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1 A Primer on Inference in Sparse GP Models

A Gaussian process (gp) defines a distribution over functions f(x) : RD → R such that for any subset of
points {x1, . . . ,xN} the function values {f(x1), . . . , f(xN )} follow a Gaussian distribution (Rasmussen and
Williams, 2005). A gp is fully described by a mean function m(x) and a covariance function κ(x,x′;θ)
with hyper-parameters θ. Given a supervised learning problem with N pairs of inputs xi and labels yi,
D = {(xi, yi)|xi ∈ RD, yi ∈ R}i=1,...,N , we consider a gp prior over functions which are fed to a suitable likelihood
function to model the observed labels.

Denoting by f ∈ RN the realizations of the gp random variables at the N inputs X = {x1, . . . ,xN} and assuming
a zero-mean gp prior, we have that p(f) = N (0,Kxx|θ), where Kxx|θ is the covariance matrix obtained by
evaluating κ(x,x′;θ) over all input pairs xi,xj (we will drop the explicit parameterization on θ to keep the
notation uncluttered). In the Bayesian setting, given a suitable likelihood function p(y|f), the objective is to
infer the posterior p(f |y) given N pairs of inputs and labels. This inference problem is analytically tractable for
few cases, e.g. using a Gaussian likelihood y|f ∼ N (f , σ2I), but it involves the costly O(N3) inversion of the
covariance matrix Kxx.

Sparse gps are a family of approximate models that address the scalability issue by introducing a set of M inducing
variables u = (u1, . . . , uM ) at corresponding inducing inputs Z = {z1, . . . , zM} such that u = f(z) (Snelson and
Ghahramani, 2005). These inducing variables are assumed to be drawn from the same gp as the original process,
yielding the joint prior p(f ,u) = p(u)p(f |u) with

p(u) = N (0,Kzz)

p(f |u) = N
(
KxzK

−1
zz u,Kxx −KxzK

−1
zz Kzx

)
,

(1)

where Kzz ≡ k(Z,Z), Kxz ≡ k(X,Z) and Kxz = KT
zx. After introducing the inducing variables, the interest is

in obtaining a posterior distribution over f by relying on the set of inducing variables u so as to avoid costly
algebraic operations with Kxx ∈ RN×N . A general framework to do this for any likelihood and at scale (using
mini-batches) can be obtained using variational inference techniques Titsias (2009a); Hensman et al. (2013);
Bonilla et al. (2019). The main innovation in Titsias (2009a) is the formulation of an approximate posterior
q(f ,u) within variational inference (Jordan et al., 1999) so as to develop such a framework. This variational
distribution formulation has come to be known as Titsias’ trick and has the form:

q(f ,u) = q(u)p(f |u). (2)

Following the variational inference approach, and using the above approximate posterior, we introduce the
evidence lower bound (elbo),

log p(y) ≥ −kl [q(u) ‖ p(u)] + Eq(f ,u) log p(y | f), (3)

where the Kullback-Leibler divergence (kl) term only involves M -dimensional distributions, as the conditional
prior (Eq. 1) is also used in the approximate posterior (Eq. 2), which results in the kl involving N -dimensional
distributions vanish. The second term in the expression above is usually referred to as the expected log likelihood
(ell) and, for factorized conditional likelihoods, it can be computed efficiently using quadrature or Monte Carlo



(mc) sampling (see, e.g., Hensman et al., 2015a). Thus, posterior estimation under this framework involves
constraining q(u) to have a parametric form (usually a Gaussian) and finding its parameters so as to optimize the
elbo above. This optimization can be carried out using stochastic-gradient methods operating on mini-batches
yielding a time complexity of O(M3).

1.1 MCMC for Variationally Sparse GPs

An alternative treatment of the inducing variables under the variational framework described above is to avoid
constraining q(u) to having any parametric form or admitting simplistic factorizing assumptions. As shown by
Hensman et al. (2015b), this can be, in fact, achieved by finding the optimal (unconstrained) distribution q(u)
that maximizes the elbo in Eq. 3 and sampling from it using techniques such as Markov chain Monte Carlo
(mcmc). This optimal distribution can be shown to have the form

log q(u) = Ep(f |u) log p(y|f) + log p(u) + C, (4)

