Localizing Changes in High-Dimensional Regression Models:
Supplementary Materials

1 Proof of Theorem (1

1.1 Sketch of the Proofs

In this subsection, we first sketch the proof of Theorem [I| which serves as a general template to derive upper
bounds on the localization error change point problems in the general regression framework described in Model

Theorem [1] is an immediate consequence of Propositions [I] and

Proposition 1. Under the same conditions in Theorem and letting P being the solution to , the following
hold with probability at least 1 — C(n V p)~°.

(i) For each interval I= (s,e] € P containing one and only one true change point 1, it must be the case that

. doX? +
min{e —n,n — s} < C. (52 ,
where C. > 0 is an absolute constant;

(ii) for each interval T= (s,e] € P containing exactly two true change points, say m < 12, it must be the case

that
do/\2 + ’Y)
2 )

max{e —n2,m — s} < C. (
K

where C¢ > 0 is an absolute constant;
(iii) for all consecutive intervals T and J in ]3, the interval T U J contains at least one true change point; and
(iv) no interval 1 € P contains strictly more than two true change points.

Proposition 2. Under the same conditions in Theorem (1|, with P being the solution to , satisfying K <
|P| < 3K, then with probability at least 1 — C(nV p)~¢, it holds that |P| = K.

Proof of Theorem [l It follows from Proposition [1| that, K < |73\ < 3K. This combined with Proposition
completes the proof. O

The key ingredients of the proofs of both Propositions [I| and [2| are two types of deviation inequalities.
e Restricted eigenvalues. In the literature on sparse regression, there are several versions of the restricted

eigenvalue conditions (see, e.g. Bithlmann & van de Geer} |2011)). In our analysis, such conditions amount
to controlling the probability of the event

VT
&= Z(IIU)QZCm\\vllz—«‘?@c\/@\lvllu Vv € RP

4

which is done in Lemma [3
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e Deviations bounds of scaled noise. In addition, we need to control the deviations of the quantities of

the form
>
tel

(1)

(oo}

See Lemma [

In standard analyses of the performance of the Lasso estimator, as detailed e.g. in Section 6.2 of Bihlmann &
van de Geer] (2011)), the combination of restricted eigenvalues conditions and large probability bounds on the
noise lead to oracle inequalities for the estimation and prediction errors in situations in which there exists no
change point and the data are independent. We have extended this line of arguments to the present, more
challenging settings, to derive analogous oracle inequalities. We emphasize a few points in this regard.

e In standard analyses of the Lasso estimator, where there is one and only one true coeflicient vector, the
magnitude of A is determined as a hlgh—probablhty upper bound to (1f). However in our situation, in order to
control the /1- and ¢5-loss of the estimators ﬁ 7, where the interval I contains more than one true coefficient
vectors, the value of A needs to be inflated by a factor of v/dy. This is detailed in Lemma see, in particular,

i)

e The magnitude of the tuning parameter v is determined based on an appropriate oracle inequality for the
Lasso and on the number of true change points; more precisely, v can be derived as a high-probability bound
for

S { =/ B7)* = (e — 2 B}

tel
See Lemma [6] for details.
The fact that v is linear in the number of change point K is to prompt the consistency. This is shown in
in the proof of Proposition

e The final localization error is obtained by the following calculations. Assume that there exists one and only
one true change point 7 € I = (s,e]. Define Iy = (s,n] and Iz = (n1,¢]. Let 87 and 37, be the two true
coefficient vectors in I; and I, respectively. For readability, below we will omit all constants here and use
the symbol < to denote an inequality up to hidden universal constants. We first assume by contradiction
that

min{|Ly], |} 2 do log(n V p). 2)

then use oracle inequalities to establish that

7 {x (B = B+ D A= (B - By F

tel; tels
Savmax{[L, Tog(n v p) H{V/dol| (B} — B7,)(S)ll2 + 11B7(S%)II1 }

+ Ay/max{| I, log(n V p) }{ v/doll (B} — B3,)(S)]l2 + 17 (S)l1 } + 7
SMWILI{V ol (B = B7) ()l + 187 (S%) 11 }

+ MWIRI{Vdoll(B} = B7,)(S)l2 + 1B (S)I1 } +

+B7 = BL 3 + L2117 = B, 13 + A + (12 + [ 2157 (S + 7, (3)

_ Ny

x

where the second inequality follows and the third inequality follows from 2ab < a2 + b? and from setting

a=M/dy and b=/ |11H|B;\ — B, |l2-

Next we apply the restricted eigenvalue conditions along with standard arguments from the Lasso literature
to establish that

YAl (B =BV + > {ad (B - B7,)Y?

tel tels
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Figure 1: Road map to complete the proof of Theorem [I} The directed edges mean the heads of the edges are
used in the tails of the edges.

> |LIB7 = Br 11 + I L187 = 81,117 > cire, (4)
where € is an upper bound on the localization error. Combining and leads to

¢ < )\Qdo + 7y
~ /i? N

e Finally, the signal-to-noise ratio condition that one needs to assume in order to obtain consistent localization
rates is determined by setting € < A.

The proofs related with Algorithm [If and Corollary |2 are all based on an oracle inequality of the group Lasso
estimator. Once it is established that

€

> 1B - BilI3 <6 < VA, (5)

t=s+1

where § < dglog(n V p) and where there is one and only one change point in the interval (s,e] for both the
sequence {3;} and {8;}, then the final claim follows immediately that the refined localization error e satisfies

e§5//<;2.

The group Lasso penalty is deployed to prompt and the designs of the algorithm guarantee the desirability
of each working interval.

The proof of Theorem [l| proceeds through several steps. For convenience, Figure [1| provides a roadmap for the
entire proof. Throughout this section, with some abuse of notation, for any interval I C (0,n], we denote with

Bt =171 s Br-

1.2 Large Probability Events

Lemma 3. For Model[l, under Assumption[l|(c), for any interval I C (0,n], it holds that
P{&;} > 1 — c1 exp(—cal|l]),

where c1,cq > 0 are absolute constants only depending on the distributions of covariants {x:+}, and

I
er={ (S @) 2 i, - 00, iogGllols, v e R
tel

This follows from the same proof as Theorem 1 in |[Raskutti et al. | (2010), therefore we omit the proof of
Lemma For interval I satisfying |I| > Cdglog(p), an immediate consequence of Lemma 3| is a restricted
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eigenvalue condition (e.g. van de Geer & Biithlmann) 2009; Bickel et al. | [2009). Tt will be used repeatedly in the
rest of this paper.

