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A Proofs for Ridge Regression

In this section we provide the calculations associated to ridge regression. Section A.1 provides the proof of
Proposition 1. Section A.2 provides the calculation for the oracle estimator presented in remark 1. Section A.3
provides some preliminary calculations related to random matrix theory. Section A.4 gives the proof of Theorem
1. Section A.5 provides the proof of Corollary 1. Section A.6 provides the calculations associated to the strong
and weak features model.

A.1 Proof of Proposition 1

In the proof of this result, it is useful to indicate dependence on the true parameter β? by denoting the risk
Rβ?(·) = Eε[‖Σ1/2(· − β?)‖22] + σ2. We also denote by Eβ?(β) = Rβ?(β)−Rβ?(β?) = ‖Σ1/2(β − β?)‖22 the excess
risk of β ∈ Rd when the true parameter is β? ∈ Rd.
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Lemma 1 Let V1, . . . , Vk ⊂ Rd (with k ≤ d) denote the eigenspaces of Σ. For j = 1, . . . , k, let Uj ∈ O(Vj) be
a linear isometry of Vj, and let U ∈ Rd×d be the linear isometry defined by Uv = Ujv for v ∈ Vj, j = 1, . . . , k.
Then,

EX,ε[Rβ(β̂λ)−Rβ(β)] = EX,ε[RUβ(β̂λ)−RUβ(Uβ)] .

Proof 1 (Proof of Lemma 1) Denote β′ = Uβ, as well as X ′ = XU−1 and x′ = U−1x. Let β̂′λ the Ridge
estimator computed on data (X ′, Y ), namely

β̂′λ = (X ′>X ′ + λnI)−1X ′>Y = (UX>XU−1 + λnI)−1UX>Y = Uβ̂λ .

Then, y = 〈β, x〉+ σε = 〈β′, x′〉+ σε, hence the best linear predictor of y based on x′ is β′. In addition, x′ has
distribution N (0, U−1ΣU) = N (0,Σ), where U−1ΣU = Σ comes from the fact that U is an isometry on the
eigenspaces Vj of Σ. This implies that (X ′, ε) has the same distribution as (X, ε), and thus Eε,X [Eβ′(β̂′λ)] =
Eε,X [Eβ′(β̂λ)]. On the other hand,

Eβ′(β̂′λ) = ‖Σ1/2(β̂′λ − β′)‖22 = ‖Σ1/2U(β̂λ − β)‖22 = ‖Σ1/2(β̂λ − β)‖22 = Eβ(β̂λ)

(note that ‖Σ1/2U · ‖22 = ‖UΣ1/2 · ‖22 = ‖Σ1/2 · ‖22 as U commutes with Σ1/2 and is an isometry), so that
Eε,X [Eβ′(β̂′λ)] = Eε,X [Eβ(β̂λ)]. This proves that Eε,X [Eβ′(β̂λ)] = Eε,X [Eβ(β̂λ)].

We now turn to the proof of Proposition 1:

Proof 2 (Proof of Proposition 1) Let V1, . . . , Vk denote the eigenspaces of Σ, with distinct eigenvalues τ ′1 >
· · · > τ ′k. Let U1, . . . , Uk be independent random isometries, where Uj is distributed according to the uniform
(Haar) measure on the orthogonal group of Vj. Define U to be the random isometry acting as Uj on Vj, and let
β = Uβ? and Π its distribution.

Note that U is of the form of Lemma 1, hence EX,ε[EUβ?(β̂λ)] = EX,ε[Eβ?(β̂λ)] and thus

Eβ∼ΠEX,ε[Eβ(β̂λ)] = EUEX,ε[EUβ?(β̂λ)] = EX,ε[Eβ?(β̂λ)] . (8)

Now, let β′j ∈ Vj be the orthogonal projection of β? on Vj , so that Uβ? =
∑k
j=1 Ujβ

′
j . We have E[Uβ?] = 0 since

E[Uj ] = 0 for all j. In addition, the distribution of Ujβ? is invariant by rotation (since RjUj has the same
distribution as Uj for any fixed rotation Rj), hence E[(Ujβ′j)(Ujβ′j)>] = tjIVj (with IVj the identity on Vj), where
letting dj = dim(Vj),

dj · tj = trE[(Ujβ′j)(Ujβ′j)>] = E[‖Ujβ′j‖22] = ‖β′j‖22 , (9)

hence tj = ‖β′j‖22/dj. In addition, if j 6= l, by independence of Uj , Ul,

E[(Ujβ′j)(Ulβ′l)>] = E[Ujβ′jβ′>l U>l ] = E[Uj ]β′jβ′>l E[Ul]> = 0 . (10)

Hence, Π has covariance
∑k
j=1(‖β′j‖2/dj)IVj , which is precisely Φ(Σ)/d where Φ is defined as in (5). The proof

is concluded by noting that the quantity Eε,XEβ(β̂λ) is quadratic in β, hence if Π′ is another distribution on Rd

with mean 0 and covariance Φ(Σ)/d, then Eβ∼Π′Eε,XEβ(β̂λ) = Eβ∼ΠEε,XEβ(β̂λ) = Eε,XEβ?(β̂λ).