where C is an unknown normalizing constant. This expression makes it apparent that sparse variational gps can
be seen as gp models with a Gaussian prior over the inducing variables and a likelihood which has a complicated
form due to the expectation under the conditional p(f |u). This observation makes it possible to derive mcmc
samplers for the posterior over u, thus relaxing the constraint of having to deal with a fixed form approximation.
The only difficulty is that the likelihood requires the computation of an expectation; however, as mentioned
above, for most modeling problems where the likelihood factorizes, this expectation can be calculated as a sum of
univariate integrals, for which it is easy to employ numerical quadrature. Hensman et al. (2015b) also include
the sampling of the hyper-parameters θ jointly with u; however, in order to do this efficiently, a whitening
representation is employed, whereby the inducing variables are reparameterized as u = Lzzν, with Kzz = LzzL

>
zz.

The sampling scheme then amounts to sampling from the joint posterior over ν,θ.

The sampling scheme used by Hensman et al. (2015b) employs a more efficient method based on Hamiltonian
Monte Carlo (hmc, Duane et al., 1987; Neal, 2010). Given a potential energy function defined as U(u) =
− log p(u,y) = − log p(u|y) + C, Hamiltonian Monte Carlo (hmc) introduces auxiliary momentum variables r
and it generates samples from the joint distribution p(u, r) by simulation of the Hamiltonian dynamics

du = M−1rdt ,

dr = −∇U(u)dt ,

where M is the so called mass matrix, followed by a Metropolis accept/reject step.

1.2 Stochastic gradient HMC for Deep models

Different from classic hmc where it is required to compute the full gradients ∇U(u) = −∇ log p(u|y), stochastic
gradient Hamiltonian Monte Carlo (sghmc) (Chen et al., 2014) allows to sample from the true intractable
posterior by means of stochastic gradients, and without the need of Metropolis accept/reject steps, which would
require access to the whole data set. By modeling the stochastic gradient noise as normally distributed N (0,V),
the (discretized) Hamiltonian dynamics are updated as follows

ut+1 = ut+1 + εM−1rt ,

rt+1 = rt − ε∇̃U(u)− εCM−1rt +N (0, 2ε(C− B̃)) ,

where ε is the step size, C is a user defined friction term and B̃ is the estimated diffusion matrix of the gradient
noise; see e.g., Springenberg et al. (2016) for ideas on how to estimate these parameters.

sghmc is the primary inference method used by Havasi et al. (2018) for obtaining samples from the posterior
distribution over the latent variables. Recently, this has been approached using adversarial inference methods
(Yu et al., 2019).

1.3 Other Approaches to Scalable and Bayesian GPs

It is worth mentioning that other approaches to scalable inference in gps have been proposed, which feature
the possibility to operate using mini-batches. For example, looking at the feature-space view of kernel machines,



Rahimi and Recht (2008) show how random features can be obtained for shift invariant covariance functions, like
the commonly used squared exponential. These approximations are also useful for addressing the scalability of
gps and deep Gaussian processes (dgps), as showed by Lázaro-Gredilla et al. (2010) and Cutajar et al. (2017).
Similarly, the work on structured approximations of gps Saatçi (2011) has found applications to develop a scalable
framework for gps, later developed to include the possibility to learn deep learning-based representations for the
input Wilson et al. (2016).

The Gaussian process latent variable model (gplvm) proposed by Lawrence (2005) is a popular approach to
Bayesian nonlinear dimensionality reduction and its Bayesian extensions such as those develped by Titsias and
Lawrence (2010) consider a prior over the inputs of a gp. Although these methods can be used for training gps
with missing or uncertain inputs, we are not aware of previous work adopting such methodologies for inducing
inputs within scalable sparse gp models.

2 Discussion on the objectives: VFE vs FITC

To understand why the fully independent training conditional (fitc) objective makes sense we need to go back
to the original work of Titsias (2009a,b) and the seminal work of Quiñonero-Candela and Rasmussen (2005). For
this, we will consider the regression case and then we can easily generalize our reasoning to the classification
case. Titsias (2009b) shows that, in the standard regression case with isotropic observation noise, his variational
free energy (vfe) optimization framework yields exactly the same predictive posterior as the projected process
(pp) approximation (Seeger et al., 2003), which is referred to as the deterministic training conditional (dtc)
approximation in Quiñonero-Candela and Rasmussen (2005). The optimal variational posterior distribution is
given by:

q∗(u |θ) = N (u; m,S),

m = σ−2KzzΣKzxy

S = KzzΣKzz, where

Σ =
(
Kzz + σ−2KzxKxz

)−1
,

(5)

where σ2 is the observation-noise variance. It is easy to show that, given a Gaussian posterior over the inducing
variables with mean and covariance m and S, the posterior predictive distribution at test point x? is a Gaussian
with mean and variance

µy(x?) = κ(x?,Z)K−1zz m

σ2
y(x?) = κ(x?,x?)− κ(x?,Z)K−1zz κ(Z,x?) + κ(x?,Z)K−1zz SK−1zz κ(Z,x?).