It will become clearer in the rest of the paper, we only deal with intervals satisfying |I| 2 dglog(n V p) when
considering the events &;.

Lemma 4. For Model[l], under Assumption[i](c), for any interval I C (0,n], it holds that for any

A >N = Cho/log(nVp),

where Cy > 0 is a large enough absolute constant such that, we have

Br(\) = {

where c3 > 0 is an absolute constant depending only on the distributions of covariants {x:} and {e.}.

P{BI(N)} > 1—2(nVp)~,

where

E EtTt

tel

< Av/max{[1], log(n \/p)}/8} :

oo

For notational simplicity, we drop the dependence on A in the notation By(\).
Proof. Since e;’s are sub-Gaussian random variables and z;’s are sub-Gaussian random vectors, we have that

etxy’s are sub-Exponential random vectors with parameter C,o. (see e.g. Lemma 2.7.7 in [Vershyninl 2018)). Tt
then follows from Bernstein’s inequality (see e.g. Theorem 2.8.1 in [Vershynin, 2018)) that for any ¢ > 0,

, t2 ¢
[P’{ thﬂﬁt > t} < QPGXP{_cmm{W’ Cx%}}

tel
t = C\Cy/40.+/log(n V p)y/max{|I], log(n V p)}

Taking

yields that
P{B;} >1—-2(nVp)~,

where ¢3 > 0 is an absolute constant depending on Cy, C,, o.. O
1.3 Auxiliary Lemmas
Lemma 5. For Model[l, under Assumption[ij(a) and (c), if there exists no true change point in I = (s, e], with

|I] > 2882C2dy log(n V p)/c2 and
A > A= Cho/log(nV p),

where Cy > 0 being an absolute constant, it holds that

~ Ca /d
P{Hﬁ%—m 2V

< 22V Y 2N
2 = \/m7 HBI B

chdo}
VAT

> 1= ei(n v p) > Che/ —o(n v p)=,

where C3 > 0 is an absolute constant depending on all the other absolute constants, c1, ca, c3 are absolute constants

defined in Lemmas[3 and [4)

Proof. Let v = B]A — 7. Since |I| > log(n V p), it follows from the definition of Bf‘ that

S (e — 2 BN+ WM <D (e — 2 87)% + MW1IT1165 I
tel tel
which leads to

P * * A
> @l +AVITNB I < WHIBT I +2) e[ v < AW + 5V HIvl, (6)

tel tel



where the last inequality holds on the event By, with the choice of A and due to Lemma[d Note that
18711 2 1187 (S)Il = [l ()l + (187 (S)1a (7)

and ~
[olly = [0(S)]lx + 1187 (Sl (8)
Combining @, and yields
> (@ \/II 1B2(5)Ih < *\/II [EE 9)
tel
which in turn implies

1825 < 31182 (S)]h-

On the event of &, it holds that

ce/ |1
S 7o) > Wy, o0, i@ ol

[evarl .

= VMo, — 00, ioB (@) o(8) 1 ~ 9C oz @) v(S )]

> V"nvn ~ 360, @ ) > Y ol - 360, /Ay Tog @ (Sl

x mvarl

(Cz —sescmﬁdolog(p)) folle > (10)

8

where the second inequality follows from @D, the third inequality follows from Assumption a) and the last
inequality follows from the choice of |I].

Combining @ and leads to

III
\/II [v(S)h < *\/IfldollvHQ»
therefore
96A/dy
[vlle £ —=-
Varie
and

384\d
[olly = lo(S)ll + [lo(S) [ < 4llv(S)ll < 4/ dollv]ls < -

Ve

O
Lemma 6. For Model[l, under Assumption[lj(a) and (c), if there exists no true change point in I = (s, €], and

A > A1 = Choo/log(n V p),

where Cy > 0 being an absolute constant, it holds that if |I| > 2882C2dylog(n \V p)/c2, then

IE”{ < )\2do}

> 1 —ci(nVp) 2 Cadora/es _g(n v p) =
if |1| < 2882C2dglog(n V p)/c2, then

P{Z{(yt—xjg (yt—% }

tel
where Cy > 0 is an absolute constant depending on all the other constants.

Z{(yt—x:B (yt—xtﬁ) }

tel

< Oy /log n\/pd/z} >1—-2(nVp)~3,
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Proof. To ease notation, in this proof, let B = B}‘ and B* = f7.

Case 1. If |I]| > 2882C2dglog(n V p)/c2, then |I| > log(n V p). With probability at least 1 — ¢1 exp(—ca|l|) —
2(n V p)~°, we have that

Y {w =8 = (i — 28} < AW Il = WITIBI < WITIB = B[l < CsX>dl,

tel
where the fist inequality follows from the definition of 3 and the second is due to Lemma
Case 2. If |I| < 2882C2%dglog(n V p)/c2, then

S {we =2 B = — =/ )%} < AWmax{[I], Tog(n V p) }| 8|11 < Cady/log(nV p)dyy?,

tel

since ||5*||1 < Cgdp. In addition, it holds with probability at least 1 — 2(n V p)~° that

SN{we—2/ 8 = —a! B} ==> (& B — 2] B)* +2>_ea] (B-B")

tel tel tel
<= @B B+ (@B =B +D <Y
tel tel tel tel

<max{+/|I|log(n V p), log(n V p)} < CsA/log(n \/p)dg/z,

where the first inequality follow from 2ab < a? + b? and letting a = &;, b = z, (B — (%), the third inequality
follows from the sub-Gaussianity of {e;}. O

Lemma 7. For Model[l] under Assumption|[i(a)-(c), for any interval I = (s, €] and

A > Ay = Cho/dolog(n V p),

where Cy > 8C3Cy /0., it holds with probability at least of 1 —2(nV p)~° that,
187 (5l < 3[187(S) I

If in addition, the interval I satisfies |I| > 2882C2dglog(n V p)/c2, it holds with probability at least 1 — c1(n V
p)—288203d002/ci _ 2(n vp)—03 that
< CsA\/dy

A)\ii *
|/BI |I|Zﬂt 2— \/m

tel
where C5 > 0 is an absolute constant depending on other constants.

