Let Assumptions[]] and[3 hold, and con-
stder constant step size ng = n for all s > 1. If
nB < 1/2, 2ne < 1 then the test error of gradient
descent is bounded

2 €
B0 (@) -r(t) < 25 e (115

Generalisation Error
E[||To—@||2 ~ ~ ~
BllSo—Sell) e (3rm1 (@0~ R@*))+ 50 —"13)

2nt
—_————

Optimisation Error

_|_

Approximation Error

We firstly note that we have now assumed standard
weak convexity (Assumption , and therefore, there is
no condition on the sample size N to control the Gen-
eralisation Error (recall proof sketch in Section .
Meanwhile, the Optimisation Error and Approxi-
mation Error upper bounds the Optimisation and
Approximation Error term given in . Naturally,
the Optimisation Error decreases with both the step
size and number of iterations nt. Meanwhile, the Ap-
proximation Error arises, in short, from the proof
technique of using the empirical risk penalised by €|| - |3
within the analysis. To achieve guarantees on the test
error, the product of the smallest Eigenvalue and the
norm of the population risk minimiser e||w*||3 must
be sufficiently small, which can then be interpreted
as a complexity assumption on the learning problem.
This interplay is precisely investigated for a two layer
neural network within Section Given that the Ap-
proximation Error is sufficiently small, we then see
that an O(1/v/N) test error bound can be achieved by
choosing nt = v/N. The test error bound in the convex
case (Hardt et al. [2016) is then be recovered by setting
e=0.

Remark 2 (Theorem (1| Iteration Condition)
Let us consider the test error bound if we restrict
ourselves to the iteration condition in Theorem [1
In short, if n = (t + 1)7%/log(t) we then get an
O(me) test error bound, with « = 3/4 then
yielding an O(N~*) bound in t = O(N) iterations.
Interestingly, this aligns with (Davis and Drusvyatskiy,
2019) who showed a stochastic proximal algorithm
converges to a stationary point at the rate of O(t=/4)
in the weakly convex case. Although, some care should
be taken in making a direct comparison between our
work and (Davis and Drusvyatskiy, |2019), since they
consider: a more general non-smooth objective, a
different algorithm and convergence to a stationary
point.  We therefore leave an investigation into a
connection between the two methods to future work.

4 Two Layer Neural Networks

In this section investigate the case of a two layer neural
network. Section formally introduces the setting we
consider. Section investigates the weak convexity
parameter for two layer neural networks. Section [1.3]
considers the approximation error for two layer neural
networks. Section [4.4] presents experimental results.

4.1 Setup

Consider the standard supervised learning setting
where data points decompose as Z = (z, y) with covari-
ates x € R? and a response y € R. Let g : R x R = R
denote a smooth convex function that quantifies the
discrepancy ¢(¥,y) between predicted 7 and observed
y responses. Consider prediction functions parame-
terised by w € RP and denoted f(-,w) : RY — R.
The loss function at the point Z = (z,y) is then
the composition between ¢(-,y) and f(x,w) so that
Uw,Z) = g(f(z,w),y). We will be considering the
gradient with respect to w, therefore denote the first
and second order gradient of the function g with
respect to the first argument as ¢'(,y) : R — R
and ¢”(-,y) : R — R, respectively. Throughout we
will assume that g has uniformly bounded derivative
max. |9’ (¥, y)| < Ly, which is satisfied, for instance,
if g is the logistic loss.

The class of prediction functions considered in this
section will be two layer neural networks of width
M > 0 and scaling 1 > ¢ > 1/2. The network consists
of a first layer of weights represented as a matrix A €
RM>d with jth row A; € R?, a second layer of weights
denoted as a vector v = (v1,...,vy) € RM and a
smooth activation o : R — R. For an input & € R? the
neural network then takes the form
1M
fww) =12 S volAne). ()

j=1

Typically, both the first and second layer of weights of
the network are optimised, in which case, let parameter
vector w be the concatenation w = (4,v) € RMI+M,
where A is vectorised in a row-major manner. As we
will see later, studying the case of optimising both layers
simultaneously is challenging owing to the interactions
between the first and second layers. It will therefore
be insightful to also consider fixing the second layer of
weights and only optimising the first layer. In this case
denote w = (A) € RM4,

4.2 Weak Convexity of Two Layer Neural
Networks

We begin with the following theorem which considers
weak convexity of the empirical risk. With data points
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Z; = (x;,y;) for i = 1,...,N let us denote the co-

. .. . N
variates empirical covariance as ¥ := Zz’:l wzx;'— /N €
Rdxd'

Theorem 3 Consider the loss function in Section [].1]
with Two Layer Neural Network . Suppose that the
activation o has first and second derivatives bounded
by L, and L, respectively. Then with w = (A,v),

1

I
Mc

V2R(@) > ~ (Ly Lo [olloe S22 Lo/ 1512

Theorem (3| demonstrates that the weak convexity pa-
rameter is on the order of the neural network scaling
O(1/M*¢), suggesting it is smaller for wider networks
with a larger scaling c¢. Note the bound consists of two
terms: the first arising from the Hessian restricted of
the first layer; and the second from the first and second
layer of weights interacting. We now discuss using this
bound in conjunction with Theorem [I] and