A.2 Proof of Oracle Estimator (Remark 1)

Since the risk is quadratic, the average risk (integrated over the prior) of any estimator linear in Y only
depends on the first two moments of the prior, hence one can assume that the prior is Gaussian (namely,
N (0, r2Φ(Σ)/d)) without loss of generality. In this case, a standard computation shows that the posterior is
N (β̃, [X>X + (σ2d/r2)Φ(Σ)−1]−1), where β̃ is the estimator defined in (4). Finally, since the risk is quadratic,
the Bayes-optimal estimator is the posterior mean, which corresponds to β̃.
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A.3 Random Matrix Theory Preliminaries

We now introduce some useful properties of the Stieltjes transform as well as its companion transform. Firstly,
we know the companion transform satisfies the Silverstein equation (Silverstein and Combettes, 1992; Silverstein
and Choi, 1995)

− 1
v(z) = z − γ

∫
τ

1 + τv(z)dH(τ). (11)

We then have for z ∈ S := {u + iv : v 6= 0, or v = 0, u > 0}, the companion transform v(z) is the unique
solution to the Silverstein equation with v(z) ∈ S such that the sign of the imaginary part is preserved
sign(Im(v(z)))− sign(Im(z)). The above can then be differentiated with respect to z to obtain a formula for v′(z)
in terms of v(z):

∂v(z)
∂z

=
( 1
v(z)2 − γ

∫
τ2

(1 + τv(z))2 dH(τ)
)−1

Meanwhile from from the equality γ(m(z) + 1/z) = v(z) + 1/z we note that we have the following equalities

1− γ(1− λm(−λ)) = λv(−λ) (12)
1− λm(−λ) = γ−1(1− λv(−λ))

m(−λ)− λm′(−λ) = γ−1(v(−λ)− λv′(−λ))

which we will readily use to simplify/rewrite a number of the limiting functions.

A.4 Proof of Theorem 1

We begin with the decomposition into bias and variance terms following (Dobriban et al., 2018). The difference
for the ridge parameter can be denoted

β̂λ − β? = −λ
(X>X

n
+ λI

)−1
β? + σ

(X>X
n

+ λI
)−1X>ε

n

And thus taking expectation with respect to the noise in the observations ε

Eε[R(β̂λ)]−R(β?) = Eε[‖Σ1/2(β̂λ − β?)‖22]

= Eε[‖Σ1/2(β̂λ −Eε[β̂λ])‖22] + ‖Σ1/2(Eε[β̂λ]− β?)‖22

= σ2Eε

[∥∥Σ1/2(X>X
n

+ λI
)−1X>ε

n

∥∥2
2

]
+ λ2‖Σ1/2(X>X

n
− λI

)−1
β?‖22

= σ2

n
Tr
((X>X

n
+ λI

)−1
Σ
(X>X

n
+ λI

)−1X>X

n

)
λ2 Tr

(
(β?)>

(X>X
n

+ λI
)−1

Σ
(X>X

n
+ λI

)−1
β?
)

Taking expectation with respect to Eβ? we arrive at

Eβ? [Eε[R(β̂λ)]−R(β?)] = σ2

n
Tr
((X>X

n
+ λI

)−1
Σ
(X>X

n
+ λI

)−1X>X

n

)
λ2r2

d
Tr
((X>X

n
+ λI

)−1
Σ
(X>X

n
+ λI

)−1
Φ(Σ)

)
= σ2γ

1
d

Tr
((X>X

n
+ λI

)−1
Σ
)
− λσ2γ

1
d

Tr
((X>X

n
+ λI

)−2
Σ
)

+ λ2r2

d
Tr
((X>X

n
+ λI

)−1
Σ
(X>X

n
+ λI

)−1
Φ(Σ)

)
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It is now a matter of showing the asymptotic almost sure convergence of the following three functionals

1
d

Tr
((X>X

n
+ λI

)−1
Σ
)
,

1
d

Tr
((X>X

n
+ λI

)−2
Σ
)

and 1
d

Tr
((X>X

n
+ λI

)−1
Σ
(X>X

n
+ λI

)−1
Φ(Σ)

)
The limit of the first trace quantity comes directly from (Ledoit and Péché, 2011) meanwhile the limit of the
second trace quantity is proven in (Dobriban et al., 2018). The third trace quantity depends upon the source
condition Φ and computing its limit is one of the main technical contributions of this work. The limits for these
objects is summarised within the following Lemma, the proof of which provides the key steps for computing the
limit involving the source function.

Lemma 2 Under the assumptions of Theorem 1 for any λ > 0 we have almost surely as n, d→∞ with d/n = γ

1
d

Tr
((X>X

n
+ λI

)−1
Σ
)
→ 1− λm(−λ)

1− γ(1− λm(−λ)) (13)

1
d

Tr
((X>X

n
+ λI

)−2
Σ
)
→ m(−λ)− λm′(−λ)(

1− γ(1− λm(−λ))
)2 (14)

1
d

Tr
((X>X

n
+ λI

)−1
Σ
(X>X

n
+ λI

)−1
Φ(Σ)

)
→

ΘΦ(−λ) + λ∂ΘΦ(−λ)
∂λ(

1− γ(1− λm(−λ))
)2 (15)

The result is arrived at by plugging in the above limits and noting from the definition of the Companion
Transform v that 1 − γ(1 − λm(−λ)) = λv(−λ), 1 − λm(−λ) = γ−1(1 − λv(−λ)) and, taking derivatives,
m(−λ)− λm′(−λ) = γ−1(v(−λ)− λv′(−λ)). The proof of Lemma 2, which is the key technical step in the proof
of Theorem 1, is provided in Appendix B.

A.5 Proof of Corollary 1

In this section we provide the proof of Corollary 1. It will be broken into three parts associated to the three cases
Φ(x) = x, Φ(x) = 1 and Φ(x) = 1/x.