CsAdy

VI

and |

oA 1 *
mfmZ@

tel

Proof. Denote 8 = Ej\ and 8* = (|I|)~' 3,c; Bf. Tt follows from the definition of 3 that

Y e — ! B)? + Av/max{[T], log(n vV p)Y||B]], <D (v — =/ B)” + Ay/max{[I], log(n V p)}|| 8"

tel tel

1°

which leads to

S {al (B} + 23 (e — 2] B2l (87— B) + Av/max{[I], log(n V )} 3],

tel tel

< Amax{|I], log(n v p)}|| 87|,

therefore

S (el B0y +28 -7 > wal (5" - B7)

tel tel



<2 e/ (B—8%) + \max{[1], Tog(n v p)}(||5°[|, — [15]],)- (11)
tel
We bound
thxt (B =B7)
tel
For any k € {1,...,p}, the kth entry of }_,.; z.2] (8* — B}) satlsﬁes that
ESSS w(k)a(5) (8 () - ZZE{xt GHB* () = B; ()}
tel j=1 tel j=1
=S B (b (7)) Y (870) - B1G)) = 0.
j=1 tel

Note that x] (3* — 8;)’s are sub-Gaussian random variables with a common parameter 2C3C,+/do, and z’s are
sub-Gaussian random vectors with parameter C,. Therefore due to sub-Exponential inequalities (e.g. Proposi-
tion 2.7.1 in [Vershynin} 2018)), it holds with probability at least of 1 — 2(n V p)~¢ that,

Y oww (57 = 57| < 2C.Cp\/do max{y/[I[log(nV p), log(n v p)}

tel
< A/max{|I|, log(n V p)} /4. (12)

On the event B;, combining and yields

S/ (B - 8} + A/max{[T], log(n v p)}|| 5],

tel

g _B\Hl

The final claims follow from the same arguments as in Lemma O

1.4 All cases in Proposition

Lemma 8 (Case (i)). With the conditions and notation in Propositz'on assume that I = (s,e] € P has one
and only one true change point 1. Denote Iy = (s,n], Io = (n,€] and |8}, — B7,ll2 = & If, in addition, it holds
that

Z(yt_xtﬁj <Zyt_xtﬁll +Z yt_xtﬁb +7 (13)

tel tely tels

then with
A > Ay = Choen/dplog(n V p),

where Cy > 8C3Cy/0e, it holds with probability at least 1 — 2¢1(n \/p)_ngzcid‘)“?/“i —2(nVp)~° that, that

. A2dy +
min{|L1, L]} < C. <22’7) .

Proof. First we notice that with the choice of A, it holds that
A > HlaX{)q, /\2},

and therefore we can apply Lemmas ] [6] and [7] when needed.

We prove by contradiction, assuming that

2
min{|,|, |L|} > C. </\d22+7> > 2882C2%dy log(n V p)/c2, (14)
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where the second inequality follows from the observation that x2 < 4doC§. Therefore we also have

min{|I1], [I2|} > log(n V p).

It follows from Lemma@ and that, with probability at least 1 —2¢;(n \/p)_QSSZCidocZ/Ci —2(nVp)~° that,

that
Z(%*%ﬂ[ Jrzyf*xtﬂf) *Z(yt*xtﬁl)
tely tels tel
< we—a B (e — 2l B)?
tely tels
< Z Yt — Xy 611 =+ Z /812 +v+ 2C3/\2d0-
tel terl,

Denoting A; = Bf‘ - Br,i=12, leads to that

D@l A1)+ (2 A0)? <2 e[ A1 +2) e Ay 4y +2C5\dy

tel tels tel tels
<2 thﬂft Al +2 thl't | Az|l1 + 7+ 2C3\%dy
tel 0o tels foe)

E EtTt

<2||Y | (1A1(S) ]y + 1AL(S) 1) +2

(1A2(8)ll + 122(5)]l1)

tel; 00 tels
+')/+203)\2d0
<2\ || (VdollAr(S)l2 + 181(S) 1) + 2| eel|  (VdollA2(S) ]2 + 122(5%)]|1)
tel o tels 0o

+ v+ 2C32%d.

On the events B, N By,, it holds that

([T6) < A/2(V/I1ldol|AL(9)]l2 + VI [[[AL(SO) |l + v/ 2 dol| Az (S)]|2

+ VL[ A2(8%)1) + v + 203)\2d0

3%y GIL[|Ad3 | clbllAqlz |11+ 12])
s 205)2d

- e 956 | 9256 IBM(S) 1+ + 2C5X2do

3202y | AILIIALE | ATl Asl3

= - L AC3N2d

STa T me T o PR

where the second inequality follows from 2ab < a? + b2, letting
a=4\/do/c; and b= cy\/|L]||A1]]2/16, j=1,2,

and the last inequality follows from Lemma [7]

Note that
Cs)\dg

VILl

[A1flr < 1A1(9) [l + [[A1(S)]lx < Vdol| Axll2 +

which combines with , on the event &1, , leads to
9C;5C \dy+/log(p)

cen/ | I
> a7 a2 > S, o0, el A > Sy, -

tel, 1]

(16)

(17)



Moreover, we have

VIL[[Adllz + V[ 12][|Azllz = \/\11|||A1||§ + [ 2] Aall3

- " L] K
> B TRl — o+ Tl — oY = sy 2] > Ling TR T 9

Therefore, on the event &, N &, N Br, N Br,, combining and (I7)), we have that

8
VIL[A]l2 + V2| Azll2 < o D@l A2+ > (a] Ag)?

tel tels

Cx

.8 <9C5OmAd0 log(p) , 9C5C:Ady log(p)>

CAVALY CAVALL]

8\f\/32A2do EINlAllE | 2]l Az]l3

4 2
256 o6 T HAGN D

.8 <9c5czAdO log(p) , 9C5C:Ady log(p)>

Cx

CAVALY 21k
64A\/% \/ix/lllll\Ale+\@\/|12IIIA2II2+8\/ﬂ 16v2C3AVdy | CsAvido

CQ 2 2 Cy Ca 202 )
which implies that
V2 128 + 32/2¢,/C3 + C 8y/2
(VI Al + VT Aall) < VGO iy + 22 (19)

Combining and yields

2—2 12 2V 2¢, \/2
ng/mm{uﬂ, L} < 12843 */;62 VCs +C5 )\ Jan+ V2
Cm T

therefore

, A2dy +
min{|1|, ||} < C. <H> :

2
which is a contradiction with . O
Lemma 9 (Case (ii)). For Model[l], under Assumption[1] with

A > A2 = Chon/dolog(n V p),

where Cy > 8CgCy /0., I = (s,€] containing exactly two change points m1 and ne. Denote Iy = (s,m], Io =
(n1;m2], I3 = (n2sel, 187, — B, ll2 = k1 and ||B}, — B, |l2 = k2. If in addition it holds that

Z(yt—ﬂitﬁz <Zyt—$t511 +Zyt—$t512 +Zyt_xt513 +27,

tel tely tels tels

then

A2do +
max{|L|, |Is|} < C. (227) ,

with probability at least 1 — 3¢y (n v p)~288°Cadocz/cl _ 9(p v/ p)=cs,



Manuscript under review by AISTATS 2021

Proof. First we notice that with the choice of A, it holds that
A > max{)\l, )\2},

and therefore we can apply Lemmas ] [6] and [7] when needed.