Recall the generalisation error bound in Theorem [I]
requires pointwise weak convexity Assumption E This
considers the Hessian evaluated at the iterates of the
gradient descent, and thus, if the initialisation and acti-
vation are bounded (to ensure the infinity norm of the
second layer is O(Zi:o ns/M¢)) as well as the covari-
ates co-ordinates so max;=1,.. n ||%i|lcoc < Ly, Theorem
[B] then ensures pointwise weak convexity Assumption [2]
holds with €5, = O(d/M*¢). As a consequence, it is suffi-
cient to scale the network width M > b(d Y\ _,ns)'/¢,
for some constant b > 0, to ensure the exponential
terms within the generalisation error bound of Theo-
rem [I] remain bounded.

To bound the test error utilising Theorem [2| recall we
require standard weak convexity Assumption [3|to hold.
Since the first term in Theorem [£.2] depends upon the
infinity norm of the second layer ||v|| o, it is not feasible
here to satisfy standard weak convexity as we can take
|lv]|ooc — oo. This (as well as Remark [4)) motivates
a more refined notation of weak convexity which is
discussed in Appendix [A] For this reason, let us now
consider fixing the second layer and optimising the
first layer only. Applying Theorem [2] then requires
controlling the Approximation Error which itself
requires an assumption on the squared Euclidean norm
of the population risk minimiser [|w*||3. Since the
scaling and complexity of the network can interplay,
this is discussed within Section .3

Remark 3 (Three Layer Neural Networks) In
Appendiz[D-9 we show that the minimum Eigenvalue
can be bounded for a three layer neural network when
fixing the middle layer. If the width of each layer is M
the magnitude of the minimum negative Figenvalue is
O(1/M?=1/2), and thus, can be smaller than a two
layer network when ¢ > 1/2.

4.3 Approximation Error for Two Layer
Neural Networks

In this section we study the Approximation Error
term within the test error bound of Theorem [2| in
the case of a two layer neural network. Following the
discussion at the end of Section (as well as remark
4), we fix the second layer and only optimise the first
so w = (A) € RM? with the case of optimising both
layers studied in Appendix [A]

Controlling the Approximation Error requires plac-
ing assumptions on the Euclidean norm of the neu-
ral network weights, and thus, the complexity of the
network. We therefore compare to another notion of
complexity to ensure the network is not made too
simple. While a number of different notions of com-
plexity have been investigated in previous work, see
for instance (Neyshabur et al.l [2015} Bartlett et al.,
2017; [Arora et al.l 2019al), we consider the network’s
Total Weight (Bartlett, 1998) defined as TW(f) :=
Z;Vil |vj||A;jll2/M¢€. The following assumption then
introduces the complexity assumption used to control
the approximation error in our case.

Assumption 4 There exists 1 > p > 0 and population
risk minimiser A* such that ||A*||p < MY/?~H,

Assumption [4 states there exists a set of first layer
weights A* with Frobenius norm bounded by M/2—#
that achieves the minimum population risk. There-
fore, larger p aligns with a stronger assumption, as the
minimum risk can be attained by a set of weights
with smaller norm. Although, some choices of p
are more natural than others when considering the
choice of scaling 1 > ¢ > 1/2. Specifically, con-
sider the following upper bound on the Total Weight
TW(f) = RS A, < fullblAr)s/Me.
Now, if each of the second layer weights are a constant
s0 ||v]l2 = O(V/M) the Total Weight of the population
risk minimiser under Assumption |4fis O(M1=#7¢). As
such if g > 1 — ¢, the Total Weight of the network
goes to zero as the network becomes wider (i.e., larger
M), yielding effectively constant prediction functions
for wide networks. Therefore, a larger scaling ¢ can be
seen to encourage networks with large norm weights.

Let us now consider the approximation error in The-
orem [2| when gradient descent is initialised at o =0
and Assumption [ holds. The approximation error
is then O(d(nt + M'=2#)/M*¢), and therefore, to en-
sure it is decreasing in the width of the network M,
we require g > (1 — ¢)/2. How the network scaling
c and the statistical assumption p then interplay can
be clearly seen in Figure |1} Intuitively, increasing the
scaling ¢ allows networks with larger norms (larger p)
to be approximated, but at the cost of not being able
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to consider networks with smaller norms. Whether
encouraging larger norm networks through the scaling
c leads to improved generalisation will likely depend
upon the problem setting.

Remark 4 (Limitation of Weak Convexity)
Consider optimising both the first and second layers
for a Two Layer Neural Network and let w* = (A*,v*)
denote a population risk minimiser. Then the Approwx.
Error in Theorem @ is O((||A*]|% + [[v*||3)/M*®),
while the Total Weight is upper-bounded (from Young’s
inequality) as TW(f) < (||A*||% + |lv*||3)/M¢c. It is
therefore mot possible in this case for the Approx.
Error to decrease without the Total Weight vanishing.
To remedy this, we show in Appendiz [4] that a
generalised weak convexity assumption can yield an
Approx. Error that can alternatively be upper
bounded by the Total Weight.