A.5.1 Case: Φ(x) = x

The purpose of this section is to demonstrate, in the case Φ(x) = x, how the functional ΘΦ(−λ)+λ∂ΘΦ(−λ)
∂λ can be

written in terms of the Stieltjes Transform m(z). For this particular choice of Φ the asymptotics were calculated
in (Chen et al., 2011), see also Lemma 7.9 in (Dobriban et al., 2018). We therefore repeat this calculation for
completeness. Now, in this case we have

ΘΦ(z) =
∫

τ

τ(1− γ(1 + zm(−λ)))− z dH(τ)

Following the steps are the start of the proof for Lemma 2.2 in (Ledoit and Péché, 2011), consider 1 + zm(z)

1 + zm(z) =
∫

1 + z

τ(1− γ(1 + zm(z)))− z dH(τ)

=
∫

τ(1− γ(1 + zm(z)))
τ(1− γ(1 + zm(z)))− z dH(τ)

= (1− γ(1 + zm(z)))ΘΦ(z)

Solving for ΘΦ(z) we have

ΘΦ(z) = 1 + zm(z)
1− γ(1 + zm(z)) = 1

γ

( 1
1− γ(1 + zm(z)) − 1

)
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Picking z = −λ and differentiating with respect to λ we get

∂ΘΦ(−λ)
∂λ

= − m(−λ)− λm′(−λ)
(1− γ(1− λm(−λ)))2

This leads to the final form

ΘΦ(−λ) + λ∂ΘΦ(−λ)
∂λ(

1− γ(1− λm(−λ))
)2 = 1− λm(−λ)

(1− γ(1− λm(−λ)))3 − λ
m(−λ)− λm′(−λ)

(1− γ(1− λm(−λ)))4

= γ−1(1− λv(−λ))
(λv(−λ))3 − λγ

−1(v(−λ)− λv′(−λ))
(λv(−λ))4

= v′(−λ)
γλ2v(−λ)4 −

1
γ(λv(−λ))2

where on the second equality we used (12). Multiplying through by λ2 then yields the quantity presented.

A.5.2 Case: Φ(x) = 1

The functional of interest in this case aligns with that calculated within (Dobriban et al., 2018), which we include
below for completeness. In particular we have ΘΦ(−λ) = m(−λ) and as such we get

ΘΦ(−λ) + λ
∂ΘΦ(−λ)

∂λ
= m(−λ)− λm′(−λ) = γ−1(v(−λ)− λv′(−λ))

where on the second equality we used (12). Dividing by v(−λ)2 as well as adding the asymptotic variance we get,
from Theorem 1, the limit as n, d→∞

Eβ? [Eε[R(β̂λ)]−R(β?)]→ σ2 1− λv(−λ)
λv(−λ) − λσ2 v(−λ)− λv′(−λ)

(λv(−λ))2 + r2

γ

v(−λ)− λv′(−λ)
v(−λ)2

= σ2
( v′(−λ)

(v(−λ))2 − 1
)

+ r2

γv(−λ) −
r2λ

γ

v′(−λ)
v(−λ)2

A.5.3 Case: Φ(x) = 1/x

The functional in the case Φ(x) = 1/x takes the form

ΘΦ(z) =
∫ 1
τ

1
τ(1− γ(1 + zm(z)))− z dH(τ).

Observe that we have∫ 1
τ
dH(τ) + zΘΦ(z) =

∫ 1
τ

(
1 + z

τ(1− γ(1 + zm(z)))− z

)
dH(τ)

=
∫ 1
τ

τ(1− γ(1 + zm(z)))
τ(1− γ(1 + zm(z)))− z dH(τ)

= (1− γ(1 + zm(z)))
∫ 1
τ(1− γ(1 + zm(z)))− z dH(τ)

= (1− γ(1 + zm(z)))m(z).

Solving for ΘΦ(z) and plugging in the definition of the companion transform v(z) we arrive at

ΘΦ(z) = 1
z

(
(1− γ(1 + zm(z)))m(z)− 1

z

∫ 1
τ
dH(τ)

)
= −v(z)

(v(z)
γ

+ 1
z

( 1
γ
− 1
))
− 1
z

∫ 1
τ
dH(τ)

= −v(z)2

γ
− v(z)

z
( 1
γ
− 1
)
− 1
z

∫ 1
τ
dH(τ).
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Fixing z = −λ the quantity of interest then has the form

ΘΦ(−λ) = −v(−λ)2

γ
+ v(−λ)

λ
( 1
γ
− 1
)

+ 1
λ

∫ 1
τ
dH(τ),

which when differentiated with respect to λ yields

∂ΘΦ(−λ)
∂λ

= 2v(−λ)v′(−λ)
γ

− 1
λ

( 1
γ
− 1
)(v(−λ)

λ
+ v′(−λ)

)
− 1
λ2

∫ 1
τ
dH(τ).

Multiplying the above by λ and adding ΘΦ(−λ) brings us to

ΘΦ(−λ) + λ
∂ΘΦ(−λ)

∂λ
= 2λv

′(−λ)v(−λ)
γ

− v(−λ)2

γ
− ( 1

γ
− 1
)
v′(−λ).

Dividing the above by v(−λ)2 and adding the limiting variance yields, from Theorem 1, the limit as n, d→∞

Eβ? [Eε[R(β̂λ)]−R(β?)]