(6)

Thus, replacing Eq. 5 in Eq. 6 we obtain:

µy(x?) = σ−2κ(x?,Z)ΣKzxy

σ2
y(x?) = κ(x?,x?)− κ(x?,Z)K−1zz κ(Z,x?) + κ(x?,Z)Σκ(Z,x?),

(7)

which indeed corresponds to the predictive distribution of the dtc/pp approximation. Despite this equivalence,
as highlighted in Titsias (2009a), the main difference is that the vfe framework provides a more robust approach
to hyper-parameter estimation as the resulting elbo corresponds to a regularized marginal likelihood of the
dtc approach and hence should be more robust to overfitting. Nevertheless, the dtc/pp, and consequently the
vfe, predictive distribution has been shown to be less accurate than the fitc approximation (Titsias, 2009a;
Quiñonero-Candela and Rasmussen, 2005; Snelson, 2007).



2.1 The FITC Approximation

The fitc approximation considers the following approximate conditional prior:

p(f |u) ≈ N
(
f ; KxzK

−1
zz u,diag

(
Kxx −KxzK

−1
zz Kzx

))
=

N∏
n=1

p(fn |u) =

N∏
n=1

N (fn; µ̃n, σ̃
2
n), with

µ̃n = κ(xn,Z)K−1zz u (8)

σ̃2
n = κ(xn,xn)− κ(xn,Z)K−1zz κ(Z,xn). (9)

As we shall see later, is this factorization assumption in the conditional prior that will yield a decomposable
objective amenable to stochastic gradient techniques. For now, consider the posterior predictive distribution
under the fitc approximation1

µfitc(x?) = κ(x?,Z)ΣfitcKzxΛ
−1y

σ2
fitc(x?) = κ(x?,x?)− κ(x?,Z)K−1zz κ(Z,x?) + κ(x?,Z)Σfitcκ(Z,x?), where

Λ = diag(Kxx −KxzK
−1
zz Kzx + σ2I) and

Σfitc = (Kzz + KzxΛ
−1Kxz)

−1.

(10)

We now see why fitc’s predictive distribution above is more accurate than vfe’s in Eq. 7, as we can obtain
fitc’s by replacing σ2I in vfe’s solution with diag(Kxx − KxzK

−1
zz Kzx) + σ2I. Effectively, as described in

Quiñonero-Candela and Rasmussen (2005), vfe’s solution (which is the same as dtc’s) can be understood as
considering a deterministic conditional prior p(f |u), i.e. with zero variance.

2.2 Stochastic Updates Using the FITC Approximation

Now we can understand why the log of the expectation can provide more accurate results than the expectation
of the log. Basically in the former we are using the fitc approximation while in the later we are using the
vfe/dtc/pp approximation. It is easy to show that when using the fitc approximation, one can obtain a
decomposable objective function that can be implemented at large scale using stochastic gradient techniques. Here
we focus only on the expectation of the conditional likelihood (which is the crucial term) and in the regression
setting for simplicity but the extension to the classification case (e.g. using quadrature) is straightforward.

log p(y,u |θ) = logEp(f |u,θ) [p(y | f)]

= log

∫
f

p(f |u,θ)p(y | f) df will drop θ for simplicity from now on

= log

∫
f1,...,fN

N∏
n=1

p(yn | fn)p(fn |u) df

= log

N∏
n=1

∫
fn

N (yn; fn, σ
2)N (fn; µ̃n, σ̃

2
n) dfn

= log

N∏
n=1

p(yn |u)

=

N∑
n=1

logN (yn; µ̃n, σ̃
2
n + σ2), (11)

where µ̃n, σ̃
2
n are given by Eq. 8 and Eq. 9.

1Which is, in fact, the same as in the sparse Gaussian process (spgp) framework of Snelson and Ghahramani (2007).