4.4 Experimental Results

In this section we
present  experiments
supporting the discus-
sion in section 3l We
consider a classification
task on subsets of 3
datasets: HIGGS,
SUSY (Baldi et al.l c
2014)) and COVTYPE
(Blackard and Deanl
1999), all of which
can be found on the
UCI Machine Learning
Repository (Dua and
Grafl, [2017). The
loss function is as
in Section M1 with
g being the logistic
loss, and f a two layer
neural network with

I

e

’{3 Vanishing Total Weight
']119/)1.
3

Larger Population Weights

i

—_—
Increasing Neural Network Scaling

Figure 1: Weight Assump-
tion () versus net-
work scaling (¢) Red Re-
gion (Vanishing Total
Weight): Total Weight de-
creasing in M. Blue region
(Vanishing Approx. Er-
ror): approximation error
decreasing in M. Solid line
and green region: bounds
sigmoid activation o  do not guarantee approxi-
and both layers being  mation error decreasing in
optimised. Full batch M.

gradient descent is

performed on the N samples with a fixed step size, and
the population risk is estimated every 500 iterations
with training stopped once it increased consecutively
for more than 5 batches of 500 iterations. Due to
performing full batch gradient descent, we considered
¢ € ]0.5,0.65] as the iterations required increased with
the scaling ¢. The network was initialised with the
first layer at 0 and the second layer from a standard
Gaussian. Figure [2| then plots the Frobenius norm of
the first layer and population risk (Test Error) against
the neural network scaling c. Observe across the three

First Layer Frob. Norm Vs Neural Network Scaling Test Error vs Neural Network Scaling

501 < m=100
—+— M = 1000
—4— M = 5000

0.660

—— M =100
~4- M =1000
0.658{ —+— M= 5000
0.656
;
) —
0.654{ ,—*
T
: -
M 0.652
10

0.500 0.525 0.550 0.575 0.600 0.625 0.650
Neural Network Scaling ¢

N
3
Test Error

First Layer Frobenius Norm
N w
3 8

0.500 0.525 0.550 0.575 0.600 0.625 0.650
Neural Network Scaling ¢
Test Error Vs Neural Network Scaling
o) —+ M=100
b~ M= 1000
—— M =5000

first Layer Frob. Norm Vs Neural Network Scaling

—+ M=100

M = 1000 0.463

—— M =5000

~
S

0.4625 1

v o
3

3

2 0.46201
&

5
3

@ 0.46151 |

First Layer Frob. Norm

Y
0.46101 1

M 0.4605 |

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.500 0.525 0.550 0.575 0.600 0.625 0.650
Neural Network Scaling ¢ Neural Network Scaling ¢

w
3

N
S

First Layer Frob. Norm Vs Neural Network Scaling Test Error Vs Neural Network Scaling
7

5
—- M =100 070
15.01 —+ M= 1000 —
£ —4— M = 5000
S125 0.65
; ‘ 0601 | / ‘ |

m

,_.
S
°

75

Test Error

5.0

0.55{ - M =100
25 4~ M= 1000
0.0 —- M= 5000

0501, . . . . -
0.500 0.525 0.550 0575 0.600 0.625 0.650 0.500 0.525 0.550 0.575 0.600 0.625 0.650
Neural Network Scaling ¢ Neural Network Scaling ¢

First Layer Frob.

Figure 2: Plot of (Left) first layer Frobenius norm
|A|| 7 and (Right) population risk (labelled test error)
versus network scaling ¢, for datasets: HIGGS (Top),
SUSY (Middle) and COVTYPE (Bottom). Top and
Middle: Step size n = 0.1, train size N = 103, test
set size 10°. Error bars from 2 subsets of data, each
replicated 10 times. Bottom: step size n = 1073, train
size N = 10* test set size 4 x 10*. Error bars from 10
replications with single subset of data.

data sets that the Frobeinus norm of the first layer is
positively correlated with the scaling ¢, supporting the
theoretical results discussed in Section Moreover,
note the estimated population risk decreases with the
width of the neural network M.

5 Conclusion

In this work we have investigated the stability of gradi-
ent descent under a notation of weak convexity. Gen-
eralisation error bounds were proven that both, hold
under milder assumptions on the step size when com-
pared to previous works (Hardt et al., 2016; [ Kuzborskij
and Lampert], [2018), and can be combined with opti-
misation and approximation error bounds to achieve
guarantees on the test error. In the case of a two layer
neural networks, we demonstrated that the network
scaling can control the weak convexity parameter, and
thus, allow test error bounds to be achieved when a
complexity assumption is placed on the population risk
minimiser. Moving forward it would be natural to ex-
tend to stochastic and accelerated gradient methods,
as well as deeper neural networks.
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