2
L] < C. (W)
K

By symmetry, it suffices to show that

We prove by contradiction, assuming that

\2d
|| > C. (W) > 2882C2%dylog(n V p)/c2, (20)
K
where the second inequality follows from the observation that x> < 4doC3. Therefore we have |I;| > log(n V p).
Denote A B 7 — B1.,i=1,2,3. We then consider the following two cases.
Case 1. If

|I3] > 2882C2dylog(n V p)/c2,
then |I3] > log(n V p). It follows from Lemma [f] that the following holds with probability at least 1 — 3¢ (n V
p)7288205d062/ci _ 2(71 \/p)fcg that,

STty —a/ B e =2 B+ e — 2/ B+ (e — ) BY)? + 2y

tel tel tels tels
<SS = B D =2 B+ D (v — 3/ i) + 3C5\dy + 2,
tel tels tels

which implies that

3 3
Z Z Z EtiL';rAi + 3C3)\2d0 + 2’)’
i=1tel;

=1 teIl
<2 £ty || L] A1 + 3C30%dg + 2
Xl T
A2y (¢do|fi|||Ai<s>||2 + VTS ) +3CsM2do + 2,
i=1

where the last inequality follows from Lemma

It follows from identical arguments in Lemma [8] that, with probability at least 1 — 3¢y (n Vv p)_288202d002/ c —

2(n V)=,
min{|11], ||} < C. (%;W) .
Since |I5| > A by assumption, it follows from Assumption [Id) that
Ll<c. (W(’j”) ,
K
which contradicts ([20)).

Case 2. If

|I3] < 288%C2dylog(n V p)/c2,
then it follows from Lemma |§| that the following holds with probability at least 1 — 2¢1(n V p)*2882cid062/ -
2(n V p)~ that,

Z(yt*%ﬂj <Zyt*xtﬂh +Zyt*$t512 JFZ 513 + 2y

tel tely tel, tels



<D=l 617+ D (e — 2l )R+ D (e — 2d B1,)° + 205X do + Ciliog(p)dy* + 21,

tel; tels tels

which implies that

3
22237 el Ay +2050%dg + Cany/log(p)dy* + 27

INgE

=1 tEIL 1=1tel;
<2y T > e ||\/ [LIAl|L + 2C50%dg + Cary/log(p)dy
i=1 |I tel;
+2v+ Z(LL‘IA;),)Q + Zaf
tels tels
2
<3/23" (VAL 2SIz + VITIIA(S) ) +2C50%dy + CiAVTog(p)dy
i=1
27+ ) (] Ag)P 4 Y el
tels tels

The rest follows from the same arguments as in Case 1.

O

Lemma 10 (Case (iii) in Proposition. For Model under Assumption if there exists no true change point
in I = (s,e], with

A > Xy = Cho/dolog(nV p),
where Cy > max{8C,Cy, 8C3C,/o.}, and v = C,o2d3log(n V p), where C, > max{3C3/c%, 3Cy/c,}, it holds
with probability at least 1 — 3¢y (n v p) 288" Cidocz/es _ o(n v/ p) =3 that

> -2 pr)? < _ min ST twe—a! By + D we—a!Bhg)’ g+

tel te(s,b] te(b,e]

Proof. First we notice that with the choice of A, it holds that A > A, therefore we can apply Lemma [6] when
needed.

Forany b=s+1,...,e—1,let I) = (s,b] and Iy = (b, €]. It follows from Lemma@ that with probability at least
L= 3ei(n v p) 2 Cadocal s —9(n v p) e,

< max {Cg)\2d0, Cyry/log(n Vp)dg/Q} < /3.

TN _
Jeliitny > (=2 B3 = 3y~ B3)°

teJ teJ
Since g7 = 87, = B,, the final claim holds automatically.
O

Lemma 11 (Case (iv) in Proposition[l)). For Model[l, under Assumption[d], if I = (s, €] contains J true change
points {ny}7_,, where |J| > 3, if

A> = C,\crs\/dT)log(n V p),
where C\ > 8C3Cy/oe, then with probability at least 1 — neq(n \/p)_288209%'%02/0i —2(nVp) s,

J+1
Z( xtﬁ[ >ZZ yt_l’t +J’Y7
tel j=1tel;

where Iy = (s, m], I; = (n;,nj4+1] for any 2 < j < J and I;41 = (ns,¢].
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Proof. First we notice that with the choice of A, it holds that
A > max{\1, A2},

and therefore we can apply Lemmas [} [] and [7] when needed.

We prove the claim by contradiction, assuming that

J+1
Swe—a B <D e — 2 B) + v
tel J=1tel;

Let A; = ﬂ 7 — B, i=1,...,J + 1. It then follows from Lemma |§| that with probability at least 1 — neq(n Vv
p)_2882032:d002/c _ 2(n \/Z?)—Cg7

J+1

Swe—a B <D -2 B+ Ty
tel j=1tel;

J+1

SN (w2 B7)? + Ty + (J+1)Cyoldglog(n V p),
Jj=1tel;
which implies that

J+1 J+1
SN @82 <2) 0 ) Ay + Ty + (J+1)C02d log(n V p). (21)
j=1tel; j=1tel;

Step 1. For any j € {2,...,J}, it follows from Assumption |1| that
|I;| > A > 2882C2dglog(n V p)/c2. (22)