→ σ2 1− λv(−λ)
λv(−λ) − λσ2 v(−λ)− λv′(−λ)

(λv(−λ))2 + 2r2λ
v′(−λ)
γv(−λ) −

r2

γ
− r2( 1

γ
− 1
) v′(−λ)
v(−λ)2

= σ2( v′(−λ)
(v(−λ))2 − 1

)
+ 2r2λ

v′(−λ)
γv(−λ) −

r2

γ
+ r2λ

γ − 1
γ

v′(−λ)
v(−λ)2

A.6 Strong and Weak Features Model

This section presents the calculations associated to the strong and weak features model. We begin giving the
stationary point equation of the companion transform v(t), after which we explicitly compute the limiting risk
with the particular choice of Φ(x) in this case. Section A.6.1 there after gives explicit form for the companion
transform in the ridgeless limit. Section A.6.2 gives the proof of Corollary 2 found within the main body of the
manuscript.

We begin by recalling the limiting spectrum of the covariance Σ for the two Bulks Model is dH(τ) = ψ1δρ1 +ψ2δρ2 .
Recall we have ψ1 + ψ2 = 1 therefore we simply write ψ2 = 1 − ψ1. Using the Silverstein equations (11) the
companion transform must satisfy

−1
v(t) = t− γ

( ψ1ρ1

1 + ρ1v(t) + (1− ψ1)ρ2

1 + ρ2v(t)

)
, (16)

meanwhile the derivative must satisfy

1
(v(t))2 = 1

v′(t) + γ
( ψ1ρ

2
1

(1 + ρ1v(t))2 + (1− ψ1)ρ2
2

(1 + ρ2v(t))2

)
(17)

=⇒ v′(t) =
( 1

(v(t))2 − γ
( ψ1ρ

2
1

(1 + ρ1v(t))2 + (1− ψ1)ρ2
2

(1 + ρ2v(t))2

))−1

as such given v(t) we can compute the derivative. Rearranging (16) and denoting v(t) = v the companion
transform evaluated at t satisfies

0 = (1 + ρ1v)(1 + ρ2v) + tv(1 + ρ1v)(1 + ρ2v)− γψ1ρ1v(1 + ρ2v)− γ(1− ψ1)ρ2v(1 + ρ1v)
= tρ1ρ2v

3 + (t(ρ1 + ρ2) + (1− γ)ρ1ρ2)v2 + (t+ ρ1 + ρ2 − γψ1ρ1 − γ(1− ψ1)ρ2)v + 1

This cubic can then be solved computationally for different choices of t. In the case of the ridgeless limit t→ 0 in
the overparameterised setting γ > 1, the above simplifies to a quadratic which can be solved, as shown in Section
A.6.1.

Now, recall in the strong and weak features model the structure of the ground truth β? is such that Φ(x) =
φ11x=ρ1 +φ21x=ρ2 . To compute the limiting risk, specifically the bias, we must then evaluate ΘΦ(−λ)+λ∂ΘΦ(−λ)

∂λ .
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To this end, we have plugging Φ(x) into the definition of ΘΦ(z)

ΘΦ(z) =
∫

Φ(τ) 1
τ(1− γ(1 + zm(z)))− z dH(τ)

= φ1ψ1

ρ1(1− γ(1 + zm(z)))− z + φ2(1− ψ1)
ρ2(1− γ(1 + zm(z)))− z

= φ1ψ1

−z(1 + ρ1v(z)) + φ2(1− ψ1)
−z(1 + ρ2v(z))

where on the last equality we used (12) to rewrite the above in terms of the companion transform. Plugging in
the regularisation parameter z = −λ we then get

ΘΦ(−λ) = φ1ψ1

λ(1 + ρ1v(−λ)) + φ1(1− ψ1)
λ(1 + ρ2v(−λ)) .

To the end of computing ∂ΘΦ(−λ)
∂λ , we can differentiate the above to get

∂ΘΦ(−λ)
∂λ

= −φ1ψ1
1 + ρ1v(−λ)− λρ1v

′(−λ)(
λρ1v(−λ) + λ

)2 − φ2(1− ψ1)1 + ρ2v(−λ)− λρ2v
′(−λ)(

λρ2v(−λ) + λ
)2 ,

which yields

ΘΦ(−λ) + λ
∂ΘΦ(−λ)

∂λ
= φ1ψ1

ρ1v
′(−λ)

(ρ1v(−λ) + 1)2 + φ2(1− ψ1) ρ2v
′(−λ)

(ρ2v(−λ) + 1)2

as required. The final form for the limiting risk is then

lim
n,d→∞

Eβ? [Eε[R(β̂λ)]−R(β?)]

= σ2 1− λv(−λ)
λv(−λ) − λσ2 v(−λ)− λv′(−λ)

(λv(−λ))2 + r2
2∑
i=1

φiψi
ρiv
′(−λ)

(ρiv(−λ) + 1)2v(−λ)2

= −σ2 + σ2 v′(−λ)
(v(−λ))2 + r2

2∑
i=1

φiψi
ρiv
′(−λ)

(v(−λ)2(ρiv(−λ) + 1)2 .

A.6.1 Ridgeless Limit

To consider the Ridgeless limit t→ 0 of the companion transform v(t), some care must be taken about which
regime γ < 1 or γ > 1 we are in.

Underparameterised γ < 1 Following the proof of Lemma 6.2 in (Dobriban et al., 2018) we have in the
underparameterised case γ < 1 the limit limt→0− tv(t) = 1− γ.