Binary classification. Similar results can be derived for binary classification with Bernoulli likelihood and
response function λ(f):

log p(y,u |θ) = logEp(f |u,θ) [p(y | f)] = log

N∏
n=1

∫
fn

N (fn; µ̃n, σ̃
2
n)Bern(yn;λ(fn)) dfn. (12)

When the response function is the cdf of a standard Normal distribution, i.e., λ(fn) = Φ(fn)
def
=
∫ fn
−∞N (fn; 0, 1)dfn,

which is also known as the probit regression model, the expectation above can be computed analytically to obtain:

log p(y,u |θ) =

N∑
n=1

log Bern(yn; Φ(µ̃n/
√

1 + σ̃2
n)). (13)

For other response functions the expectation in Eq. 12 can be estimated using quadrature.

2.3 An heteroskedastic version of the Gaussian likelihood

As Titsias (2009b) discussed in Appendix C, the fitc approximation corresponds to a gp regression with
heteroskedastic noise variance

p(y|f) = N (y|f , σ2I + diag[Kxx −KxzKzzKzx]). (14)

If we apply this augmented likelihood to the variational expectations term, we get

Eq(f) log p(y|f , σ2,θ) = −1

2

n∑
j=1

(
log 2π(σ2 + σ̃2

j ) +
(yj − µ̃j)

2 + σ̃2
j

σ2 + σ̃2
j

)
. (15)

Since Titsias (2009b) considers this vfe formulation, we also compare with it.

2.4 Concluding remarks

The main reasoning in Titsias (2009a)’s work behind the better performance of vfe, despite providing a less
accurate predictive posterior than fitc’s, was that hyper-parameter estimation was more robust due to the use
of the variational objective (which provided an extra regularization term). Now, we have a better way to do
inference on hyper-parameters and inducing inputs by placing priors on those and by carrying out free-form
inference upon them with sghmc.

3 Extension to Deep Gaussian Processes

In this section, we derive the mathematical basis for of Bayesian treatment of inducing inputs in a dgp setting
(Damianou and Lawrence, 2013). We assume a deep Gaussian process prior fL ◦ fL−1 ◦ · · · f1, where each f l is
a gp. For notational brevity, we use θl as both kernel hyper-parameters and inducing inputs of the l-th layer,
and f0 as the input vector X. Then we can write down the joint distribution over visible and latent variables
(omitting the dependency on X for clarity) as

p

(
y,
{

f l,ul,θl
}L

l=1

)
= p

(
y
∣∣∣ fL) L∏

l=1

p
(
f l
∣∣∣ul, f l−1,θl

)
p
(
ul
∣∣∣θl
)
p
(
θl
)
. (16)

Our goal is to estimate the posterior,

log p̃

({
ul,θl

}L

l=1

∣∣∣∣y) =

= logEp({f l} | {ul,θl})p
(
y
∣∣∣ fL)+

L∑
l=1

(
log p

(
ul
∣∣∣θl
)

+ log p
(
θl
))
− logC. (17)



Here C is a normalizing constant, after integrating out {f l,ul,θl}Ll=1 from the joint. While the distribution p̃ is
intractable, we have obtained the form of its (un-normalized) log joint, from which we can sample using hmc
methods. However, Eq. 17 is not immediately computable owing to the intractable expectation term. More
calculations reveal that we can, nevertheless, obtain estimates of this expectation term with Monte Carlo sampling

logEp({f l} | {ul,θl})p
(
y
∣∣∣ fL) ≈

≈ logE
p
(
{f l}L

l=2

∣∣∣ f̃1,{ul,θl}L
l=2

)p(y
∣∣∣ fL) , f̃

1
∼ p

(
f1
∣∣u1,θ1, f0

)
,

≈ logE
p
(
{f l}L

l=3

∣∣∣ f̃2,{ul,θl}L
l=3

)p(y
∣∣∣ fL) , f̃

2
∼ p

(
f2
∣∣∣u2,θ2, f̃

1
)
,

≈ . . .

≈ logE
p
(
fL
∣∣∣ f̃L−1

,uL,θL
)p(y

∣∣∣ fL) , f̃
L−1
∼ p

(
fL−1

∣∣∣uL−1,θL−1, f̃
L−2)

,

=

N∑
n=1

logEp(fL
n | f̃L−1

n ,uL,θL)p
(
yn
∣∣ fLn ) (18)

Because of the layer-wise factorization of the joint likelihood (Eq. 16), each step of the approximation is unbiased.