Due to Lemma E|, on the event B ), it holds that

S el Ay < corr|| | |Ij|Aj||1sA/4< dol L 118,(5) 2 + |Ij|||Aj<SC>||1>
tEI mtel

4)\2d0 z|]| .
<25+ 2t + 3y IS

WNdy 3L )
=2 LA 13+ A/4/ 111 B = (1) ;ﬂt )59I
N2dy 3L _
<Py Sy A 2+ s il - (X Al
xr
tel

Ny 3L ,
< 2 o6 18 15 + Cs/4X*do, (23)

where the third inequality follows from 2ab < a? + b2, letting

a=2M\/do/c, and] b= cy/|Li||All2/16,

and the last inequality follows from Lemma 7| In addition, on the event of &7, due to Lemma |3} it holds that

cz/ 1]
> (@l Ay)? = ZYERA, ;= 9C,/log )| A, 1

tel;



czr/| L] c
2= (1Al = 9C/dolog(p)]|Ajll2 — 9C.v/1og(p) |4, (S)h

ce/| 1] . e/ |11 9C\dp+/1og(p)
=== 1Al = 9C, log(p) | 4;(5) h = ==~ ||Aj||2—T, (24)

where the third inequality follows from and the last follows from Lemma lﬂ

Step 2. We then discuss the intervals I; and Iy ;. These two will be treated in the same way, and therefore for
Le{l1,I;11} and [ € {1,J + 1}, we have the following arguments. If |L| > 2882C2d, log(n V p)/c2, then due to
the same arguments in Step 1, and hold. If instead, |L| < 2882C2dylog(n V p)/c2 holds, then

Zstx:Al <27t Z(:v;rAl)z + 425%.

teL teL teL

Therefore, it follows from that

J
STILIGNA 3 < JC max {deo, A/log(n v p)dg/Q} + .

Jj=2

Step 3. Since for any j € {2,...,J — 1}, it holds that
LIAGE + 111454013 = inf {11187, = vl + 1Lal157,., — vll2}

|l L1

UL k2 > min{ |1, |I; 2/2.
=N+ L] > min{ [, [Tj1|}w7/

It then follows from the same arguments in Lemma [8] that

A2d
min |[;| < C. <02+7) ,
§=2,...,0—1 K

which is a contradiction to . O

1.5 Proof of Proposition

Lemma 12. Under the assumptions and notation in Proposition[l], suppose there exists no true change point in
the interval I. For any interval J D I, with

A > X = Chon/dolog(n V p),

where Cy > max{8C1C,, 8CCy/0.}, it holds that with probability at least 1—cq (n\/p)_288205"l062/ci —2(nVp)~s,

Z(yt — ) B7)? - Z(yt — /) B))? < CoN2dp.

tel tel

Proof. Case 1. If
|I| > 2882C2%dylog(n V p)/c2, (25)

then letting Ay = 37 — 3/}7 on the event &7, we have

ce/ |1
Sl a0 > Va1, - oc, gl

4
tel

Cy I c
=SV A — 90, 0B AL ()1 — 9, loB ) |A1(5%) s
Cx |]| _ _ 4
> A, — 90, /Ao 1812 — 9, log )| A1 (57)
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I ~ I
> VU A, — 00, Viog @335 2 Y Ay - 90, CadoA 1o (), (26)

where the last inequality follows from Lemma [7] We then have on the event By,

Z(yt -/ 1) - Z(yt - x:ﬁ?)Z = 225t$tTAI - Z(%TAI)Q

tel tel tel tel

<2| 3w (J%HAI )2+ 183(5%) 1)

tel

BLC2C2N\2d3 log(p) | 9CsCudolog*(p)[|As2
ct|| 4

NN —C“”'”HAInz 9C5CudoAlog"(p)]| Arllz

2
I
Celllja ) -

2¢2\/|I| 64 4
A N2\/dyCs 9C5CoMlog* (p) | As 2
<—+/dpl|lA + —36QC’§d log(n Vv A2+ m
2 0” IHQ 576czm01 0 g( p)” 1”2 4
A? N VdyCs
< + doC2||Af)3 + —362C2dy log(n V p)|| Arll3
o3+ WCHIAIIE + e nlog(n v p) |3
81C2dy\2
+do log(P)||AT|3C + ——¢ 7~

<CsA\2dp.

where the first inequality follows from , the second inequality follows from event B; and Lemma |7} the third
follows from the , the fourth follows from 2ab < a? + b?, first letting

a=MA(4C;) and b=+/doC|Ar1]2,

then letting
a = Cx\/ do log(p)HAIHQ and b= 905\/ d0>\/8,

and the last inequality follows from Lemma [7]
Case 2. If |I| < 2882C2%dylog(n V p)/c2, then with probability at least 1 — 2(n V p)~¢,

Y=z B = (= B =2 e (B) = BF) =D {x/ (B; - B)Y

tel tel tel tel
< Ze? < max{/|I|log(n V p), log(n V p)} < Cs\*dp.
tel

Proof of Proposition[3 Denote S; = >"1" | (v —z; Bf)?. Given any collection {t1,...,t,}, where t; < - < t,,,
and tg =0, t,, 41 = n, let
m  tk41

Sty tw) = > (e =] By )™ (27)

k=1t=tp+1

For any collection of time points, when defining , the time points are sorted in an increasing order.
Let {ﬁk}g(:l denote the change points induced by P. If one can justify that
Sy 4+ Ky =Su(m, .. i) + Ky — C3(K + 1)doA? (28)
280 (i, - Mlg) + Ky = Ca(K + 1)do\* (29)
> (- s s My s ic) + Ky = 2C(K + 1)doA? — C3(K + 1)doA\? (30)



and that
Sy = St g, - - ) < C(K + K + 2)X2dy, (31)
then it must hold that |ﬁ| = K, as otherwise if K>K+ 1, then

C(K+K+2)>\2d0 S —5(771,...,;]\}?7’[71,...,7’]1{)
> —3C(K 4+ 1)A\2dy + (K — K)y > C (K + 1)\%d,.

Therefore due to the assumption that |P| = K < 3K, it holds that
C(5K +3)X%dg > (K — K)vy > 7, (32)

Note that contradicts the choice of 7.
Note that is implied by

1S5 — S (n1, ..., nK)| < C3(K 4 1)dg)?, (33)

which is immediate consequence of Lemma @ Since {Uk}k 1 are the change points induced by 77, . holds
because P is a minimiser.