Overparameterised γ > 1 Following the proof of Lemma 6.2 in (Dobriban et al., 2018) when γ > 1 we have
the limit limt→0− v(t) = v(0). From dominated convergence theorem we can take the limit in the Silverstein
equation (16) to arrive at the quadratic

0 = (1 + ρ1v)(1 + ρ2v)− γψ1ρ1v(1 + ρ2v)− γ(1− ψ1)ρ2v(1 + ρ1v)
= (1− γ)ρ1ρ2v

2 + (ρ1 + ρ2 − γψ1ρ1 − γ(1− ψ1)ρ2)v + 1

Solving for v with the quadratic formula immediately gives

v(0) =
−(ρ1 + ρ2 − γψ1ρ1 − γ(1− ψ1)ρ2)−

√
(ρ1 + ρ2 − γψ1ρ1 − γ(1− ψ1)ρ2)2 − 4(1− γ)ρ1ρ2

2(1− γ)ρ1ρ2
. (18)

Recall from (Silverstein and Choi, 1995) we have that v(z) ∈ S, as such we take the sign above which yields a
non-negative quantity. Noting we we focus on the regime where γ > 1, we see for the above to be non-negative
we require the numerator to be negative, and thus, we take the negative sign.
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A.6.2 Proof of Corollary 2

In this section we provide the proof of Corollary 2. The proof essentially requires computing the companion
transform in this case and checking the sign of the asymptotic derivative at zero i.e. R′Asym(0). Let us begin by
noting that when γ = 2 and ψ1 = ψ2 = 1/2 that the companion transform at zero is v(0) = 1/√ρ1ρ2. Let us now
compute quantities related to both the first derivative v′(0) and second derivative v′′(0). Using (17), we can, by
dividing both sides by v(t)2 and taking t→ 0, get

v′(0)
v(0)2 =

(
1− ρ1 + ρ2

(√ρ1 +√ρ2)2

)−1
= 1

2
(√ρ1

ρ2
+
√
ρ2

ρ1

)
+ 1

Meanwhile, recall by differentiating both sides of the silverstein equations (11) in t we can get

v′(t)
v(t)2 = 1 + γv′(t)

∫
τ2

(1 + τv(t))2 dH(τ).

Therefore, if we differentiate once more we get

v′′(t)
v(t)2 − 2 v

′(t)2

(v(t))3 = γv′′(t)
∫

τ2

(1 + τv(t))2 dH(τ)− 2γv′(t)2
∫

τ3

(1 + τv(t))3 dH(τ),

and thus, multiplying through by v(t)3/v′(t)2 and rearranging we arrive at

v′′(t)v(t)
v′(t)2

[
1− γ

∫
τ2v(z)2

(1 + τv(z))2 dH(τ)
]

= 2
[
1− γ

∫
τ3v(z)3

(1 + τv(z))3 dH(τ)
]
.

Furthermore, noting that 1 − γ
∫ τ2v(z)2

(1+τv(z))2 dH(τ) = v′(t)
v(t)2 means we get the following equality for the second

derivative

v′′(t) = 2
[
1− γ

∫
τ3v(t)3

(1 + τv(t))3 dH(τ)
](v′(t)

v(t)

)3
.

Taking t→ 0 and plugging in the defintion of v(0) yields the following, which will be required for the proof

v′′(0) = 2
[
1− ρ

3/2
1 + ρ

3/2
2

(√ρ1 +√ρ2)3

](v′(0)
v(0)

)3
.

Now, let us compute the derivative of the asymmptotic risk RAsymm(λ) for the strong and weak features model.
Bringing together the Bias and Variance terms, differentiating through by λ and dividing by σ2 we get

1
σ2R

′
Asym(λ) =

(
2(v′(−λ))2

(v(−λ))3 −
v′′(−λ)

(v(−λ)2)

)(
1 + r2

σ2

2∑
i=1

φiψiρi
(ρiv(−λ) + 1)2

)
+ 2
(v′(−λ)
v(−λ)

)2 r2

σ2

2∑
i=1

φiψiρ
2
i

(ρiv(−λ) + 1)3

Taking λ → 0 and plugging in ψ1 = ψ2 = 1/2, ψ1φ1 + ψ2φ2 = 1, φ1 + φ2 = 2 as well as v(0) into ρiv(0) for
i = 1, 2 yields

1
σ2R

′
Asym(0) =

(
2v
′(0)2

v(0)3 −
v′′(0)
v(0)2)

)(
1 + r2

σ2
ρ1ρ2

(√ρ1 +√ρ2)2

)
+
(v′(0)
v(0)

)2 r2

σ2 (ρ1ρ2)3/2φ1
√
ρ1 + φ2

√
ρ2

(√ρ1 +√ρ2)3 .

Let us now plug in the second derivative v′′(0). In particular, note that we can write

2v
′(0)2

v(0)3 −
v′′(0)
v(0)2 = 2

(v′(0)
v(0)

)2 1
v(0)

(
1−

(
1− ρ

3/2
1 + ρ

3/2
2

(√ρ1 +√ρ2)3

) v′(0)
v(0)2

)
= −

(v′(0)
v(0)

)2 1
v(0)
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where on the second equality we have used the equality for v′(0)
v(0)2 from above to note that

1−
(

1− ρ
3/2
1 + ρ

3/2
2

(√ρ1 +√ρ2)3

) v′(0)
v(0)2

= ρ
3/2
1 + ρ

3/2
2

(√ρ1 +√ρ2)3 −
1
2

√
ρ1

ρ2
− 1

2

√
ρ2

ρ1
+ ρ

3/2
1 + ρ

3/2
2

(√ρ1 +√ρ2)3

(√ρ1

ρ2
+
√
ρ2

ρ1
)1
2

=
(ρ3/2

1 + ρ
3/2
2 )(2√ρ1ρ2 + ρ1 + ρ2)− (ρ1 + ρ2)(√ρ1 +√ρ2)3

2√ρ1ρ2(√ρ1 +√ρ2)3

=
(ρ3/2

1 + ρ
3/2
2 )(2√ρ1ρ2 + ρ1 + ρ2)− (ρ1 + ρ2)(√ρ1 +√ρ2)3

2√ρ1ρ2(√ρ1 +√ρ2)3

=
(ρ3/2

1 + ρ
3/2
2 )− (ρ1 + ρ2)(√ρ1 +√ρ2)
2√ρ1ρ2(√ρ1 +√ρ2)

= −1
2 .