While it is possible to approximate the last-layer expectation with a Monte Carlo sample f̃Lj , the expectation is

tractable when yj | fLj is a Gaussian or a Bernoulli distribution with a probit regression model, or is computable
with one-dimensional quadrature (Hensman et al., 2015b).



4 Additional Results
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Figure 1: Traces for three test points on the Airline dataset
(4 chains/200 samples).

Table 1: Datasets used, including number of datapoints
and their dimensionality.

name n. d-in d-out

boston 506 13 1
concrete 1,030 8 1

energy 768 8 2
kin8nm 8,192 8 1
naval 11,934 16 2

powerplant 9,568 4 1
protein 45,730 9 1
yacht 308 6 1

airline 5,934,530 8 2
higgs 11,000,000 28 2
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Figure 2: Empirical analysis of different choices of objectives for optimization and sampling.



Table 2: Tabular version of Figure 7 in the main paper.

test mnll
dataset boston concrete energy kin8nm naval powerplant protein yacht
name

bsgp 1 2.47 (0.16) 3.12 (0.04) 0.97 (0.13) −1.12 (0.01) −8.22 (0.04) 2.71 (0.02) 2.78 (0.01) −0.23 (0.13)

bsgp 2 2.47 (0.15) 3.04 (0.05) 0.95 (0.16) −1.40 (0.01) −8.23 (0.04) 2.67 (0.02) 2.63 (0.02) −0.72 (0.15)

bsgp 3 2.47 (0.14) 2.96 (0.10) 0.95 (0.15) −1.41 (0.01) −8.02 (0.04) 2.66 (0.03) 2.57 (0.03) −0.83 (0.10)

bsgp 4 2.48 (0.14) 2.97 (0.06) 0.92 (0.14) −1.43 (0.02) −8.03 (0.05) 2.65 (0.05) 2.50 (0.03) −0.76 (0.13)

bsgp 5 2.48 (0.12) 2.91 (0.08) 0.75 (0.30) −1.43 (0.01) −8.09 (0.05) 2.65 (0.03) 2.43 (0.03) −0.74 (0.08)

ipvi gp 1 2.84 (0.36) 3.19 (0.11) 1.27 (0.07) −1.12 (0.02) −5.96 (0.89) 2.79 (0.03) 2.81 (0.02) 1.21 (1.50)

ipvi gp 2 2.73 (0.35) 3.13 (0.11) 1.31 (0.28) −1.34 (0.02) −4.98 (0.48) 2.76 (0.07) 2.65 (0.02) 0.74 (1.13)

ipvi gp 3 2.61 (0.25) 3.08 (0.13) 1.21 (0.12) −1.33 (0.03) −4.86 (0.23) 2.72 (0.06) 2.74 (0.05) 1.05 (1.77)

ipvi gp 4 2.64 (0.44) 3.11 (0.18) 1.19 (0.25) −1.33 (0.01) −4.94 (0.20) 2.76 (0.02) 2.79 (0.01) 2.47 (2.34)

ipvi gp 5 2.51 (0.20) 3.08 (0.17) 1.15 (0.22) −1.29 (0.02) −5.09 (0.49) 2.72 (0.04) 2.80 (0.01) 2.84 (3.64)

sghmc gp 1 2.82 (0.33) 3.13 (0.09) 1.08 (0.28) −1.08 (0.01) −6.23 (0.14) 2.76 (0.05) 2.81 (0.01) −0.11 (0.28)

sghmc gp 2 2.77 (0.37) 2.99 (0.07) 0.91 (0.15) −1.32 (0.01) −6.57 (0.11) 2.72 (0.04) 2.71 (0.02) −0.52 (0.14)

sghmc gp 3 2.78 (0.28) 3.02 (0.16) 0.91 (0.14) −1.37 (0.02) −6.56 (0.09) 2.68 (0.02) 2.66 (0.03) −0.57 (0.19)

sghmc gp 4 2.75 (0.34) 2.98 (0.13) 0.69 (0.22) −1.38 (0.02) −6.42 (0.08) 2.67 (0.04) 2.62 (0.02) −0.69 (0.12)

sghmc gp 5 3.75 (1.91) 3.11 (0.21) 1.00 (0.42) −1.39 (0.02) −6.55 (0.09) 2.65 (0.04) 2.59 (0.02) −0.53 (0.18)

svgp 1 2.53 (0.25) 3.18 (0.05) 1.75 (0.06) −1.01 (0.01) −6.67 (0.09) 2.79 (0.02) 2.92 (0.01) 0.78 (0.13)