For every I = (s, e] € P denote

I'=(s;mp41] V..U (Mpggr €] = J1 U .. U Jgq,

where {77p+l}?211 =In {ni}_,. Then is an immediate consequence of the following inequality

q+1
D =B =YY (e — 2/ 55)° — Cla+ )Ndo. (34)
tel =1 teJ;
By Lemmal[f] it holds that
q+1 q+1
Z Z(i‘/t — Ty BJ, < Z Z Ty Bt + (¢ + 1) max {CBdO)\27 CaAy/log(n Vv p)dg/Q}
1=1ted; 1=1ted;
=3 — 27 )%+ (a+ 1) max { CadoX?, CiAVlog(n v p)dy*} (35)
tel

Then for each { € {1,...,q+ 1},

Z(yt — Ty BA > Z (ye — ‘rt — CsAdo,

teJ; ted;

where the inequality follows from Lemma Therefore the above inequality implies that

S/ B =D (e — ) B;)* — Colg + 1)\ 2dy. (36)

tel teT

Note that and implies .

Finally, to show , observe that from , it suffices to show that

Sn(n17~-~7nK)_Sn(ﬁla"wﬁ[?ﬂ?l,"'anff) S C(K+K))\27

the analysis of which follows from a similar but simpler argument as above. 0
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2 Proof of Corollary

Lemma 13. Let S be any linear subspace in R™ and N4 be a 1/4-net of SN B(0,1), where B(0,1) is the unit
ball in R™. For any u € R™, it holds that

sup  (v,u) <2 sup (v,u),
veESNB(0,1) v€N1/4

where (-,-) denotes the inner product in R™.

Proof. Due to the definition of N 4, it holds that for any v € S N B(0,1), there exists a vy € Nj,4, such that
|lv = vi|l2 < 1/4. Therefore,

(v,u) = (v — v + v, u) = (Tg, u) + (vg,u) < i(v,m + i(v{u} + (v, u),

where the inequality follows from zp = v — vi, = (z,v)v + (zg, v )v. Then we have

It follows from the same argument that

where v; € N7 4 satisfies |v- — v;||2 < 1/4. Combining the previous two equation displays yields

(v,u) <2 sup (v,u),
U€N1/4

and the final claims holds. O

Lemma [[4]is an adaptation of Lemma 3 in[Wang et al. | (2019).

Lemma 14. For data generated from Model for any interval I = (s,e] C {1,...,n}, it holds that for any
60>0,ie{l,...,p},

e . )
P sup vieray (i) > 6 5 < Cle — s — 1)™9™ 1 exp {_cmm {7 }} |
VR Ivlle= gs;l 1C2° 20, o]/
ST i {viFviga b=m
e—s—1

Proof. For any v € R(¢~%) satisfying Soisi Mw; # vis} = m, it is determined by a vector in R™*! and a
choice of m out of (e — s — 1) points. Therefore we have,

V€T (Z) >0

t=s+1

P sup
veRE™) |lv|l2=1

Sz 1 {viAvip y=m
(6 — 5= 1) m+1 - .
< 9 sup P Z veerwe(4)| > /2
m U6N1/4 t=s+1

(6 s 1) m—+1 . 52 6
< _ JE
< m ) ¢ exp —cmin 4027 20, ||v|| 0o

52 J
mqgm+1 i
<C(e—s—1)m9m* exp{cmm{zlc%’ QCI||U|OO}}




Proof of Corollary[2 For each k € {1,..., K}, let

Bt 613 te {5k+]—7"'77/7\k}a
52, tE{’I/]\k—l—l,...76k}.

Without loss of generality, we assume that s; <, < Mk < ex. We proceed the proof discussing two cases.

Case (i). If
e — N < max{2882(7§d0 log(n Vv p)/ci, C.log(nV p)/HQ},

then the result holds.

Case (ii). If
e — M > max{2882C'§d0 log(n Vv p)/ci7 C.log(nV p)/nQ}7 (37)

c

then we first to prove that with probability at least 1 — C(n V p)~¢,

€k

7 1B = B3 < Crdo¢? = 6.

t=sr+1

Due to (4)), it holds that

€x €k p
o lye— =/ B3+ 42 Z Bo)r< > we—alBrIE+C> (38)
t=sr+1 =1 t=sr+1 t=sr+1 =1
Let A, = B, — B;. It holds that
ekfl
Z ]L {At 7é At+1} == 2
t=sr+1
Eq. implies that
ek
Z ||ATxtH2+CZ Z Z (yr — @, ﬂt)ATxt‘i‘CZ (39)
1=1

t=si+1 t=sr+1 t=sr+1

Note that

s.
i M@
I

IN
S
0

We then examine the cross term, with probability at least 1 — C(n V p)~¢, which satisfies the following

€k

Z (ye — x, 5t )ATft

t=sr+1

- S DIl EtAt(’) +(2)
gtA;Fxt _ t=sr+1
Z ; \/Et sk+1 )2

t=sr+1
EtA p Ck P
< up | Dt “ WIS~ 1SS i <@y
i=1,...,p \/Zt Sk+1 )) i=1 \ t=sp+1 i=1

where the second inequality follows from Lemma [14] and .

(41)
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Combining , 7 and yields
S aTe+ Y Y P

t=sk+1 z€S° t=sp+1 €S

(42)

Now we are to explore the restricted eigenvalue inequality. Let

L = (sismi)y T2 = (M, M)y I3 = (M, ex)-

We have that with probability at least 1 — C(n V p)~¢, on the event N;=1 3&5,,

€Lk 3
T
YooIAwlE =) Y ALadi = D D ALl
t=sp+1 1=1tel; i=1,3tel;

2
= ( I\Aullz 9Cw\/10g(p)lAu||1>
i=1,3
2
Sc ||1> )

I
> Z ( | ‘AI
min{|11], |3} > (1/3)A > 288%C2dy log(n V p)/c2

log(p

i=1,3

where the last inequality follows from and Assumption (1}, that

Since |I5] > 2882C2dy log(n V p)/c2, we have

S Iagwd = S AL, - 00, og@las (5

tels

-

Note that
2
3
YD 1ALG)
i=1 jeSse
1/2 =
< Z I, Z (Ag(i))
JES® =sk+1
€k
SEAID DS
jeES t=5+1
Therefore,

ex

S A - 5
pet 1 32C,+/log(n V p)