Returning to the derivative of the asymptotic risk R′Asym(0), factoring out
(
v′(0)
v(0)

)2
and plugging in the definition

of v(0) gives

1
σ2R

′
Asym(0) =

(v′(0)
v(0)

)2√
ρ1ρ2

[
− 1 + r2

σ2
ρ1ρ2

(√ρ1 +√ρ2)2

(φ1ρ1 + φ2ρ2√
ρ1 +√ρ2

− 1
)]

It is then clear that the sign of R′Asym(0) is governed by the quantity in the square brackets. This then yields the
result.

B Proof of Lemma 2

In this section we provide the proof for Lemma 2. We recall that the limits (13) and (14) have been computed
previously. In particular, Lemma 2.2 of (Ledoit and Péché, 2011) (the roles of d, n are swapped in their work,
and thus, one must swap γ with 1/γ) shows

1
d

Tr
((X>X

n
+ λI

)−1
Σ
)
→ γ−1

( 1
1− γ(1− λm(−λ)) − 1

)
Meanwhile Lemma 7.4 of (Dobriban et al., 2018) shows

1
d

Tr
((X>X

n
+ λI

)−2
Σ
)
→ m(−λ)− λm′(−λ)

(1− γ(1− λm(−λ)))2

This leaves us to show the limit (15), for which we build upon the techniques (Ledoit and Péché, 2011) as well as
(Chen et al., 2011).

We begin with the decomposition. Recall since the covariates are multivariate Gaussians, they can be rewritten
as X = ZΣ1/2 where Z ∈ Rn×d is a matrix of independent standard normal Gaussian random variables.
For i = 1, . . . , n the associated row in X is then denoted Xi = ZiΣ1/2. As such X>X =

∑n
i=1X

>
i Xi =∑n

i=1 Σ1/2Z>i ZiΣ1/2. Let us then define Ri(z) =
(
X>X
n − X>i Xi

n − zI
)−1. Using the Sherman-Morrison formula

we then get

R(z) = (X
>X

n
− zI)−1 = Ri(z)−

1
n

Ri(z)Σ1/2Z>i ZiΣ1/2Ri(z)
1 + 1

nZiΣ1/2Ri(z)Σ1/2Z>i
(19)

Moreover we have

1
n

n∑
i=1

Σ1/2Z>i ZiΣ1/2R(z) = X>X

n
R(z) = (X

>X

n
− zI)R(z) + zR(z) = I + zR(z)
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Multiplying the above on the left by Φ(Σ)R(z), taking the trace and dividing by d yields

1
d

Tr
(
Φ(Σ)R(z)

)
+ z

1
d

Tr
(
Φ(Σ)R(z)2) = 1

d

n∑
i=1

1
n
ZiΣ1/2R(z)Φ(Σ)R(z)Σ1/2Z>i

= 1
d

n∑
i=1

1
n

ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i(
1 + 1

nZiΣ1/2Ri(z)Σ1/2Z>i
)2

where for i = 1, . . . , n we have plugged in (19) twice into for R(z) to get

ZiΣ1/2R(z)Φ(Σ)R(z)Σ1/2Z>i

= ZiΣ1/2Ri(z)Φ(Σ)R(z)Σ1/2Z>i −
1
n

ZiΣ1/2Ri(z)Σ1/2Z>i ZiΣ1/2Ri(z)Φ(Σ)R(z)Σ1/2Z>i
1 + 1

nZiΣ1/2Ri(z)Σ1/2Z>i

= ZiΣ1/2Ri(z)Φ(Σ)R(z)Σ1/2Z>i
1 + 1

nZiΣ1/2Ri(z)Σ1/2Z>i

= 1
1 + 1

nZiΣ1/2Ri(z)Σ1/2Z>i

×
[
ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i −

1
n

ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i ZiΣ1/2Ri(z)Σ1/2Z>i
1 + 1

nZiΣ1/2Ri(z)Σ1/2Z>i

]
= ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i(

1 + 1
nZiΣ1/2Ri(z)Σ1/2Z>i

)2 .

Choosing z = −λ we then have that

1
d

Tr
(
Φ(Σ)R(−λ)

)
− λ1

d
Tr
(
Φ(Σ)R(−λ)2) = 1

d

n∑
i=1

1
n Tr

(
Σ1/2R(−λ)Φ(Σ)R(−λ)Σ1/2)(

1 + 1
n Tr(ΣR(−λ))

)2 + δ (20)

where the error term δ = δ1 + δ2 + δ3 + δ4 such that

δ1 = 1
d

n∑
i=1

1
n Tr

(
Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2)− 1

n Tr
(
Σ1/2R(−λ)Φ(Σ)R(−λ)Σ1/2)(

1 + 1
n Tr(ΣR(−λ))

)2
δ2 = 1

d

n∑
i=1

1
n

Tr
(
Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2)( 1(

1 + 1
n Tr(ΣRi(−λ))

)2 − 1(
1 + 1

n Tr(ΣR(−λ))
)2)

δ3 = 1
d

n∑
i=1

1
n

Tr
(
Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2)