Table 3: Normalized RMSE corresponding to results of Figure 7 in the main paper.

test error
dataset boston concrete energy kin8nm naval powerplant protein yacht
name

bsgp 1 0.36 (0.07) 0.40 (0.03) 0.13 (0.01) 0.31 (0.01) 0.02 (0.00) 0.23 (0.00) 0.72 (0.00) 0.04 (0.01)

bsgp 2 0.37 (0.07) 0.36 (0.02) 0.13 (0.01) 0.24 (0.00) 0.01 (0.00) 0.22 (0.00) 0.69 (0.00) 0.03 (0.01)

bsgp 3 0.37 (0.07) 0.32 (0.03) 0.13 (0.01) 0.24 (0.01) 0.01 (0.00) 0.22 (0.00) 0.68 (0.00) 0.03 (0.01)

bsgp 4 0.37 (0.07) 0.33 (0.02) 0.13 (0.01) 0.24 (0.01) 0.01 (0.00) 0.21 (0.00) 0.67 (0.01) 0.03 (0.01)

bsgp 5 0.37 (0.07) 0.32 (0.03) 0.12 (0.03) 0.23 (0.00) 0.01 (0.00) 0.21 (0.00) 0.65 (0.01) 0.03 (0.01)

ipvi gp 1 0.34 (0.04) 0.34 (0.02) 0.13 (0.01) 0.31 (0.01) 0.16 (0.17) 0.23 (0.00) 0.72 (0.01) 0.04 (0.02)

ipvi gp 2 0.35 (0.06) 0.32 (0.02) 0.13 (0.01) 0.25 (0.01) 0.62 (0.22) 0.22 (0.01) 0.68 (0.01) 0.03 (0.02)

ipvi gp 3 0.34 (0.05) 0.30 (0.03) 0.13 (0.01) 0.25 (0.01) 0.65 (0.09) 0.22 (0.01) 0.65 (0.01) 0.03 (0.02)

ipvi gp 4 0.33 (0.06) 0.31 (0.03) 0.12 (0.03) 0.25 (0.00) 0.70 (0.01) 0.22 (0.01) 0.65 (0.01) 0.04 (0.03)

ipvi gp 5 0.32 (0.04) 0.30 (0.04) 0.11 (0.04) 0.26 (0.01) 0.62 (0.22) 0.21 (0.01) 0.65 (0.01) 0.03 (0.01)

sghmc gp 1 0.36 (0.08) 0.38 (0.03) 0.13 (0.01) 0.34 (0.01) 0.15 (0.13) 0.23 (0.00) 0.75 (0.01) 0.04 (0.01)

sghmc gp 2 0.37 (0.07) 0.35 (0.03) 0.13 (0.01) 0.26 (0.01) 0.02 (0.01) 0.23 (0.00) 0.72 (0.01) 0.03 (0.01)

sghmc gp 3 0.38 (0.08) 0.33 (0.03) 0.13 (0.01) 0.25 (0.01) 0.02 (0.00) 0.22 (0.00) 0.71 (0.01) 0.03 (0.01)

sghmc gp 4 0.35 (0.09) 0.31 (0.02) 0.09 (0.04) 0.25 (0.01) 0.02 (0.00) 0.22 (0.00) 0.70 (0.01) 0.02 (0.01)

sghmc gp 5 0.39 (0.07) 0.31 (0.02) 0.13 (0.01) 0.24 (0.01) 0.02 (0.00) 0.22 (0.00) 0.69 (0.00) 0.03 (0.01)

svgp 1 0.33 (0.05) 0.35 (0.02) 0.14 (0.01) 0.32 (0.00) 0.03 (0.01) 0.23 (0.00) 0.73 (0.00) 0.04 (0.01)
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Figure 3: Ablation study on the Test mnll based on the UCI benchmark for different number of inducing variables
and for determinantal point process prior ( ), normal prior ( ), Strauss process prior ( ) and uniform prior ( ). These
are compared with ( ), corresponding to the case of inducing positions optimized and inducing variables and covariance
hyper-parameters sampled, with ( ) where only inducing variables are inferred, while the rest is optimized (similarly to
sghmc-dgp). Finally ( ) is the classic svgp, where everything is optimized.
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