€k
> IAd3

t=sr+1

= DR ALY N AL
>~ i 2 = t 2
1=1 8 32Cx log(n v p) t=sr+1 t=sp+1

e 1/4 1/2 ek

3\/Z 1/4 - 18<.d Cy

S IR IV B NID DR M
t=sp,+1 © t=sp,+1




where the last inequality follows from and which implies

Cx

32

o 18¢dL/?
S A < B

c
t=sp+1 i

Therefore,
ek

ST 1B - Br113 < 576%C%dy /.

t=sr+1
Let 8 = B;, and 85 = 3}, ;. We have that

€k

Y 1B = Bi1E = 1L BT — Bull3 + 11201185 — Bull3 + 31183 — Ball3-

t=sr+1
Since
2 1_
e

Mk k= Mk 3le 377k

2 2 2 -
=30 = me—1) + 3 = 1) = 5 (-1 = Me—1) + (0 — )
2 1 1
SEA A= CA,

3 3 3

where the inequality follows from Assumption 1| and , we have that

Ci CczAfo
CsnrdoKo? log® (nVp)

Al gy — Bl”%/?’ < L8] - Bl“% <6< < 1 AR?,

where 1/4 > ¢; > 0 is an arbitrarily small positive constant. Therefore we have
187 = Bull3 < ers®.

In addition we have
185 = Bill2 = 185 = Bill2 — 187 — Bill2 = x/2.

Therefore, it holds that R
K2 Ia] /4 < |L[1B5 = Bill3 <6,

which implies that

. 4CdoC?

e — mie| < 1720(-
K

3 Lower bounds

Proof of Lemma[3 For any vector 3, if z ~ N(0,I,,), € ~ N'(0,0%) and y = =T 3 + ¢, then we denote

T 2 AT
(Z)NN(O,ZB), where EB:<Bﬂﬂ+U ﬁ[ )

Now for a fixed S C {1,...,p} satisfying |S| = d, define

S:{UGRP:ui:O,i¢S;ui:n/\/Eor —/s/\/g,iES}.
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Define
Py=N(0,%) and P,=N(0,%,), Yues,

o2 0 o2+ k2 '
EO—< 0 Ip) and Zu—( u 1, .

Step 1. Let ngu denote the joint distribution of independent random vectors {Z; = (y;, 2, )T }X; € RP*! such
that

where

Zrvo o Za 9N (0,20) and Zasa,.... Ze S A0, %)

Let P, denote the joint distribution of independent random vectors {Z; = (y;, 2 )T }]_; € RP*! such that

A V() S) and Zr_agi,.... Zr iid N(0,3,).

For i € {0,1}, let

p=2"%"pf.

uesS

Let n(P) denote the change point location of a distribution P. Then since n(Fp ) = A and n(Py,,) =T — A for
any u € S, we have that
In(Po) —n(P)| =T —2A >T/2,

due to the fact that A <T'/4. It follows from Le Cam’s lemma (Yu, |1997)) that

inf sup Ep (|7 —n|) > T/2(1 — drv(FPy, P1)),
n PeP

where dpvy (FPo, P1) = ||Po — P1l[1/2, with ||Py — Pi[[1 denoting the L distance between the Lebesgue densities
of the distributions Py and P;. Then we have that

inf sup Ep (|7 —n[) > T/2(1 = 27" Py — Pi1).
n PeP

Step 2. Let P2 be the joint distribution of

Zl,...,ZAlrI\SiN(O,ZO)

and PP =274%" o PP, where PP is the joint distribution of

ues
Zuyoo Za N0, 0).

It follows from Step 2 in the proof of Lemma 3.1 in \Wang et al. | (2017)) that

1Py = Prll < 2| P3 = P s,

which leads to

ir%f;telng(lﬁ— ) = T/2(1 = ||P5 = PR |h) = T/2(1 = \/[x2(PR, B)):

where the last inequality follows from T'sybakov| (2008)).
Note that

dPA 2 1 dPAdPA
2 A AN 1 _ § u v

u,ve

1 dP,dP,\ 2
T gd > {EPO (dPOdPO)} - L

u,veS




Step 3. For any u,v € S, we have that

0 dP,dP,
Po\ dPydPy
-1/2 -1/2 » T(n-1Lyn-1_yn-t
:‘Eu| ‘Evl (27_‘_)—%/ exp _Z ( u + v 0 )Z dz
\Eo|71/2 Rp+1 2

‘Eu|71/2‘2v|71/2
- ‘EO|71/2

|t + 5y - BT

In addition, we have that

_ o2 0
Bl = [l = 1%l =% 55t = (% )

9 2. T 2 2. T

-1 _ g —0 u -1 g —0 v
X, = ( —02u IT+4+o2uu’ > and %, = < —0c7 2y T+o 2vw" >

dP,dP,

E ullv ) p
Po (dPodP0> 7

M| = Hl —(u4v)" (e, +uu’ —|—U’UT)71 (u—l—v)}‘ oL, +uu’ +ov'].

Then
—1/2

= o?|M|7V2.

1 —(u+v)T"
—(u+v) oI, +uu’ +vv’

Note that

As for the matrix My = 021p +uu’ +ovv', since u,v # 0, there are two cases. Let

’LLT'U

Puv = .
HZ

e The dimension of the linear space spanned by u and v is one, i.e. |p| = 1. In this case, for any w L span{u},
|lwll2 = 1, it holds that
Miw = o?w.

There are p — 1 such linearly independent w. For any w € span{u}, ||w||2 = 1, it holds that
Myw = (02 4 2k%)w.

Then M| = 0*7~2(0? + 257).
If puy = —1, then |M| = | M| = 02P=2(0? 4 2K2).
If pu» =1, then

T
B Tu 1w 2p—2( 2 2
|M|— 1 —4u Em?u Up (0' +2H)
|‘72—2“2| 2p—2/ 2 2 2p—2| 2 2
Therefore in this case
|M| = %P 2|0? — 2pu7v/@2|.

e The dimension of the linear space spanned by u and v is two, i.e. |p| < 1. In this case, for any w L span{u},
|lw]l2 = 1, it holds that
Miw = o?w.

There are p — 2 such linearly independent w.