×
( 1(

1 + 1
nZiΣ1/2Ri(−λ)Σ1/2Z>i

)2 − 1(
1 + 1

n Tr(ΣRi(−λ))
)2)

δ4 = 1
d

n∑
i=1

1
nZiΣ

1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2Z>i − 1
n Tr

(
Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2)(

1 + 1
nZiΣ1/2Ri(z)Σ1/2Z>i

)2
As shown in section B.1 the error terms |δ1|, |δ2|, |δ3|, |δ4| → 0 almost surely as n, d→∞. It is now a matter of
computing the limits of the remaining terms. As discussed previously the limit of 1

d Tr(ΣR(−λ)) is known from
(Ledoit and Péché, 2011). From the same work it is also known that

1
d

Tr
(
Φ(Σ)R(−λ)

)
→ ΘΦ(−λ). (21)

That leaves us to compute the limit of 1
d Tr

(
Φ(Σ)R(−λ)2). If we are to write fd(λ) = 1

d Tr
(
Φ(Σ)R(−λ)

)
then

note the derivative with respect to λ is f ′d(λ) = − 1
d Tr

(
Φ(Σ)R(−λ)2). We wish to now study the limit of the

f ′d(λ) through the limit of fd(λ). To do so we will follow the steps in (Dobriban et al., 2018), which will require
some definitions and the following theorem.

Let D be a domain, i.e. a connected open set of C. A function f : D → C is called analytic on D if it is
differentiable as a function of the complex variable z on D. The following key theorem, sometimes known as
Vitali’s Theorem, ensures that the derivatives of converging analytic functions also converge.
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Theorem 2 (Lemma 2.14 in (Bai and Silverstein, 2010)) Let f1, f2, . . . be analytic on the domain D, sat-
isfying |fn(z)| ≤ M for every n and z in D. Suppose that there is an analytic function f on D such that
fn(z)→ f(z) for all z ∈ D. Then it also holds that f ′n(z)→ f ′(z) for all z ∈ D

Now we have from (Ledoit and Péché, 2011)

fd(λ)→
∫

Φ(τ) 1
τ(1− γ(1− λm(−λ))) + λ

dH(τ)

for all λ ∈ S := {u+ iv : v 6= 0, or v = 0, u > 0}. Checking the conditions of Theorem 2 we have that fd(λ) is an
analytic function of λ on S and is bounded |fd(λ)| ≤ ‖Φ(Σ)‖2

λ . To apply Theorem 2 it suffices to show that the
limit ΘΦ(−λ) is analytical. To this end we invoke Morera’s theorem which states if∮

γ

ΘΦ(−λ)dλ = 0

for any closed curve γ in the region S then ΘΦ(−λ) is analytic. We see this is the case by applying Fubini’s
Theorem as follows ∮

γ

ΘΦ(−λ)dλ =
∮
γ

∫
Φ(τ) 1

τ(1− γ(1− λm(−λ))) + λ
dH(τ)dλ

=
∫

Φ(τ)
∮
γ

1
τ(1− γ(1− λm(−λ))) + λ

dλ︸ ︷︷ ︸
=0

dH(τ) = 0

and noting that the inner integral is zero from Cauchy Theorem as 1
τ(1−γ(1−λm(−λ)))+λ is an analytical function

of λ in S for any τ ∈ [h1, h2]. By Theorem 2 we have that

−1
d

Tr
(
Φ(Σ)R(−λ)2) = f ′d(−λ)→ ∂ΘΦ(−λ)

∂λ
. (22)

The final limit (15) is arrived at by considering the limit as d, n → ∞ of (20). Specifically, with the fact that
δ → 0, bringing together (21), (22) and (13). Noting that (13) is applied to the square of 1 + 1

n Tr
(
ΣR(−λ)

)
=

1 + γ 1
d Tr

(
ΣR(−λ)

)
→ 1

1−γ(1−λm(−λ)) .

B.1 Showing δ → 0

To analyse these quantities we introduce the following concentration inequality from Lemma A.2 of (Paul, 2007)
with δ = 1/3.

Lemma 3 Suppose y is d−dimensional Gaussian random vector y ∼ N (0, I) and C ∈ Rd×d is a symmetric
matrix such that ‖C‖ ≤ L. Then for all 0 < t < L,

P
(1
d
|yCy> − Tr(C)| > t

)
≤ 2 exp

{
− pt2

6L2

}
.

Furthermore, we will use the fact that the maximal eigenvalues are upper bounded

‖R(−λ)‖2 ≤
1
λ

and max
1≤i≤n

‖Ri(−λ)‖2 ≤
1
λ

We proceed to show that each of the error δ1, δ2, δ3, δ4 converge to zero almost surely.

Begin with δ1. For i = 1, . . . , n by adding and subtracting Tr(Σ1/2R(z)Φ(Σ)Ri(z)Σ1/2) we can decompose

Tr
(
Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2)− Tr

(
Σ1/2R(z)Φ(Σ)R(z)Σ1/2)

= Tr
(
(Ri(−λ)−R(−λ))Φ(Σ)Ri(−λ)Σ

)
+ Tr

(
ΣR(−λ)Φ(Σ)(Ri(−λ)−R(−λ))

)
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Using (19) and letting A = Φ(Σ)Ri(−λ)Σ we then get

1
n
|Tr

(
(Ri(−λ)−R(−λ))A

)
| =

∣∣∣ 1
n2
ZiΣ1/2Ri(−λ)ARi(−λ)Σ1/2Z>i

1 + 1
nZiΣ1/2Ri(−λ)Σ1/2Z>i

∣∣∣ (23)

≤ ‖A‖2
n

∣∣∣ 1
n

ZiΣ1/2Ri(−λ)Ri(−λ)Σ1/2Z>i
1 + 1

nZiΣ1/2Ri(−λ)Σ1/2Z>i

∣∣∣
≤ ‖A‖2

n
sup
x

∣∣∣ xRi(−λ)2x>

1 + xRi(−λ)x>
∣∣∣

≤ ‖A‖2
n

sup
x

∣∣∣xRi(−λ)2x>

xRi(−λ)x>
∣∣∣

≤ ‖A‖2
n
‖Ri(−λ)‖2

≤ ‖A‖2
λn

≤ ‖Φ(Σ)‖2‖Σ‖2
λ2n

An identical calculation with A = Φ(Σ)R(−λ)Σ yields the same bound. This then yields with the lower bound
(1 + Tr(Σ1/2R(−λ)Σ1/2)) ≥ 1

|δ1| ≤ 2n
d

‖Φ(Σ)‖2‖Σ‖2
λ2n

and as such δ1 goes to zero as n, d→∞ so that d/n→ γ.

Now consider the term δ2. Note that for two positive numbers a, b ≥ 0 we have

1
(1 + a)2 −

1
(1 + b)2 = (1 + b)2 − (1 + a)2

(1 + a)2(1 + b)2

= b2 + 2b− a2 − 2a
(1 + a)2(1 + b)2

= b(b− a) + a(b− a) + 2(b− a)
(1 + a)2(1 + b)2

= (b− a) (b+ 1) + (a+ 1)
(1 + a)2(1 + b)2

= (b− a)
( 1

(1 + a)2(1 + b) + 1
(1 + a)(1 + b)2

)
and as such |(1 + a)−2 − (1 + b)−2| ≤ 2|b − a|. Using this with a = 1

n Tr(Σ1/2Ri(−λ)Σ1/2) and b =
1
n Tr(Σ1/2R(−λ)Σ1/2) whom are both non-negative, allows us to upper bound∣∣∣ 1(

1 + 1
n Tr(ΣRi(−λ))

)2 − 1(
1 + 1

n Tr(ΣR(−λ))
)2 ∣∣∣ ≤ 2 1

n

∣∣Tr(ΣRi(−λ))− Tr(ΣR(−λ))
∣∣

≤ 2‖Σ‖
λn

where for the final inequality we used the argument (23) with A = Σ. Now, since the eigenvalues in the following
trace are non-negative we can upper bound

1
d

∣∣Tr
(
Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2)∣∣ ≤ ‖Σ1/2Ri(−λ)Φ(Σ)Ri(−λ)Σ1/2‖2

≤ ‖Σ1/2‖22‖Φ(Σ)‖2‖Ri(−λ)‖22

≤ ‖Σ
1/2‖22‖Φ(Σ)‖2

λ2

= ‖Σ‖2‖Φ(Σ)‖2
λ2 (24)
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Combining these two facts yields the upper bound

|δ2| ≤
2‖Σ‖22‖Φ(Σ)‖2

λ3n

which goes to zero as n→∞.

We now proceed to bound δ3 and δ4. With the bound on the trace (24) as well as using the bound |(1 + a)−2 −
(1 + b)−2| ≤ 2|b− a| we arrive at the bound for δ3

|δ3| ≤ 2‖Σ‖2‖Φ(Σ)‖2
λ2

× max
1≤i≤n

∣∣∣ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i − Tr
(
Σ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2)∣∣∣.

Meanwhile using that 1 + 1
nZiΣ

1/2Ri(−λ)Σ1/2Z>i ≥ 1 we arrive at the bound for δ4

|δ4| ≤ max
1≤i≤n

∣∣∣ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i − Tr
(
Σ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2)∣∣∣

We now show that max1≤i≤n

∣∣∣ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i − Tr
(
Σ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2)∣∣∣ converges to zero

almost surely. Observe since we have the upper bound on the largest eigenvalue we have using Lemma 3 as well
as union bound for 1 ≤ i ≤ n we have for 0 < t < ‖Σ‖2‖Φ(Σ)‖2

λ2

P
(

max
1≤i≤n

1
d

∣∣∣ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i − Tr
(
Σ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2)∣∣∣ ≥ t)

≤ 2 exp
{
− dt2λ4

6‖Σ‖22‖Φ(Σ)‖2 + log(n)
}

(25)

Let Vn,d := max1≤i≤n
1
d

∣∣∣ZiΣ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2Z>i − Tr
(
Σ1/2Ri(z)Φ(Σ)Ri(z)Σ1/2)∣∣∣ and, for any t > 0,

let En,d(t) denote the event {Vn,d ≥ t} where d = dn. Then, if d = dn satisfies dn/n → ∞, P(En,d) ≤
2n exp

{
− dt2λ4

6‖Σ‖22‖Φ(Σ)‖2

}
≤ 2n exp

{
− γnt2λ4

12‖Σ‖22‖Φ(Σ)‖2

}
where the last inequality for n large enough that d/n ≥ γ/2.

Hence,
∞∑
n=1

P(En,dn
(t)) < +∞

so that, by the Borel-Cantelli lemma, almost surely, Vn,d ≥ t only holds for a finite number of values of n. This
implies that, almost surely, lim supn→∞ Vn,d ≤ t. Note that this is true for every t > 0; letting t = 1/k and taking
a union bound over k ≥ 1 shows that lim supn→∞ Vn,d = 0 almost surely, i.e. Vn,d → 0 almost surely.