We also have
u+v

lu+ o]

utv 2, .2 2
Mi——: = (o + K” + K
kol ~ ot
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and

U — v U—v
M,

A (0% 4 K — )
Ju—ol wt]

lu— v’
Then

|M;| = 0?7402 + K2 + puok?) (0% + K — puwk?)
In addition,
(u+v)" (%L, +uu' + va)_l (u+v)
T
_ T u+tv 1 U+
o e ()

T
T uU—v 1 uU—0
+ (u+v) IIU—U||02+I£2—pu7vf£2< ) (u+v)

[[u— vl
_ 2k% + 2/{2,0“71,
S 024+ K2+ py k2

Then,

M| = 024]0% — k2 — p 1?02 + K2 — puh?),
which is consistent with the case when |p, | = 1.

‘We then have

dP,dP, k2 ulwl|” K2 Ty 2
Epo =11 - —= — —— 1+ _
dPydP, o2 o2 o2 o2
Due to the fact that ecd/A < 1/4, we have that
k2 ulw 2k2 2cd
A A R R
o2 o2 — o — A >0,
then
dP,dP, k2 uTo\ Y2 k2 uTo\ 2
Ep (e v) = (-2 20 1+ Y
dPydP, o2 o2 o2 o2
2uTv kY (uTw)? 172 v k) V?
:<1— 5 2t 1 ) <<1—2—4>
o o o o o

Then we have

where U and V are two independent d-dimensional Radamacher random vectors, ¢4 = (17V/d)?, and the last
inequality follows from (1 —¢)~2/2 < exp(At), for any t < 1/2.

Due to the Hoeffding inequality, it holds that for any A > 0,

Pleg > A\) < 2e~ 242,
Then



o) 2A 4A %) 1 _ KA
§1+/ P{%sd+/€4>log(u)}du—l+/ P{ed>0g(u2A"4}du
1 o o 1 s
> 2do? 2dK?
S1+2/1 exp{—mlog(u)—k 0_2 } du

2 exp(2dr2o~2) <14 2e <54

2o 1 T 2fe—17

where the last two inequalities hold due to

2
Se+1°

2¢ed®> <A and ¢<

We then complete the proof.

Proof of Lemmal[f} For any vector 3, if z ~ N(0,1,), € ~ N'(0,0%) and y = 2" 3 + ¢, then we denote

(Z)NN(O,EB), where Eﬁz(ﬁ—rﬁ;_UZ ﬁ;)

Now for a fixed S C {1,...,p} satisfying |S| = d, define
S:{ueR”: u; = 0,i ¢ S;u; = k/Vd or —/ﬁ/\/a,iGS}.

Define
Py=N(0,%) and P,=N(0,%,), Vues,

o2 0 o+ k2 '
ZO( 0 I, and X, = u 1, .

Step 1. Let Pozju denote the joint distribution of independent random vectors {Z; = (y;, 2, )T }Z; € RP*! such
that

where

Zoveo Za W N(0,20) and Zasi,.... Zr S A0, D).

Let P, denote the joint distribution of independent random vectors {Z; = (y;,z; )" }]_; C RP*! such that

Zuveoo Zons N(O,50) and Zaysis. .. Zr S N(0, 5o).

For i € {0,1}, let

p=2""%"PF,.
u€eS

Then we have that

inf sup Ep (|77 —nl) > 6(1 — 27| Py — Puln).
i pep

Step 2. Let Pg be the joint distribution of

Zi,. s 151/\/(0,20)
and P) =271 Y ues P{S’u, where Pf’u is the joint distribution of
Zu, o, Z5 9 v(0,30).



Manuscript under review by AISTATS 2021

It follows from the identical arguments in the proof of Lemma [3| that

inf sup Ep (|77 —n|) 2 6(1 — | Fg — P [l1) = 6(1 — /x*(P{, F))

7 pep
and
1 dP,dP,\\° 2 exp(2drk?o~2)
2 § ) u v
ot~ b o () oot
T uZG: U \dRd P 292 _ 4
Step 3. Let
d 2
5=¢ 7
K

We have that
(PP, P9) =1/4,

provided that d?¢(zA~! < 1 and with C' = 2/(8¢ + 1). Then we conclude the proof. O

3.1 Numerical Results

In Table [1] we provide a detailed summery of the numerical results for the simulated experiments conducted in
Section [4.2]

Setting Cases DP DP.LR EBSA EBSA.LR
k=4,dy =10 0.023(0.015) 0.008(0.004) 0.104(0.031) 0.034(0.045)
k=4,dy =15 All 0.031(0.020)  0.017(0.047) 0.104(0.029) 0.038(0.050)
k=4,dy =20 0.038(0.032) 0.019(0.042) 0.104(0.027) 0.036(0.051)
k=4,dy =10 0.022(0.015) 0.008(0.004) 0.061(0.047) 0.008(0.008)
k=4,dy=15 K=K 0.025(0.018) 0.008(0.007) 0.071(0.045) 0.010(0.016)
k=4,dyg =20 0.028(0.020) 0.014(0.012) 0.076(0.048) 0.010(0.011)
k=5,dy =10 0.022(0.022)  0.007(0.004) 0.102(0.033) 0.033(0.046)
k=5,dy =15 All 0.025(0.023)  0.015(0.025) 0.102(0.030) 0.027(0.042)
Kk =>5,dyp =20 0.030(0.027)  0.016(0.030) 0.102(0.030) 0.041(0.048)
Kk =>5,dyg =10 0.020(0.015)  0.007(0.004) 0.068(0.073) 0.007(0.008)
k=5,dy=15 K=K 0.021(0.012) 0.010(0.006) 0.075(0.049) 0.007(0.008)
Kk =D5,dyg =20 0.025(0.018)  0.010(0.007) 0.076(0.065) 0.010(0.012)
Kk =6,dyp =10 0.009(0.010)  0.007(0.004) 0.100(0.028) 0.034(0.049)
Kk=06,dy =15 All 0.022(0.017)  0.009(0.005) 0.101(0.029) 0.037(0.049)
Kk =6,do =20 0.023(0.017) 0.010(0.006) 0.102(0.031) 0.028(0.043)
Kk =6,dyp =10 0.009(0.010)  0.007(0.004) 0.061(0.064) 0.006(0.010)
k=6,dy=15 K=K 0.022(0.017) 0.009(0.005) 0.064(0.050) 0.007(0.007)
Kk =6,dy =20 0.023(0.017)  0.010(0.006) 0.076(0.041) 0.009(0.013)

Table 1:  Scaled Hausdorff Distance. The numbers in the brackets indicate the corresponding standard errors
of the scaled Hausdorff distance.
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